• Nie Znaleziono Wyników

EQUIVALENCE OF LAGRANGIAN GERMS IN THE PRESENCE OF A SURFACE

N/A
N/A
Protected

Academic year: 2021

Share "EQUIVALENCE OF LAGRANGIAN GERMS IN THE PRESENCE OF A SURFACE"

Copied!
7
0
0

Pełen tekst

(1)

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

WARSZAWA 1997

EQUIVALENCE OF LAGRANGIAN GERMS IN THE PRESENCE OF A SURFACE

W O J C I E C H D O M I T R Z AND S T A N I S L A W J A N E C Z K O Institute of Mathematics, Warsaw University of Technology

Pl. Politechniki 1, 00-661 Warszawa, Poland

E-mail: wdomitrz@ipe.pw.edu.pl, janeczko@alpha.im.pw.edu.pl

Dedicated to Professor Stanis law Lojasiewicz for his 70th birthday

1. Introduction. Let ω be a closed two-form on a smooth manifold M . Most of inter- esting singular symplectic structures on M are given in the form of pull-back ω = φ?ω0 by a smooth map φ : M → R2n from a symplectic structure ω0 on R2n [7, 9, 5, 6]. The natural structure group of such singular symplectic manifolds is defined by integration of φ−liftable Hamiltonian vector fields on (R2n, ω0). Action of this group on the space of Lagrangian varieties in (R2n, ω0) provides the classification of maximal isotropic varieties in pulled-back singular symplectic structure. Hence there is a natural question to ask:

How does the local intersection data determine the orbits of the group of symplectomor- phisms preserving singular values of φ and acting on the space of Lagrangian germs?

This question may be reformulated as a generalization of the classical problem: Under which conditions the two Lagrangian germs are equivalent? In this paper we attempt to answer this question imposing the genericity conditions on the classified symplectic objects and assuming the set of critical values of φ is a smooth surface in R2n. Another motivation to our study comes from the theory of symplectic triads [1, 10] and its general- ization. However the local invariants considered in this paper do appear as the classified not necessary typical common positions of the considered two surfaces. Our aim is to construct all these invariants through the technique of finding the corresponding local normal forms. In Section 2 we classify the germs of generic pairs (H, L; p), where H is a hypersurface in R2n and L is a Lagrangian submanifold in (R2n, ω0). Then in Section 3 we consider the slightly different case if H is any coisotropic submanifold of (R2n, ω0). It is known that even-dimensional submanifolds in general position in the symplectic space

1991 Mathematics Subject Classification: Primary 57R45; Secondary 53B21.

Research of the authors supported by KBN grant 3P03A06910.

The paper is in final form and no version of it will be published elsewhere.

[31]

(2)

are symplectic. In Section 4 we find the normal forms of pairs (H, L; p) provided H is symplectic and H and L are in the transversal and nontransversal positions.

2. H–relative Lagrangian submanifolds. Let (M, ω0) be a symplectic manifold, ω0 be in the Darboux form. Let H ⊂ M be a smooth hypersurface in M . By (H; p) we denote the germ of H at p.

Definition 1. A pair of germs (H, L; p), where (L; p) is a germ of a Lagrangian submanifold, is called an H-relative Lagrangian submanifold of M .

Theorem 1. If L is transversal to H at p ∈ L ∩ H then the pair (H, L; p) is symplec- tically equivalent to the following one

((x, y) ∈ R2n: x1= 0 , (x, y) ∈ R2n : yi= 0 for i = 1, . . . , n ; 0).

Any two H-relative Lagrangian submanifolds which are transversal to H are H-relative symplectically equivalent , i.e. there exists a symplectomorphism Φ which preserves a hy- persurface H and maps one Lagrangian manifold into the other.

P r o o f. It is easy to see that H is symplectically equivalent to

(x, y) ∈ R2n: x1= 0 .

L is H-relative symplectically equivalent to a Lagrangian submanifold generated by a function

S : Rn3 x 7→ S(x) ∈ R, because L is transversal to H. A symplectomorphism

φ(x, y) = (x, y − grad S) maps L into (x, y) ∈ R2n: yi = 0 for i = 1, . . . , n ; 0.

It is easy to prove the following lemma.

Lemma 2. If L is not transversal to H at p ∈ H ∩ L then the pair (H, L; p) is symplectically equivalent to

(H0, L0; 0) = ((x, y) ∈ R2n: x1= 0 ,

(x, y) ∈ R2n: xi= −∂S/∂yi f or i = 1, . . . , n ; 0) where S is a function-germ such that

(1) d(∂S/∂y1)|0= 0.

P r o o f. It is clear that H is symplectically equivalent to H0 = {(x, y) : x1= 0} and L may be simultaneously turned into

L0= {(x, y) : xI = −∂S/∂yI(yI, xJ), yJ= ∂S/∂xJ(yI, xJ)},

where I ∪ J = {1, . . . , n} , I ∩ J = ∅, 1 ∈ I ([3]). Then by the symplectomorphic change of variables

Ψ(xI, xJ, yI, yJ) = (xI, −yJ, yI, xJ), we get the desired formula.

(3)

Now we need the group GH of germs of symplectomorphisms which preserve the fibration (x, y) → y and the hypersurface H = (x, y) ∈ R2n: x1= 0

for the repre- sentation of (H, L; p). Every element Φ of this group can be defined as a lifting of a diffeomorphism φ : Rn 3 y 7→ φ(y) ∈ Rn which preserve the fibration over (y2, . . . , yn), i.e. y = (y1, y2, . . . , yn) 7→ ¯y = (y2, . . . , yn) with adding the gradient of a function f which depends on ¯y

Φ(x, y) = ((φ)−1(y)x + df (¯y), φ(y)).

Using the action of the group GHon the Lagrangian germs we obtain the following result.

Theorem 3. A generic pair (H, L; p) such that H is not transversal to L at p is symplectically equivalent to the pair (H0, L0; 0) obtained in Lemma 2, where

(2) S(y) = ±yk1+

k−2

X

i=2

yiyk−i1 + g(y2, . . . , yk−2) ±

n

X

i=k−1

yi2y1,

provided k = dimREy1/∆(S(y1, 0)) + 1 ≤ n + 2, where g ∈ m2y2,...,yk−2\ m3y2,...,yk−2, and my2,...,yk−2 denotes the maximal ideal of the ring of smooth function-germs Ey2,...,yk−2.

P r o o f. S is a deformation of the function R 3 y17→ S(y1, 0) ∈ R which satisfies (1).

Therefore S is equivalent to the pull-back of the universal deformation of ±yk1 ([3, 8]):

S(y) = ±y1k+

k

X

i=2

φi(y2, . . . , yn)y1k−i,

where φk−1∈ m2. By the symplectomorphism

Φ(x, y) = (x, y − grad(φk)) we reduce S to the form

S(y) = ±y1k+

k−1

X

i=2

φi(y2, . . . , yn)y1k−i.

We may assume that (φ2, . . . , φk−2) is a submersion and φk−1(0, yk−1, . . . , yn) ∈ m2y

k−1,...,yn\ m3y

k−1,...,yn, because (H, L; 0) is generic. Therefore S is equivalent to the germ

S(y) = ±y1k+

k−2

X

i=2

yiyk−i1 + φ(y2, . . . , yn)y1,

where φ is deformation of a Morse function-germ φ(0, yk−1, . . . , yn). Therefore by a lifting of a diffeomorphism of the form Ψ(y) = (y1, . . . , yk−2, ψ(y2, . . . , yn)), we obtain (2).

Example 1. Let n = 3, then we have

S(y1, y2, y3) = y13+ y22y1 (simple),

S(y1, y2, y3) = ±y41+ y2y12+ (g(y2) ± y23)y1, g ∈ m2, S(y1, y2, y3) = y15+ y2y31+ y3y21+ g(y2, y3)y1, g ∈ m2.

(4)

Corollary 4. If k > n + 2 then the normal form of S under natural genericity conditions may be written in the following way

S = ±y1k+ yi1y1k−j1+ . . . + yilyk−j1 l+ φs1(¯y)y1k−s1+ . . . + φsr(¯y)y1k−sr+ ψ(¯y)y1, where {i1, . . . , il} = {2, . . . , n}, {j1, . . . , jl, s1, . . . , sr} = {2, . . . , k − 2}, φsn∈ m, ψ ∈ m2.

R e m a r k 1. All simple cases for n = 2 are classified by Ak-singularities Al−1: S(y1, y2) = y31± y2ly1, l ≥ 2.

3. Coisotropic pairs. Now we slightly generalize the notion of a pair (H, L; p) taking instead of a hypersurface H any coisotropic submanifold, say V . In the generic transversal case we have

Proposition 5. Let V2n−k be a coisotropic submanifold of M , let L be a Lagrangian submanifold of M and p ∈ V ∩ L. If L is transversal to V at p, then the pair (V, L; p) is symplectically equivalent to

(V0, L0; 0) = ((x, y) ∈ R2n: x1= . . . = xk= 0 , (x, y) ∈ R2n: y1= . . . = yn = 0 ; 0).

P r o o f. We use the same method as in the proof of Theorem 1.

Lemma 6. If L is not transversal to V at p then the pair (V, L; p) is symplectically equivalent to

(V0, L0; 0) = ((x, y) ∈ R2n: x1= . . . = xk= 0 ,

(x, y) ∈ R2n : xi= −∂S/∂yi(y) for i = 1, . . . , n ; 0), where S is a function-germ such that the rank at 0 of the derivative of the mapping

Rn3 y 7→ (−∂S/∂y1(y), . . . , −∂S/∂yk(y)) is not maximal.

P r o o f. If L is transversal at 0 to the submanifold

(x, y) ∈ R2n: y1= . . . = yk = 0

then we can find the generating function S, which depends on (xI, yJ), where I ∪ J = {1, 2, . . . , n}, I ∩ J = ∅, such that

(3) {1, . . . , k} ⊂ J

and the rank at 0 of the derivative of the mapping

Rn 3 (xI, yJ) 7→ (−∂S/∂y1(xI, yJ), . . . , −∂S/∂yk(xI, yJ)).

is not maximal. Otherwise L is generated by a function F which depends on (xI, yJ) such that condition (3) is not satisfied. Let I1= I ∩ {1, . . . , k} and I2= I \ {1, . . . , k}. We can find F such that the rank at 0 of the derivative of the mapping

R|I1|3 xI1 7→ ∂F /∂xI1(xI1, 0) ∈ R|I1| is 0. By a symplectomorphism

Φ(x, yI1, yI2, yJ) = (x, yI1− xI1, yI2, yJ),

(5)

which preserves V0, we get transversality of L to(x, y) ∈ R2n: y1= . . . = yk= 0 at 0.

Finally we use a symplectomorphism

Ψ(xJ, xI, yJ, yI) = (xJ, −yI, yJ, xI), which completes the proof.

Now we use the group of germs of symplectomorphisms which preserve the fibration (x, y) 7→ y and the submanifold V0. This approach leads to the classification of families of functions of k variables.

Theorem 7. If V2n−k is not transversal to L at p then the generic pair (V2n−k, L; p) is symplectically equivalent to the pair

((x, y) ∈ R2n: x1= . . . = xk = 0 , L0; 0), where L0 is generated by the function

S(y) = f (y1, . . . , yk) +

µ−l−1

X

i=1

φi(yk+1, . . . , yni(y1, . . . , yk) +

l

X

i=1

ψi(yk+1, . . . , yn)yi,

µ = dimR(Ey1,...,yk/h∂f /∂y1, . . . , ∂f /∂yki) < ∞, ρi ∈ m2y1,...,yk, ρ1, . . . , ρµ−l−1, y1, . . . , yl

generate my1,...,yk modulo h∂f /∂y1, . . . , ∂f /∂yki and rank D01, . . . , ψl) < l.

4. Equivalence of Lagrangian submanifolds in the presence of a generic even-dimensional submanifold. First we formulate the result on the normal form of a symplectic surface in (M, ω0).

Lemma 8. If X2(n−k) is a symplectic submanifold of (M, ω0) then at each point p ∈ X2(n−k) the germ (X2(n−k); p) is symplectically equivalent to

(X0; 0) = ((x, y) ∈ R2n: xi= yi= 0 for i = 1, . . . , k ; 0).

P r o o f. By induction using the Moser method and the procedure described in [4].

Let us consider a symplectic pair (X2(n−k), L; 0). First we consider the transversal case. Since L is transversal to the submanifold

(x, y) ∈ R2n: x1= . . . = xk = 0

we can express L by a generating function S : Rn 3 x 7→ S(x) ∈ R. The transversality assumption is equivalent to the following condition

rank D0 Rn−k 3 (xk+1, . . . , xn) 7→

(∂S/∂x1(0, xk+1, . . . , xn), . . . , ∂S/∂xk(0, xk+1, . . . , xn)) ∈ Rk = k.

Now we restrict our problem to the case k = 1.

Theorem 9. If L is transversal to X2(n−1) at p then the symplectic pair (X2(n−1), L; p) is symplectically equivalent to

(X0, L0; 0) = (x, y) ∈ R2n : x1= y1= 0 ,

(x, y) ∈ R2n: y1= x2, y2= x1, yi = 0 for i = 3, . . . , n ; 0.

(6)

P r o o f. By Lemma 8 and the transversality assumption we can represent X2n−2 in the form

(x, y) ∈ R2n : x1= y1= 0 and we can generate L by a function

S : Rn 3 x 7→ S(x) ∈ R, S ∈ m2

which satisfies the following condition: there exists j ∈ {2, . . . , n} such that

(4) ∂2S/∂xj∂x1(0) 6= 0.

Now we expand S in the form

S(x) = x21h(x) + x1g(x2, . . . , xn) + f (x2, . . . , xn).

By a symplectomorphism

Φ(x, y) = (x, y + grad(x21h(x) + f (x2, . . . , xn))), which preserves X2n−2, we transform L and consequently S to the form

S(x) = x1g1(x2, . . . , xn).

By condition (4) the mapping

φ : Rn 3 x 7→ (x1, g1(x2, . . . , xn), x3, . . . , xj−1, x2, xj+1, . . . , xn) ∈ Rn

is a diffeomorphism. Now we use the symplectomorphism φ? : R2n → R2n, which com- pletes the proof.

Theorem 10. If L is not transversal to X2(n−1) at p then the generic symplectic pair (X2(n−1), L; p) is symplectically equivalent to the following pair

((x, y) ∈ R2n : x1= y1= 0 ,

(x, y) ∈ R2n : y1= ±x1± x22± . . . ± x2n, y2= ±2x1x2, . . . , yn= ±2x1xn ; 0).

P r o o f. L is transversal to

(x, y) ∈ R2n: x1= 0

or (x, y) ∈ R2n : y1= 0 .

Otherwise T0L ⊂ T0X, which is impossible, because L is an n-dimensional Lagrangian submanifold and X2(n−1)is a (2n − 2)-dimensional symplectic manifold. We may assume that L is transversal to (x, y) ∈ R2n: x1= 0

at 0. Then (X, L; 0) is symplectically equivalent to

((x, y) ∈ R2n: x1= y1= 0 , (x, y) ∈ R2n: y = ∂S/∂x(x) ; 0), where S does not satisfy condition (4). By genericity of (X, L; p) we get

2S/∂x21(0) 6= 0.

S is a deformation of a function R 3 x1 7→ S(x1, 0) on the manifold with boundary {x ∈ Rn: x1= 0} ([2]). Therefore it has the form

S(x) = ±x21+ g(x2, . . . , xn)x1,

and dg0= 0. We may assume that g is a Morse function, which completes the proof.

(7)

References

[1] V. I. A r n o l0d, Singularities in variational calculus, Current Problems in Mathematics, 22, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, 3–55 (Russian).

[2] V. I. A r n o l0d, Critical points of functions on a manifold with boundary, simple Lie groups Bk, Ck, F4and singularities of evolutes, Uspekhi Mat. Nauk 33(5) (1978), 91–105.

[3] V. I. A r n o l0d, S. M. G u s e˘ın - Z a d e and A. N. V a r c h e n k o, Singularities of Differentiable Maps, Vol. 1, Birkh¨auser, Boston, 1985.

[4] W. D o m i t r z and S. J a n e c z k o, Normal forms of symplectic structures on the stratified spaces, Colloq. Math. 68 (1995), 101–119.

[5] M. G o l u b i t s k y and D. T i s c h l e r, An example of moduli for singular symplectic forms, Invent. Math. 38 (1977), 219–225.

[6] S. J a n e c z k o and A. K o w a l c z y k, On singularities in the degenerated symplectic geom- etry , Hokkaido Math. J. 19 (1990), 103–123.

[7] J. M a r t i n e t, Sur les singularit´es des formes differentielles, Ann. Inst. Fourier (Grenoble) 20 (1970), 95–178.

[8] J. M a r t i n e t, Singularities of Smooth Functions and Maps, Cambridge Univ. Press, Cam- bridge, 1982.

[9] R. R o u s s a r i e, Mod`eles locaux de champs et de formes, Ast´erisque 30 (1975), 1–181.

[10] V. Z a k a l y u k i n, The generalization of lagrangian triads, Uspekhi Mat. Nauk 41(4) (1986), 180.

Cytaty

Powiązane dokumenty

Hogarth więc nie mógł się był urodzić po Byronie, a dziś urodzony wcale byłby inaczej malował.. Sztuka stała się dziś surowszą: wstąpił w nią duch namysłu, duch

Do dwóch klastrów sferycznych połączonych klastrem interfejsu, tworzących układ o najniższej energii dodawano wszystkie możliwe konfiguracje klastra tworzonego na

W połowie maja twórca krakowianów wspomniał w piśmie do Ministerstwa Wyznań Religijnych i Oświecenia Pu- blicznego o zamiarze wyjazdu na Kongres z ramienia Ministerstwa

W ramach edukacji wczesnoszkolnej realizowanej w formie kształcenia zinte- growanego (Podstawa programowa… 2014, s� 14) wymienia się m�in� następują- ce zadania

Niezależnie od wersji testu, jako jego wynik traktuje się procentową liczbę popełnionych błędów (niepowtórzonych cyfr, przeinaczonych cyfr czy wreszcie cyfr

Bezpieczeństwo prawne państwa i podatnika a sprawied - liwy system podatkowy w procesie integracji europejskiej: Polska – Słowacja – Ukra- ina – Niemcy, zorganizowanej przez

If art tends to take art as its subject matter or inspira- tion, either in the form of a poem about a painting, or a film or play about a novel, or an opera about a verse-play,

Zawiera więc nie tylko twórczość bezpośrednio przeznaczoną dla wydawnictw samizdatowych, lecz także tytuły powstałe pod koniec lat sześćdzie­ siątych, które już nie