• Nie Znaleziono Wyników

On derivation of model equations for cylindrical Gunn’s effect - Biblioteka UMCS

N/A
N/A
Protected

Academic year: 2021

Share "On derivation of model equations for cylindrical Gunn’s effect - Biblioteka UMCS"

Copied!
6
0
0

Pełen tekst

(1)

VOL.XLII,3

LUBLIN-POLONIA

SECTIO AA A Instytut Fizyki UMCS Zakład Fizyki Technicznej Akademia Rolnicza w Lublinie

1987

Lucjan MISIAK, Krzysztof MURAWSKI

On Derivation of Model Equations for Cylindrical Gunns Effect

Rozwiązywanie modelowych równań opisujących cylindryczny efekt Gunna Решение модельных уравнений, описывающих

цилиндрический аффект Гунна

The formation of domain and the current microwave oscillations in A3B5 se­

miconductors was discovered by Gunn [1]. Since this time dynamical behaviour of ТЕ (transferred electron) type semiconductors has been discussed by many authors using different phenomenological and semi-phenomenological methods [2—5]. One of these methods is based on the full spatial charge dynamics, temporary and bound states on the assumption of special boundary conditions [2]. This approach allows specific results to be determined, but partial differential equation solutions may be only obtained numerically. Employing the other method in our paper made it possible to derive model equations which describe domain propagation. Simplifica­

tions are the neglect of diffusion in continuity equation and small initial amplitude of dipole spatial charge. An almost ideal sample of the semiconductor with exces­

sive electrons in which small heterogeneity only near a cathode takes place is also a particular simplification.

We consider now the radial motion of charge domains in the infinite space of semiconductor. Our starting point is the following set of fundamental equations written in cylindrical geometry

nt + |(rnV)r = 0 , (1)

(2)

20 Lucjan Misiak, Krzysztof Murawski

Vt + VVr = E, (2)

~(rE)r = n - n0 , (3)

n0r + П(>Е — 0 (4)

where dimensionless variables are introduced by the following transformation

, [kT eime y/mekT

V e2 e

IkT , exme

V \ — V , n'0-> ——no , г -» t ,

V me ez

where n' and nó denote the concentration of electrons at the disturbed and undi­

sturbed uniform states, respectively, V - the electron velocity, E' — the electric field, e - the elementary charge, mc - the electron mass, ei - the dielectric constant, T - the temperature, к - the Boltzmann’s constant, r' - the space coordinate and t' - the time. The indices r and t imply partial differentiation.

We investigate ingoing solutions of equations (1)~(4) in the small amplitude and weak dispersion approximations using the reductive Taniuti-Wei’s method 16]. We introduce the following coordinate stretching

€ = Ve(r ~ t) , r — y/e^t, (6)

where the small parameter e measures the weakness of dispersion 17]: Expansion of n, no, V, E into power series of the same parameter e

n0 — 1 + en^ + е2Пд2) + ... , n = l + enl1» +e2n(2l +... ,

(7) E — y/e(eEi + e2.Z?2 + •••)»

V =«V1 + e2V2 + ... ,

leads to the following decomposition of equations (1)—(4) establishing the relation­

ship among the first order perturbed quantities from collecting terms by e:

Vr = n<D = n’1» = ф , Ex = -^. (8)

From the second order equations e2 the compatibility condition gives rise to the cylindrical Korteweg.-de Vries equation

Фт + ФФ(, + ~Фщ + ~~ - 0 . (9)

Z Zt

This equation and its solutions have been obtained and discussed for the first time by Maxon and Viecelli [8] in connection with radial plasma waves propagation. In

(3)

a different context, see also in [9-11]. We can go one step further up to the third order of e [12, 13], obtaining

’•«8« + 2r(M2‘)f + 2rn‘2T> + n<2> = s(4>, г, £) , (10)

S = тффц( — + гф^т + тф^ +

~Фц — ^^ФФ(. — тф2Ф( - %т(Ф + С)Ф( ~ £Фт+

—2тффг — тфт — ф — ф2 — С ,

ф = 1фтФ£. (11)

С is an integration constant. The source term S describes interaction effects be­

tween the fundamental nonlinear domain wave and effects of the higher order di­

spersion.

Now, turning our interest to a case of strongly dispersive waves, we develop Taniuti-Wei’s method [14] to obtain the cylindrical nonlinear Schrödinger equa­

tion. For this purpose we expand the dependent variables around the undisturbed uniform state into power series

oo oo

tZ(0)+£V £ £Zi<7)(^r)e’'(fcr“wt) . (12)

where represents an undisturbed column vector,

f7<°) =

The asterisk denotes a complex conjugate. We introduce the following coordinate stretching

f = e(r —At), т = e2t. (14)

Substituting (12)-(14) into the fundamental set of equations (l)r(4) and equating terms of the same order of e, we obtain from the first order of e

y(l) -- k^i“n(1) = СФ , (15)

(4)

22 Lucjan Misiak, Krzysztof Murawski

(1) _ -IW2

- к Ф' (16)

nôV = (1 - t"2№ >

(17)

2 _ fc2

U 1 + fc2 ‘ (18)

From the second order of e the following relations are obtained

„(2) (2) Г(2)_П

n00 ~■ n0 > "0 ~ " > (19)

A = «к , (20)

E'2'1 = (w2 — 1)ф( - ikn^ , (21)

F/2’ = -431’ + Л(1 - W2 - Хс)ф( ,

W - IW (22)

„(2)

ni - ~ i) ~ w2i^ + (1 + i?)noi’ i (23)

(2) _ w(6F + 9k2 + 2) 2

2 6P(l + fc2) Ф ’ (24)

(2)_ 2(3*4 + 3fc2 4- 1) 2

E2 ' 3*(1 + *2)2 Ф ’ (25)

(2) _ 4*6 + ЗА:4 + 9*2 + 2

”02 6A:2(1 + А:2)2 Ф ’ (26)

(2) 12A:4 + 15A:2 + 2

"’ = eV(l + tn * ' (27)

From e3 we obtain

(2)_ (2 + A:2)(l + A:2) 2

n° - *2(*4 + з*2 + з)1^1 +C1) (28)

■ ■ v0'2> 2ke + Ô*4 + Ik2 + 2 |Ji2 .

~ — —--- — -... . — ---- — 1 (h I -4- (Jq ,

шА:(1 + A:2)(A:4 + ЗА:2 +3) : 1 (29) Cl, C2 are arbitrary constants which may be determined from the boundary con­

dition and a compatibility condition for the components of s3 which is reduced to the cylindrical nonlinear Schrôdinger equation for the first order quantities pertur­

bation ф as follows

гфт + афа + ß\4>\2 + i£- = ^ф , (30) LT

where:

_ ’ ЗА:2

° ~ 2w(l + *2)3 > ( 1

(5)

w(36fc12 + 177fe10 4- 390fc8 4- 561fcs 4- 414Ä:4 + 219ÂT 4- 42) .

' 12Jt2(l 4- Æ2)2(Æ4 4- 3k2 4- 3) ' '

7 = -i(w3C1 + 2fcC2) . (33)

Ł

Based on the rigorous reductive Taniuti-Wei’s method we have derived the cylindrical Korteweg-de Vries (9) and the nonlinear cylindrical Schrödinger (30) equations depending on whether the system is weakly or strongly dispersive. Also, we have proceeded with our analysis to the next order of approximation for a case of weakly dispersive waves obtaining the model equation (10) which describes an interaction of the fundamental nonlinear domain wave with the higher order one.

The current microwave oscillations appear on condition that nod exceeds critical value (for GaAs nod > 2.7 x 1015m-2) where no is the electron concentration of equilibrium and d is the diode length [5]. The experiment with cylindrical Gunn’s effect may be considered in semiconductor of cylindrical shape with two ohmic contacts placing concentricaly inside and outside the semiconductor.

REFERENCES [1] Gunn J. Be. Solid State Commun. 1963, 1, 88.

[2] Copeland J. A.: IEEE Trans. Electron. Dev. 1967, ED-14, 55.

[3] Ridley B. K.: Proc. Phys. Soc. London, 1963, 82, 954.

[4] Freeman K. R., Sozon C., Hartnagel H. L.: Phys. Lett. 1971, 34A, 95.

[5] Bosch B. G., Engelman R. W. H.: Gunn-effect electronics, Pitman Publ., London 1975, [6] Taniuti T., Wei C. C.: J. Phys. Soc. Japan, 1968, 24, 941.

[7] Murawski K,, Misiak L.: Acta Phys. Pol. 1986, 70A, 303.

[8] Maxon S., Viecelli J.: Phys. Fluids 1974, 17, 1614.

[9] Freeman N. C.: Ads. Appl. Meeh. 1980, 20, 1.

[10] Hase Y., Watanabe S., Тапаса H.J. Phys. Japan 1985, 54, 4115.

[11] Johnson R. S.: Phys. Lett. 1979, 72A, 197.

[12] Nakamura A., Chen H. H.: J. Phys. Soc. Japan 1981, 50, 711.

[13] Nakamura A.: J. Phys. Soc. Japan 1980, 49, 2380.

[14] Taniuti T.: Progr Theor. Phys. 1974, Supplement No. 55, 1.

STRESZCZENIE ,

W artykule rozwiązano metodami analitycznymi modelowe równania opisujące cylindryczny efekt Gunna przy uwzględnieniu odpowiednich założeń upraszczających.

Otrzymano rozwiązania, w postaci cylindiycznego równania Korteweg-de Vriesa i nielinio­

wego cylindrycznego równania Schrödingera w zaleznos’ci od tego, czy system jest słabo lub silnie dyspersyjny.

Z przeprowadzonych rozważań wynikałaby możliwos'ć opisywania powstających w efekcie Gunna fal ładunku w oparciu o nieliniowe efekty dyspersyjne niższych i wyższych rzędów.

(6)

24 Lucjan Misiak, Krzysztof Murawski

РЕЗЮМЕ

В статье решили аналитическими методами модельные уравнения, описываы- ущие цилиндрический эффект Гунна, при учёте соответствующих упрощающих предпосылок.

Получили решения в виде цилиндрического уравнения Кортевега-де Фриса и нелинейного уравнения Шрёдингера в зависимости от того, слабо ли или сильно дисперсионна система.

Из проведённых рассуждений вытекала бы возможность описывания возни­

кающих в еффекте Гунна волн груза на основе нелинейных дисперсионных эффектов низших и высших порядков.

Złożone 30.III.1987

Cytaty

Powiązane dokumenty

Sprawozdanie z posiedzeń Sekcji Historycznej To Mi To. Rocznik Toruński

Wat bij dergelijke vragen duidelijk wordt, is dat de plicht tot participatie in gebiedsontwikkeling niet alleen van overheden een cultuuromslag vraagt, maar van alle

udział w imporcie białek błony wewnętrznej, zawierających 4 lub 6 odcinków transbłonowych o strukturze helisy, w obrębie których znajdują się sygnały

Jeżeli obrońca z wyboru, wobec niemożliwego do usunięcia konfliktu z oskarżonym po- wstałego na tle sposobu obrony, zrzekł się obrony, to wyznaczenie go w tym samym proce-

Jadwigi Jędrzejowskiej w Kato- wicach odbyła się kolejna, IX edycja Mistrzostw Polski Prawników w Tenisie Ziem- nym, którym patronowali Prezes Sądu Apelacyjnego w Katowicach –

Fig. 8; this indicated that appreciable gains at the boundary speed due to a bulbous bow occurred for forms for which the wave resistance coefficient was higher than the

Z okazji jubileuszu XX-lecia pisma życzę Zespołowi Re­ dakcyjnemu „Palestry” dalszych osiągnięć w pracy publicy­ stycznej w służbie dla polskiej adwokatury,

Abstract In the classical multiple scales perturbation method for ordinary difference equations (OΔEs) as developed in 1977 by Hoppensteadt and Miranker, dif- ference