• Nie Znaleziono Wyników

Bounded Univalent Functions with Montel Normalization

N/A
N/A
Protected

Academic year: 2021

Share "Bounded Univalent Functions with Montel Normalization"

Copied!
6
0
0

Pełen tekst

(1)

ANNALES

'.J N I V ERS IT ATIS MARIAE CURIE-SKLODOWSKA LUBLIN —POLONIA

VOL. XL, 12 SECTIO A 1986

Department of Mathematical Sciences University of Delaware

Instytut Matematyki Uniwersytet Mani Curie-Skłodowskiej

R. J. LIBERA, E. J. ZŁOTKIEWICZ

Bounded Univalent Functions with Monte! Normalization

Funkcjejednobstne ograniczone z normalizacjąMóntela

OAHOJiHCTHŁie orpaHMHeHHHie 4>yHKitMK KopiwpoBaHHbieno MoHTejno

In the usual fasnion we let S denote the class of functions f(z) = z + a^z + ... regular and univalent in the open unit di3k p

A . The present authors have studied properties of families of functions with normalizations different from that of S . This report covers work included in the papers given below. All refercn ces to other work are given in tnose papers.

I. flotation; For fixed a , O^a^'l , L(.a) denotes the family of all functions regular and univalent in A and normali­

zed so that

(.1) FiO) = 0 and F(,a) = a .

This is called montels normalization. For , mia.B) denotes all memDers of al(,a) sucn that |F(.z)| ^B for z in A • The related class consists of functions FQz) for wnich FIO) = 0 , F(a) = | and |Ff.z)| <1 , z « A .

(2)

IX, Algebraic transformations. Here we review algeoraically defined transformations among our classes and view some of their consequences.

1^) if Az) 6 S , then Az) = 6 M(.a) .

(.1’2) if Az)

e

li(a,B) , then, for 0 4 2JT , 2

GQz) = ---, (,1+ei<f.|) 6 Mia) . u+eif. 1^2/

CA) if Az) 6 MQa.B) , H(.z) = U ------ 6 MQa.B) .

I

The class »(.a) intherits some readily observable properties from S . i'or example, de Branges theorem and (.T^) yields

(.2) |AnJ n(.1+a)2 , all n .

On tne other hand, QT2) gives

<5^ B)2 B)2

and

H) |l - | eilf I |a2 + - e21? An2l 2(.1+a)2 . B

The last result is particularly interesting because it sug­

gests that more information can be ootainea from it about A^ or perhaps A2 . However tecnnlcal difficulties in isolating, say A^

in (.4) seems to preclude tnis.

ice transformation QT,) may oe considered the analog for m(.a,B) of the xtoebe transformation for B ; for Az) in ¿i(,a,B) it gives

(3)

Bounded Univalent Functions with Montel Normalization 127

w Hi frH 4 l'i.’l 4

Using a powerful variational method,

1 -i- a B + a '1' - a is - a

V, Singh obtained (.5) in 1957.

If f(.z) is in S , then for each real , ei‘f l\e-:i^ z) is in S also. This rotation is very useful in some investigan tions. However it is not generally available for functions in ü(.a) . This makes some problems in MQa) , or m(.a,B) such as,

say the region of values of /'(.O) , more challenging and, of co­

urse, more interesting. To address such questions we have develo­

ped appropriate variational methods for ¡¿(.a,3) . In comparison with the transformations above, the transformations induced oy variations may be considered transcendental.

III. Transcendental transformations. To simplify calcula­

tions, we derive variations for tne class mQa,B) , As is typical of variational methods we construct two kinds of variations:

the first for functions i’Qz) in fi(,a,3) for which 3^ =/J\ i'lA) is an open, non-empty set and another for the case when F(.A) consists of the disk A minus slits.

i'or tne first case we let

16) (f(.w) = ¿ k=-

h w+wk , T V+1 , A - T T . l'k w-w^ ' ** WKw-1 AkJ

which is meromorphic in C and purely imaginary for lw|= 1 . Then, for small ¿ and £ .

g(,w) = w exp JV <f(.w)J = w + £ w (^Qw) + ot£ ) 2

is analytic anu univalent in A\ O ( w : Iw-w^l S J

How, for suitable cnoices of w^ in ii, and foi' appropriate £ ,

(4)

XKz, £) = glitz)) is univalent in , GtO,£ ) = 0 and

|GU, £)| < 1 . The parameters must Ue chosen so that G<a,£ )=

inis means we must choose A^ , and A2 80 that (.a) = 0 . If we set vj'tX ) = + 1 , then the last condition is equivalent to finding A;> for which

- i^w2^r]=

= a^wt^) - r^>r=^J =

hence, the coefficient of A 2 is zero when

which is equivalent to ,5 “ “g, = |]t - '¡¡T | ^or *2 in A 2 can be chosen but this cannot be so, consequently A^ and

so that Gtz, £ ) is in lfila,B) .

Suppose now that FQz) is a slit mapping in Eta,B) . Then i

the method of Golusin modified by dlionskii gives the variation

Id) i'*lz) = Flz) + £¿\z) -

, £ zi\Z) ¿ E k=1 L

A , >2 * + z*

k 2 “2k -r TTT7 2

If ' z . V tzk)

1 + zkz

1 - zkz + OI Í ) - A

with <j?t«) as in 16).

The computations in this case are more difficult than those above but are similarly structured. For example, the computation analo­

gous to showing 17) has a solution is equivalent to showing Flz) satisfies the differential equation

(5)

Bounded Univalent Functions with Montel Normalization 129

il/gCz)

193 tTî±r) *

= 'Ca-z)U-'a»J

for a polynomial of degree k , each k .

Assuming the analog of (.7) nas no solution yielus tne concra diction tnat tne solution of Q9) is not a slit mapping.

An application of these variational mecnoas snows tnat region of values of A^ , A^ = KQO) , is given by

Ilog Aq ♦ log - I; I 4 log UtaXn-a) 1 BU-a^) I . (1-a)(8+a)

REpjiiKił»NCi/ó

[1] Libera, R.J., Złotkiewicz, E.J., Bounded montel univalent functions (.to appear, Colloquium Blathematicum).

[2J Libera, R.J., Złotkiewicz, K.J., Bounded univalent functions t

with two fixed values (.to appear, Complex Variables).

STRESZCZENIE

Niech M(B,zq) oznacza klasę funkcji analitycznych i je dno Ustnych w kole jednostkowym i spełniających tam warunki

t(O) - O, f(zo) - zo, ;|'f(z)|<B

gdzie O <| z I < 1 , 1 < B .

O

Posługując się metodą wariacyjną G. M. Gołuzina autorzy wypro­

wadzają wzory wariacyjne w klasie M(B, zq) i stosują je do wyznaczenia obszaru zmienności funkcjonału f*(o).

(6)

PISEME

ItycTb M (_B, żQ) KJiacc anaJiMTMwecKMx h ouhoxjicthhx

<J»yHKmifi 8 eAMHHUHOM xpyre n tukijx «ito f(o)=o, f (ż0)= ż0, If

AM (JiMKCHponaHHHX ¿0, B, o <|ż0|<1, 1¿B . noJib3y«Cb BapxamiOH- hoS TeopeMO«! P.K. ToxysHHa, ani-opii ycTaHOBHM BapnaynoHHbie (}>op- wy?ui mu xajiacca M (3, ¿0") “ ■najIM HX npHMeHeHHH am onpeaojj6hhh MQIEOpHTHOiÇ OÔXaCTH iJiyHKUMOHaAa f'Ço).

Cytaty

Powiązane dokumenty

This method was based on an optimal control system generated by the Loewner differential equation and on an algorithm involving Pontryagin ’s maximum principle for hamiltonian

Convolutions of Univalent Functions with Negative Coefficients Sploty funkcji jednolistnych o współczynnikach ujemnych Свертки однолистных функций

Analytic Functions with Univalent Derivatives 145 Each of the series converges because is typically real and hence (1/6) • Z&gt;3 &lt; 3.. We wish to eliminate all the

Tliis means that both conditions (6) and (15) are avaible in the whole (o2, ai)- As mentioned above, these upper bounds are maximized on the paraboloe 1° and 2° as far as these lie

We now examine problems about the growth of |#'(z) | where g is analytic and bounded in A (and not necessarily univalent) and for simplicity take the bound to be 1.!. The

Hong-Kun Xu: Banach Space Properties of Opial’s Type and Fixed Point Theorems of Nonlinear

The problem of finding the coefficient bodies within the class Sji(b) of functions f, univalent and bounded in the unit disk U, with real coefficients, was investigated by the

[8] Bulut, S., Univalence preserving integral operators defined by generalized Al- Oboudi differential operators, An.. ”Ovidius”