• Nie Znaleziono Wyników

DM3725

N/A
N/A
Protected

Academic year: 2022

Share "DM3725"

Copied!
280
0
0

Pełen tekst

(1)

Digital Media Processors

Check for Samples:DM3730,DM3725

1 DM3730, DM3725 Digital Media Processors 1.1 Features

123456

Load-Store Architecture With

DM3730/25 Digital Media Processors:

Non-Aligned SupportCompatible with OMAP™ 3 Architecture

64 32-Bit General-Purpose RegistersARM

®

Microprocessor (MPU) Subsystem

Instruction Packing Reduces Code Size

Up to 1-GHz ARM

®

Cortex™-A8 Core

All Instructions Conditional Also supports 300, 600, and 800-MHz

operationAdditional C64x+

TM

Enhancements

NEON™ SIMD CoprocessorProtected Mode Operation

High Performance Image, Video, AudioExpectations Support for Error (IVA2.2

TM

) Accelerator Subsystem Detection and Program Redirection

Up to 800-MHz TMS320C64x+

TM

DSP CoreHardware Support for Modulo Loop Also supports 260, 520, and 660-MHz Operation

operationC64x+

TM

L1/L2 Memory Architecture

Enhanced Direct Memory Access (EDMA)32K-Byte L1P Program RAM/Cache Controller (128 Independent Channels) (Direct Mapped)

Video Hardware Accelerators80K-Byte L1D Data RAM/Cache (2-WayPOWERVR SGX™ Graphics Accelerator Set- Associative)

(DM3730 only)64K-Byte L2 Unified Mapped RAM/Cache

Tile Based Architecture Delivering up to (4- Way Set-Associative)

20 MPoly/sec32K-Byte L2 Shared SRAM and 16K-Byte

Universal Scalable Shader Engine: L2 ROM

Multi-threaded Engine Incorporating PixelC64x+

TM

Instruction Set Features

and Vertex Shader FunctionalityByte-Addressable (8-/16-/32-/64-Bit Data)

Industry Standard API Support:8-Bit Overflow Protection OpenGLES 1.1 and 2.0, OpenVG1.0

Bit-Field Extract, Set, Clear

Fine Grained Task Switching, Load

Normalization, Saturation, Bit-Counting Balancing, and Power Management

Compact 16-Bit Instructions

Programmable High Quality Image

Additional Instructions to Support Anti-Aliasing

Complex MultipliesAdvanced Very-Long-Instruction-Word

External Memory Interfaces:

(VLIW) TMS320C64x+

TM

DSP Core

SDRAM Controller (SDRC)

Eight Highly Independent Functional

16, 32-bit Memory Controller With Units

1G-Byte Total Address Space

Six ALUs (32-/40-Bit); Each Supports

Interfaces to Low-Power SDRAM Single 32- bit, Dual 16-bit, or Quad 8-bit,

SDRAM Memory Scheduler (SMS) and Arithmetic per Clock Cycle

Rotation Engine

Two Multipliers Support Four 16 x 16-Bit

General Purpose Memory Controller Multiplies (32-Bit Results) per Clock

(GPMC) Cycle or Eight 8 x 8-Bit Multiplies (16-Bit

Results) per Clock Cycle16-bit Wide Multiplexed Address/Data

1

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

2POWERVR SGX is a trademark of Imagination Technologies Ltd.

3OMAP is a trademark of Texas Instruments.

4Cortex, NEON are trademarks of ARM Limited.

5ARM is a registered trademark of ARM Ltd.

6All other trademarks are the property of their respective owners.

(2)

Select PinResize Images From 1/4x to 4xGlueless Interface to NOR Flash,Separate Horizontal/Vertical Control

NAND Flash (With ECC HammingSystem Direct Memory Access (SDMA) Code Calculation), SRAM and Controller (32 Logical Channels With

Pseudo-SRAM Configurable Priority)

Flexible Asynchronous ProtocolComprehensive Power, Reset, and Clock Control for Interface to Custom Logic Management

(FPGA, CPLD, ASICs, etc.)

SmartReflex

TM

TechnologyNonmultiplexed Address/Data Mode

Dynamic Voltage and Frequency Scaling (Limited 2K-Byte Address Space)

(DVFS)1.8-V I/O and 3.0-V (MMC1 only),

ARM

®

Cortex™-A8 Core 0.9-V to 1.2-V Adaptive Processor Core

ARMv7 Architecture Voltage

TrustZone

®

0.9-V to 1.1-V Adaptive Core Logic Voltage

Thumb

®

-2 Note: These are default Operating

Performance Point (OPP) voltages and couldMMU Enhancements

be optimized to lower values usingIn-Order, Dual-Issue, Superscalar

SmartReflex AVS. Microprocessor Core

Commercial, Industrial, and ExtendedNEON Multimedia Architecture Temperature Grades

Over 2x Performance of ARMv6 SIMDSerial Communication

Supports Both Integer and Floating Point

5 Multichannel Buffered Serial Ports SIMD

(McBSPs)Jazelle

®

RCT Execution Environment

512 Byte Transmit/Receive Buffer Architecture

(McBSP1/3/4/5)Dynamic Branch Prediction with Branch

5K-Byte Transmit/Receive Buffer Target Address Cache, Global History

(McBSP2) Buffer, and 8-Entry Return Stack

SIDETONE Core Support (McBSP2 andEmbedded Trace Macrocell (ETM) 3 Only) For Filter, Gain, and Mix Support for Non-Invasive Debug Operations

ARM Cortex-A8 Memory Architecture:

Direct Interface to I2S and PCM Device32K-Byte Instruction Cache (4-Way and T Buses

Set-Associative)128 Channel Transmit/Receive Mode

32K-Byte Data Cache (4-Way

Four Master/Slave Multichannel Serial Set-Associative) Port Interface (McSPI) Ports

256K-Byte L2 Cache

High-Speed/Full-Speed/Low-Speed USB

32K-Byte ROM OTG Subsystem (12-/8-Pin ULPI Interface)

64K-Byte Shared SRAM

High-Speed/Full-Speed/Low-Speed

Endianess:

Multiport USB Host Subsystem

ARM Instructions - Little Endian12-/8-Pin ULPI Interface or 6-/4-/3-Pin

ARM DataConfigurable Serial Interface

DSP Instructions/Data - Little Endian

One HDQ/1-Wire Interface

Removable Media Interfaces:

Four UARTs (One with Infrared Data

Three Multimedia Card (MMC)/ Secure Digital Association [IrDA] and Consumer Infrared

(SD) With Secure Data I/O (SDIO) [CIR] Modes)

Test Interfaces

Three Master/Slave High-Speed

Inter-Integrated Circuit (I2C) ControllersIEEE-1149.1 (JTAG) Boundary-Scan Compatible

Camera Image Signal Processing (ISP)

Embedded Trace Macro Interface (ETM)

CCD and CMOS Imager Interface

Serial Data Transport Interface (SDTI)

Memory Data Input

12 32-bit General Purpose Timers

BT.601/BT.656 Digital YCbCr 4:2:2

(8-/10-Bit) Interface2 32-bit Watchdog Timers

(3)

Ball Pitch (Top), .4mm Ball Pitch (Bottom)

Up to 188 General-Purpose I/O (GPIO) Pins

(Multiplexed With Other Device Functions)515-pin s-PBGA package (CBC

Suffix), .65mm Ball Pitch (Top), .5mm Ball

45-nm CMOS Technology

Pitch (Bottom)

Package-On-Package (POP) Implementation for

423-pin s-PBGA package (CUS Memory Stacking (Not Available in CUS

Suffix), .65mm Ball Pitch

Package)

(4)

architecture and are integrated on TI's advanced 45-nm process technology. This architecture is designed to provide best in class ARM and Graphics performance while delivering low power consumption. This balance of performance and power allow the device to support the following example applications:

• Portable Data Terminals

• Navigation

• Auto Infotainment

• Gaming

• Medical Imaging

• Home Automation

• Human Interface

• Industrial Control

• Test and Measurement

• Single board Computers

The device can support numerous HLOS and RTOS solutions including Linux and Windows Embedded CE which are available directly from TI. Additionally, the device is fully backward compatible with previous Cortex™-A8 processors and OMAP™ processors.

This DM3730/25 Digital Media Processor data manual presents the electrical and mechanical specifications for the DM3730/25 Digital Media Processor. The information contained in this data manual applies to the commercial, industrial, and extended temperature versions of the DM3730/25 Digital Media Processor unless otherwise indicated. It consists of the following sections:

• A description of the DM3730/25 terminals: assignment, electrical characteristics, multiplexing, and functional description

• A presentation of the electrical characteristics requirements: power domains, operating conditions, power consumption, and dc characteristics

• The clock specifications: input and output clocks, DPLL and DLL

• A description of thermal characteristics, device nomenclature, and mechanical data about the available

packaging

(5)

64 64 Async

64 64

L2$

256K MPU Subsystem

POWERVR SGX Graphics Accelerator

TM

32 32

32 Channel

System DMA

32 32

Parallel TV Amp LCD Panel

CVBS or S-Video

Dual Output 3-Layer Display Processor (1xGraphics, 2xVideo)

Temporal Dithering SDTV QCIF Support®

32

Camera ISP Image Capture Hardware

Image Pipeline

Camera (Parallel)

64

HS USB Host

HS USB OTG

32

L3 Interconnect Network-Hierarchial, Performance, and Power Driven

64KB On-Chip

RAM 32

32KB On-Chip

ROM 32

SMS:

SDRAM Memory Scheduler/

Rotation 64

SDRC:

SDRAM Memory Controller

L4 Interconnect 32

System Controls PRCM 2xSmartReflexTM

Control Module

External Peripherals

Interfaces Peripherals: 4xUART,

3xHigh-Speed I2C, 5xMcBSP (2x with Sidetone/Audio Buffer)

4xMcSPI, 6xGPIO 3xHigh-Speed MMC/SDIO HDQ/1 Wire, 6xMailboxes 12xGPTimers, 2xWDT,

32K Sync Timer GPMC:

General Purpose Memory Controller

NAND/

NOR Flash, SRAM 32

Emulation Debug: SDTI, ETM, JTAG External and

Stacked Memories

32 IVA 2.2 Subsystem

TMS320DM64x+ DSP Imaging Video and

Audio Processor 32K/32K L1$

48K L1D RAM 64K L2$

32K L2 RAM 16K L2 ROM Video Hardware

64 32

Async

64 32

ARM Cortex™- A8

®

Core TrustZone 32K/32K L1$

The functional block diagram of the DM3730/25 Digital Media Processor is shown below.

Figure 1-1. DM3730/25 Functional Block Diagram

(6)

This data sheet revision history highlights the technical changes made from the previous to the current revision.

Revision History

SECTION ADDITIONS/CHANGES/DELETIONS Changed:

• Table 2-1. Ball Characteristics (CBP Pkg.). Removed restriction note from GPIO_16.

Terminal Description

• Table 2-2. Ball Characteristics (CBC Pkg.). Removed restriction note from GPIO_16.

• Table 2-3. Ball Characteristics (CUS Pkg.). Removed restriction note from GPIO_16.

Changed:

• Table 3-1. Absolute Maximum Rating over Junction Temperature Range. Added JTAG to Electrical Characteristics

VESD.

• Table 3-5. DC Electrical Characteristics. Removed USIM ball R27.

Added note on rise and fall times for these tables:

• Input Clock Requirements

• sys_xtalin Squarer Input Clock Timing Requirements - Bypass Mode

• sys_32k Input Clock Timing Requirements

• sys_altclk Input Clock Timing Requirements Clock Specifications

• sys_clkout1 Output Clock Switching Characteristics

• sys_clkout2 Output Clock Switching Characteristics Added:

• Table 4-2, Crystal Electrical Characteristics. Added entry for DL - Crystal drive level

(7)

2 3 4 5

6 7 8 9

10 1112 13

14 15 16 17 18 19

20 2122 23 A

B C D

E F

G H

J K

L M

N P T R U V

W Y AA AB AC

2425

26 27 28 AD

AE AF AG AH

1

030-001

2.1 Terminal Assignment

Figure 2-1 through Figure 2-5 show the ball locations for the 515- and 423- ball plastic ball grid array (s-PBGA) packages. Table 2-1 through Table 2-25 indicate the signal names and ball grid numbers for both packages.

Note: There are no balls present on the top of the 423-ball s-PBGA package.

Figure 2-1. DM3730/25 Digital Media Processor CBP s-PBGA-N515 Package (Bottom View)

(8)

A C D

E G K

L M

N P T

R U V

W Y

B F H J AA

22 21

20 18 17

16 15 13

12 10 9

8 7 6 5

4 3 2 1 11

14 19

23

030-002

Figure 2-2. DM3730/25 Digital Media Processor CBP s-PBGA-N515 Package (Top View)

(9)

AF AE AD AC AB AA Y W V U T R P N M L K J H G F E D C B A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Figure 2-3. DM3730/25 Digital Media Processor CBC s-PBGA-515 Package (Bottom View)

(10)

W V U T R P N M L K J H G F E D C B A

21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 2-4. DM3730/25 Digital Media Processor CBC s-PBGA-515 Package (Top View)

(11)

AC AB AA Y W V U T R P N M L K J H G F E D C B A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 2-5. DM3730/25 Digital Media Processor CUS s-PBGA-N423 Package (Bottom View) 2.2 Pin Assignments

2.2.1 Pin Map (Top View)

The following pin maps show the top views of the 515-pin sPBGA package [CBP], the 515-pin sPBGA package [CBC], and the 423-pin sPBGA package [CUS] pin assignments in four quadrants (A, B, C, and D).

Note: A pin with an "NC" designator indicates No Connection. For proper device operation, these pins

must be left unconnected.

(12)

B vss vdds_mem

C

D

E

F

G

H

J

K

vdds_mem NC

vss

vdd_core vdd_core

vss vss

gpmc_nwe gpmc_nadv

_ale vdds_mem vdds_mem

NC gpmc_nbe0

_cle gpmc_noe NC

gpmc_wait3 vdd_core

gpmc_ncs1 gpmc_d8

gpmc_nwp

vss vdd_core

vss vdds_mem vdds_mem

vdd_mpu gpmc_wait1 _iva gpmc_a10

gpmc_d9

gpmc_d0 gpmc_a4 gpmc_wait2

vdd_mpu _iva gpmc_ncs0

vss

L

M

N

P

vdd_mpu gpmc_wait0 _iva gpmc_a9

gpmc_d2 gpmc_d1

gpmc_ncs7 gpmc_a2

gpmc_a8 pop_k2

_m2

vss gpmc_a1

gpmc_a7 pop_l2

_n2 pop_u1

_n1

vss gpmc_d3

gpmc_d10 vss gpmc_ncs6

vss gpmc_a3

NC NC vdds_mem

vss vss

vss vss

NC NC NC

NC

vss vdd_mpu vss

_iva

vdd_mpu _iva vdd_mpu

vss _iva

vdd_mpu _iva

vdd_mpu vss _iva

vdd_mpu _iva NC

vdd_mpu _iva

vdd_mpu _iva

vdd_mpu _iva

vss pop_y23

_m1

NC NC

NC

NC NC

NC

NC

NC NC

NC NC

NC NC

NC NC

NC

NC NC

NC NC NC

NC NC

NC

NC NC

NC

NC NC

A. Top Views are provided to assist in hardware debugging efforts.

Figure 2-6. CBP Pin Map [Quadrant A - Top View]

(13)

_a27

cam_d2 cam_d10 vss B

C

dss_hsync D

E

F

G

H

J

K _a28

vdds_mem cam_wen cam_xclkb pop_b23

_b28

vss cam_fld cam_d3 cam_xclka cam_d11 cam_pclk vdds_mem

vss vdd_core cam_d4 dss_vsync dss_pclk

vdd_core dss_data6 dss_acbias dss_data20

vdds dss_data8 dss_data7

uart3_rx _irrx

dss_data9 vss vdds_mem

dss_data19 dss_data18 dss_data17 vdds

vdd_core

hdq_sio dss_data21 pop_k1 _j28

vss

mcbsp1_fsx cam_d8 cam_d6 vdds_

mmc1 vdd_core

dss_data16 cam_strobe vdd_core

L

M

N

P vss

vss cam_d9 cam_d7

vdd_core mmc1

_cmd vss

vdd_core

mmc1 _dat2

mmc1 _dat1

mmc1 _dat0

mmc1 _clk

gpio_127 gpio_126 mmc1 _dat3 vdds_x

vdd_core

vdd_core _a15

NC

NC NC vdds_mem

vdds_mem NC vss

vdd_core vdds_mem NC vss

NC NC uart3_cts

_rctx

uart3_rts _sd

vss vss vdd_core

vdda_dplls

_dll vdd_core vss

vss

vss vss

vdd_mpu _iva

NC NC

vdd_core

vdd_core

vdd_core

vss

i2c1_sda

cap_vdd _sram_core

i2c1_scl

mcbsp2_dx

mcbsp2 _clkx

mcbsp2_fsx uart3_tx

_irtx NC

NC NC

NC

NC NC

NC pop_b12

_b15

vdds

pop_h22 _j27

pop_k22 _m26

Figure 2-7. CBP Pin Map [Quadrant B - Top View]

(14)

AH

9 etk_d5

8 etk_d15

7 6 5 4 mmc2 _dat1 3

2 pop_ac2

_ah2 1

AG mmc2

_cmd mmc2 _dat2 vss

AF etk_d8

AE mmc2

_dat7 AD

AC AB AA Y W

etk_d13 vdds_mem mmc2

_dat0

etk_d9 etk_d14 etk_d12 vss

vss pop_ab1

_ag1

etk_d11 mcbsp3_dx mcbsp3

_clkx

mmc2 _dat5

mmc2 _dat3 mmc2 _dat6

vdd_core mcbsp3_dr

mcbsp3_fsx mmc2

_clk mcbsp4

_clkx

mcbsp4_dx mcbsp4_dr

vdd_core mcspi1_cs1 mcspi1

_cs0 mcbsp4

_fsx

mcspi1_clk mcspi1

_cs3 mcspi1

_cs2

uart1_tx mcspi1

_somi mcspi2_clk pop_aa1

_aa1

vdd_mpu _iva mcspi2

_cs0 mcspi2

_somi mcspi2_

gpmc_d15 simo

vdd_mpu uart1_cts _iva vss

gpmc_d7

gpmc_d14 vdds

uart1_rx

uart1_rts

mcspi1 _simo

mmc2 _dat4

etk_d10 V

U T R

vss gpmc_ncs2 mcspi2

gpmc_d6 _cs1 gpmc_d5

gpmc_ncs3 cap_vdd

_bb_mpu _iva gpmc_nbe1 vss

vdds_mem

vdd_mpu gpmc_clk _iva

gpmc_a5 gpmc_d13 gpmc_d4

vdd_mpu gpmc_ncs5 _iva gpmc_a6

gpmc_d12

gpmc_d11 vdds_mem

gpmc_ncs4

vss

cap_vdd _sram _mpu_iva

14 etk_d7

13 12 11

10

i2c3_scl

etk_d2 pop_ac9

_ah11

i2c3_sda pop_ab11

_ag13 etk_d1 pop_ab9

_ag11

etk_d6 vss

etk_d0 etk_clk

sys_boot2 etk_d3

etk_d4 etk_ctl

jtag_tck jtag_rtck jtag_emu1

vdd_mpu _iva vdd_mpu

_iva vdd_mpu

_iva vss

vss vss

vdda_wkup _bg_bb

vss jtag_emu0 vss

vdd_mpu _iva vdd_mpu

_iva vdd_mpu

_iva

vdd_mpu vss

_iva vdd_mpu vss _iva

pop_aa2 _aa2

vdds vdds

vdds

vdds pop_u2

_af2 pop_ac8

_af1

pop_ab8 _ag10

pop_ac11 _ah13 pop_ac13

_ah10 pop_ac1

_ah1

Figure 2-8. CBP Pin Map [Quadrant C - Top View]

(15)

AH

20 cap_vddu

_array 21 vss

22 23 24 25

sys _nrespwron

26 27

pop_ac22 _ah27

28 dss_data4 sys_clkout1 vdds AG

AF vss

i2c4_sda AE

AD AC AB AA Y W

dss_data1 dss_data3 dss_data5

vdds dss_data0 dss_data2 sys_boot1 pop_ab23

_ag28 sys_boot6 sys_off

_mode

sys _nreswarm

sys_boot0 sys_clkreq sys_nirq

vss sys_boot5 vdds vdd_core

uart2_rx i2c4_scl dss_data11 dss_data10

vss vss dss_

data22 dss_

data23 uart2_cts dss_data13 dss_data12

uart2_tx dss_

data15 dss_

data14

vss vssa_dac cvideo1

_out cvideo1

_rset

cvideo2 _vfb

cvideo2 vss _out

uart2_rts

sys_32k sys_clkout2

V U T R

hsusb0 _data7

hsusb0 _data6

hsusb0 _data5 hsusb0

_data4 hsusb0 _data3

hsusb0 _data2

hsusb0 _data1 hsusb0_stp hsusb0_nxt hsusb0

_data0

hsusb0_clk vss gpio_128 hsusb0_dir gpio_129

vdda_dac

15 16

pop_ac14 _ah16

17 18 19

i2c2_scl

cam_d1 gpio_115 pop_ab13

_ag15 cam_d0

vdds sys_xtalout sys_boot3 sys_boot4 i2c2_sda sys_xtalin vdd_core vdd_core

jtag_tdi

mcbsp1 _clkr vdd_core

vdd_core mcbsp1_dx

mcbsp1 _clkx

vdd_core

vdd_core mcbsp1_dr mcbsp_clks vss mcbsp2_dr

vss

cap_vddu _wkup _logic

vdda_dpll _per

jtag_tms _tmsc

jtag_tdo vdd_core sys_

xtalgnd vdd_core

vdd_mpu

_iva vdd_core vss

vss

vdds_sram vss

vdd_mpu _iva

jtag_ntrst vdd_core

vdd_core vdd_core vss

mcbsp1_fsr NC

NC cvideo1

_vfb

pop_aa23 _ae28 vdds

pop_h23 _af28 pop_aa22

_af27 vdds

pop_l1

_ah15 gpio_113 pop_ac23

_ah28

vss gpio_114 gpio_112 vdds

Figure 2-9. CBP Pin Map [Quadrant D - Top View]

(16)

B vss

C

D

E

F

G

H

J

K NC

vdds

uart1 _rx

vdd_mpu _iva mmc2

_dat7

vss

L

M

N

gpmc _d14 pop_j1

_l1

mcbsp3 _dr

cap_vdd _sram _mpu_iva vdds

vdd_mpu vss _iva

vdd_mpu _iva

vdda_

dplls_

dll

vdd_mpu _iva gpmc_

ncs4 gpmc_

wait2

cap_

vdd_bb _mpu_iva sys_ NC

boot6

i2c2_scl vss

vss

NC

vdd_

core gpmc_

ncs6

gpmc_

ncs3 NC

NC NC

NC

NC

NC

NC

NC

NC

NC

vdds

NC

NC

NC NC

gpmc_

wait3 gpmc_

ncs7 gpmc_

ncs5 sys_

boot2

sys_

boot1 I2C2_SDA

gpmc _a9

gpmc _a10

gpmc _a7

gpmc _a8

sys_

boot3 sys_

boot4

gpmc _a5

gpmc _a6

sys_

boot0 NC

vss gpmc

_a4

sys_

boot5 vdds

gpmc _a2

gpmc

_a3 vss

gpmc _nbe1

gpmc

_a1 NC NC

vss

gpmc _nbe0 _cle

NC

mmc2 _dat6

gpmc _nwe

gpmc _d15

mmc2 _dat5

uart1 _tx

gpmc _clk

gpmc

_noe vss

vdd_mpu NC vss _iva

vdd_mpu NC vss _iva

vdd_mpu

_iva NC NC NC NC NC

NC

NC NC

NC

vss NC

vdd_

core vdds

NC

NC NC NC

NC NC

NC

vdd_mpu _iva vdd_mpu

_iva NC

NC

vss vdd_mpu

_iva

A. Top Views are provided to assist in hardware debugging efforts.

Figure 2-10. CBC Pin Map [Quadrant A - Top View]

(17)

NC B

C

D

E

F

G

H

J

K

_a20 NC NC

NC NC pop_

b21_b26

NC NC NC cam_

xclka

NC NC NC

NC

uart3_

rts_sd

dss_

data20 dss_

acbias

dss_

data7

hdq_sio vdd_

core

L

M

vdds_ N

mmc1 cam_d9

NC NC NC

NC NC NC

vss NC

vss cap_vddu_

wkup_

logic

vss

vdd_

core

i2c1_scl NC

NC NC

NC NC

NC

vss

vss

NC NC

NC vss

cam_d3

cam_d5

cam_d4

vdds cam_fld

cam_hs

cam_vs

vss

a20_a25 a21_a26

cam_

pclk

cam_d10 cam_

strobe

cam_d11

dss_

pclk cam_

xclkb

dss_

data6 uart3_

cts_

rctx

uart3_

tx_

irtx vss

NC

uart3_

rx_

irrx

dss_

data8

dss_

data9 i2c1_sda

pop_

h21_k26 dss_ vss

hsync NC

vss vdds dss_

data16 dss_

data17

dss_

data19 dss_

vsync dss_

data18 NC

cam_d8 dss_

data21

NC NC

gpio_126 vdd_

core NC vss

vdd_

NC core NC

NC NC NC

NC

NC vdds NC

NC vdds NC

NC

NC NC mmc1_

dat2 NC

cap_vdd _sram_

core

vss vdds mmc1_

cmd

mmc1_

dat0 mmc1_

dat1

mmc1_

dat3 mmc1_

NC clk vss

Figure 2-11. CBC Pin Map [Quadrant B - Top View]

(18)

AF

9 etk_d14

8 7

6 5

4 3

2 1

AE AD AC AB AA Y W V U

etk_d13 sys_

nres warm pop_t2

_y2 etk_d9 NC gpmc

_d8

vdd_mpu _iva T

R P

pop_n2 _t2 gpmc _d10

mcbsp4 _dx uart1

_rts

mcspi1 NC _clk

mcbsp3 _dx gpmc

_d13

mcspi1 _simo

13 12 11

10 gpmc_

nadv_ale

jtag_

NC rtck vdd_mpu

_iva

sys_

nresp wron sys_off _mode vdd_mpu

_iva

vdd_mpu _iva

vdds_

sram

vss

i2c3_scl

pop_aa11 _af13 pop_y9_

_af10 NC

uart1 _cts

vdd_

core mcspi1

_cs0 mcspi1

_somi

jtag_

tdo vdd_

vss core NC

vss vss mcspi1

_cs1

mcspi1 _cs2

mmc2 _cmd

mmc2 _dat0 mmc2

_dat1 mcspi1 vdds _cs3

mcbsp4 _fsx

gpmc _d12

gpmc _d11

mcbsp3 _clkx

mcbsp4 _dr

vdd_

core

mcspi2 _somi

mmc2 _dat3

mmc2 _dat2

vdd_mpu _iva

mmc2 _dat4 mcspi2

_cs1 mcspi2

_cs0 vdd_mpu

_iva mcbsp4

_clkx

mcbsp3

_fsx vss mcspi2

_clk

mcspi2 _simo

vdd_mpu _iva

mmc2 _clk

sys_

clkout2

vdd_mpu _iva vdd_mpu

_iva vdd_

vss core vdds

etk_d4 gpmc

_d9

gpmc _d1

gpmc

_d0 etk_d3 etk_d8

etk_d5 etk_clk etk_ctl vss

gpmc _d3

gpmc

_d2 etk_d0 i2c3_sda gpmc _d7

gpmc

_nwp vdds gpmc

_wait1 NC vss gpmc

_wait0 NC NC

NC NC

NC gpmc NC

_ncs0 gpmc

etk_d1 _d5 etk_d2

etk_d7 gpmc

_ncs1

gpmc _d6

NC pop_w2

_ae2 etk_d6 etk_d10 gpmc

_d4 etk_d12 vss NC etk_d15 vdds NC NC NC

pop_aa10 _af12 pop_y7_ NC

etk_d11 _af8 pop_aa6

_af5 pop_y2 NC _af4

NC

Figure 2-12. CBC Pin Map [Quadrant C - Top View]

(19)

AF

18 19

sys_

xtalin

20 21 22 23

sys _xtalgnd

24 25 26

dss_ AE data1

AD AC AB AA Y W V

U

pop_y21 _ae26 vdd_

core

uart2 _cts

dss_

data13

dss_

data12 cvideo1

_rset

vssa_

dac

cvideo2 _out cvideo2

_vfb

pop_

p21_u26 T R P

vdds

vdds_x NC cam_d7

14 pop_aa12

_af14

15 16 17

cam_d1 cam_d0 gpio_113

mcbsp1 _clkr

hsusb0 _data2

mcbsp2 _dx gpio_129 gpio_128

vdda_

wkup_

bg_bb

i2c4_sda jtag_tms

_tmsc

jtag_tdi vss

vdda_

dpll_per jtag_

ntrst

sys_nirq

gpio_127

vss

pop_aa21 _af26 sys_

clkout1

cap _vddu _array

mcbsp1 _dr

hsusb0 _stp mcbsp2

_clkx

mcbsp1 _fsx

jtag_

emu1

cam_d6

NC NC

NC vdd_ NC

core

mcbsp1 _clkx

mcbsp2 _dr

mcbsp

_clks vss NC NC

vss mcbsp2 NC

_fsx mcbsp1

_dx

jtag_tck mcbsp1

_fsr

hsusb0 _dir

hsusb0 _data0

vdda_

dac

cvideo1 _out cvideo1 vdds _vfb

hsusb0 vss _data3 hsusb0

_clk hsusb0

_nxt hsusb0 _data4 sys_

clkreq

jtag_

emu0 vss hsusb0

_data7 hsusb0 _data5

hsusb0 _data6

hsusb0

_data1 NC vss

dss_

data14 uart2

NC _rts

NC vdds dss_

data23 dss_

data15

dss_

data10 dss_

data22 NC vdds

NC

sys_32k vss

NC vdds

NC vdds vss NC

vss i2c4_scl gpio_112 vdds vdds vdds

uart2 _rts

uart2 _rx

uart2 _tx

dss_

data4 dss_

data5 vss dss_

data11

pop_y20 _ae25

pop_aa20 _af25 pop_y19

_af24 pop_

aa19_af22 pop_y17

_af21

dss_

data3 dss_

data2 dss_

data0 gpio_114

gpio_115

pop_aa13 _af15

pop_aa14 _af16

pop_y14 _af17

pop_aa17 _af18

sys_

xtalout

Figure 2-13. CBC Pin Map [Quadrant D - Top View]

(20)

B

C

D

E

F

G

H

J

K NC

L

M

gpmc _d0

mcspi2 _cs1

vdds_x gpmc

_ncs3

gpmc _nwp

gpmc _nadv _ale

gpmc _noe

gpmc _a10

gpmc _a8

gpmc _a9

gpmc _a6

gpmc _d2

vdd_mpu _iva

vss

vss vdd_mpu

_iva

gpmc_

nbe0_cle

vdd_mpu _iva

vdd_mpu _iva sdrc_a4 sdrc_a3 sdrc_a1 sdrc_d3 sdrc

_dm0 sdrc_d7 sdrc_d18 sdrc_d19 sdrc_d21 sdrc_d8 sdrc_d10

sdrc_d9 sdrc_d20

sdrc_d16 sdrc_d6

sdrc_d2 sdrc_d1

sdrc_a5 gpmc

_wait3 gpmc

_wait0

sdrc_a2 sdrc_d0 sdrc_d4 sdrc_d5 sdrc_d22

sdrc_d17 sdrc_a8

sdrc_a9 sdrc_a10

sdrc_a6 gpmc

_ncs0

gpmc _ncs6

gpmc

_ncs4 sdrc_a7 sdrc_a13 sdrc_a14 vdd_

core

vdd_mpu sdrc_a12 _iva

sdrc_a11 gpmc

_ncs5 gpmc

_ncs7 gpmc

_nwe

vdd_mpu _iva

vdd_mpu _iva

vdd_

core vdd_

core

vss vdd_mpu vss

_iva vdd_mpu

_iva vdds _mem vdds

_mem vdds

_mem gpmc

_a4 gpmc

_a5 gpmc

_a7

gpmc _a3

gpmc _a2

gpmc _a1

vdds _mem

vdds _mem

vdds _mem

vss

vss

vdd_mpu vss _iva

gpmc_ vss nbe1

gpmc _d1

gpmc _d4

mcspi2 _cs0

vdd_mpu _iva

vdd_mpu _iva

vdd_mpu

_iva vss vss

A. Top Views are provided to assist in hardware debugging efforts.

Figure 2-14. CUS Pin Map [Quadrant A - Top View]

(21)

B

C

D

E

F

G

H

J

K dss_

data9

dss_

data19

dss_

acbias

L

M dqs1

vdd_

core

cam_

xclka

_cts_

rctx

dss_

data6

dss_

data18

i2c1_sda

mmc1_

cmd vdda

_dplls _dll

cap_vdd _sram _core vdds_

mem cam_vs

vdd_

core

vss

cam_

strobe cam_

pclk

vss

d14 dm3 dqs3 ncs0 nwe

uart3_

_rx_

irrx uart3_

_rts_

sd cam_d5

sdrc_

cke0 sdrc_

ncs1 sdrc_

d31 sdrc_

d30 sdrc_

d27 sdrc_

d15 sdrc_

d13 sdrc_

dm1

sdrc_

d12

sdrc_

d26

sdrc_

d28

sdrc_

ba0

sdrc_

ncas

sdrc_

cke1

cam_

xclkb

uart3_

_tx_

irtx

dss_

data20 sdrc_

nras sdrc_

ba1 sdrc_

d29 sdrc_

d25 sdrc_

d11

sdrc_

d23

sdrc_

d24

vdds

dss_

hsync dss_

data7 dss_

data8

dss_

vsync cam_d10 cam_d3

cam_wen vdds_

mem vdds_

mem

vdd_

core

vdds_

mem

vdds_

mem cam_d2 cam_d4 cam_d11 dss_

pclk

dss_

data17

cam_fld vdds_

vss mem vdd_

core

vss vss vss vss vdd_

core

vdd_

core

dss_

data16 cam_d8

cam_d7 cam_d9 dss_

data21 i2c1_scl

vdd_

core vdd_

core vdd_

vss core vss

vss vdd_

core

vdd_

core vss cam_d6

mmc1_

clk mmc1_

dat0 mmc1_

dat1 mmc1_

vdds dat2 vdds

vdd_ vss core

Figure 2-15. CUS Pin Map [Quadrant B - Top View]

(22)

AD

9

etk_d14

8 7

6 5

4 3

2 1 AC AB AA Y W V U T R

sys_

nres warm vdd_mpu

_iva P

N gpmc

_d3

uart1 _rx

12 11

10 vdd_mpu

_iva

vss

NC

uart1 _rts mcspi2 vss

_clk

mmc2 _dat3 gpmc

_d7

gpmc _d8

mcspi2 _simo

mcspi1 _cs0

vdd_mpu _iva

sys_

clkout1

etk_d4 gpmc

_d14

gpmc _clk

etk_clk

sys_

clkout2

vdds

jtag_tms _tmsc

vdds_

sram

sys_

boot0

uart1_

cts etk_d10 etk_d8 etk_d1 etk_d12 i2c3_sda

etk_d0 mcbsp3

_dx mcspi1

_simo

mcbsp1 _cs3

cap_vddu_

wkup_logic vdd_mpu

_iva vdd_mpu

_iva mcspi2

_somi

vdd_mpu

_iva vss vss

vss

vss

vdd_mpu _iva vss

vss vss

vss vss

gpmc _d11 gpmc

_d5

gpmc _d6

vdd_mpu _iva

vdd_mpu _iva mcspi1

_clk gpmc

_d9

gpmc _d12

mcspi1

_somi vss vss vss

vss vss

cap_vdd _sram_

mpu_iva gpmc

_d13 gpmc _d10

vdd_mpu vdds _iva

mcbsp3 vdds _fsx gpmc

_d15

mcbsp3 _dr

vdd_mpu vdds _iva

uart1 vdds _tx mcbsp3

_clkx mmc2 _dat2

mmc2 vdds _dat1 mmc2

_dat6 mmc2

_clk

mmc2 _dat7

mmc2 _dat5

jtag_

rtck

sys_

nres pwron

jtag_

tdi jtag_

tdo jtag_

ntrst jtag_

tck mmc2 _cmd mmc2

_dat0 mmc2

_dat4

etk_d2 etk_d6 etk_d11

etk_d5 etk_ctl etk_d9 etk_d3 etk_d7 etk_d13 etk_d15

Figure 2-16. CUS Pin Map [Quadrant C - Top View]

Cytaty

Powiązane dokumenty

rising edge of Start Convert places the T/H into Hold mode; the A/D conversion cycle begins with the first rising clock edge after the Start Convert transition, and Start Convert

For the class TL + 4 of timed languages accepted by timed automata with four clocks, extended with additive clock constraints of the form x + y = 1, the test for emptiness

It ap- plies as well to this particular problem as to many other problems of this type (existence of solutions of the interpolation problem for nonlinear differential equations

A class of nonlinear functional boundary conditions is considered and sufficient conditions for the existence at least one positive and one negative solutions of the boundary value

The largest number of functional tests correlate to maximum power and knee flexor strength on the affected side (patients who generate more power and strength obtain better

In contrast to clock genes, the daily rhythms of Atpα and nrv2 expression in the retina are controlled by the pacemaker, since in the Pdf 0 mutant and after silencing itp, the

■ When a write cycle is pipelined into a read cycle, AHOLD must not be sampled negated on the clock edge after the clock edge on which the last BRDY# of the read cycle is

■ When a write cycle is pipelined into a read cycle, AHOLD must not be sampled negated on the clock edge after the clock edge on which the last BRDY# of the read cycle is