• Nie Znaleziono Wyników

The purpose of this note is to enhan e our under- standing of the spa e of period polynomials

N/A
N/A
Protected

Academic year: 2021

Share "The purpose of this note is to enhan e our under- standing of the spa e of period polynomials"

Copied!
17
0
0

Pełen tekst

(1)

LXXXII.1(1997)

The spa e of period polynomials

by

Shinji Fukuhara (Tokyo)

1. Introdu tion. The purpose of this note is to enhan e our under-

standing of the spa e of period polynomials. The period polynomials has

been studied in onne tion with modular integrals (e.g., Knopp [4℄), usp

forms via the Ei hler{Shimuraisomorphism(e.g., Kohnen{Zagier [5℄), and

withvariousothertopi sofmathemati s(Zagier[8℄). LetK bea eld,and

X be an indeterminate. Let V

w

=V

w

(K) denote thespa e of polynomials

in X of degree  w (even positive)with oeÆ ients inK. Then V

w (K) is

an(w+1)-dimensionalve torspa e,whi hmaybeidenti edwiththespa e

L

w

n=0 K(X

n

). LetG=GL

2

(Z)=1. Then Ga ts on V

w via

(1:1) (Pj )(X)=P



aX+b

X+d



( X+d) w

for =



a b

d



2 G and P(X) 2 V

w

. Now we de ne the spa e, W

w , of

period polynomials of weight w to be the subspa e of V

w

hara terized by

the followingproperties: W

w

=ker(1+S)\ker(1+U +U 2

) (see [1, 4, 5,

7℄), namely,

W

w

=fP 2V

w

:P +PjS=P +PjU +PjU 2

=0g

whereS =



0 1

1 0



and U =



1 1

1 0



.

Though the spa e W

w

is interesting in its own right, it might be more

naturalto onsiderperiodLaurentpolynomials,ratherthanperiodpolyno-

mials alone. Let b

V

w

be the spa e K(X 1

)V

w

K(X w+1

). The spa e,

W

w

, of period Laurent polynomials an be de ned in a similar way, and it

turnsoutto bea subspa eof b

V

w

. InLemma 2.2, itwillbeshown thatW

w

1991 Mathemati sSubje tClassi ation: Primary11F20,11F11;Se ondary11B68.

Keywordsandphrases: periodpolynomial, uspform,modularform,Ei hler{Shimura

isomorphism.

TheauthorwishestothankProfessorN.Yuiforherusefuladvi e.

(2)

is a odimensionone subspa eof

W

w

. From the de nition, learly1 X w

belongsto W

w

anditrepresentsa \trivial"element. Therefore, itmightbe

morenaturalto onsiderthequotientspa esW

w

=h1 X w

iand

W

w

=h1 X w

i.

The main purpose of this note is to onstru t homomorphisms q :

V

w

! b

V

w

=h1 X w

i and q :V

w

! b

V

w

=h1 X w

i, anddes ribe theirimages

expli itly. (See Theorem 3.3, Lemmas 4.1 and 5.1.) The two mappings

q and q areexpressed usingBernoullipolynomials,and their imagesare

indeedidenti edwith

W

w

=h1 X w

i. Consequently,thiswillyieldaspanning

set fq (X n

)g w

n=0

or fq (X n

)g w

n=0 of

W

w

=h1 X w

i. We obtain a relation

betweenthepolynomials (X n

)andr



(R

n

)ofKohnen{Zagier[5℄,andthus,

we show that

(1:2) fr



(R

n )g

w

n=0

mod1 X w

spans W

w

=h1 X w

i:

In Kohnen{Zagier[5, p.203℄, thefa t (1.2) wasobtainedusingtheisomor-

phismtheoremofEi hlerandShimuraforperiodmappings. Inthisnote,we

take a reverse route fromthat of [5℄, namely,we rst onstru t a spanning

set forthe spa eW

w

=h1 X w

i in terms of thehomomorphismsq , and as

a orollaryof thisresult,we redis overtheisomorphismtheorem ofEi hler

and Shimuraforperiodmappings.

2. Preliminaries. Throughoutthepaperwe assumethat w is aneven

positiveinteger. Forea h w,let

V

w

(K)=fpolynomials ofdegree winX with oeÆ ients inKg:

We oftenwriteV

w forV

w

(K)when the eldK isplain. Thea tionofGon

V

w

de nedin(1.1) an beextended to an a tionofthe groupring ZGby



P

X

n

i

i



= X

n

i (Pj

i )

for n

i

2 Z and

i

2 G. Using the a tion, a subspa e W

w of V

w

an be

des ribedas

W

w

=ker(1+S)\ker (1+U +U 2

) (2:1)

=fP 2V :P +PjS=P +PjU+PjU 2

=0g (2:2)

forS =



0 1

1 0



andU =



1 1

1 0



. Following Kohnen{Zagier[5, p. 199℄, we

onsiderthea tionofa spe i element,i.e., "=



1 0

0 1



. Itisshownin[5℄

thatWj"=W and there is adire tsum de omposition

W

w

=W +

w

W

w

of W

w

su hthat Pj"=P forP 2W



w

. Morepre isely,

W +

w

=fP 2W

w

:P is aneven polynomialg;

W =fP 2W

w

:P is anodd polynomialg:

(3)

We mayalso onsiderthespa e

b

V = n

n

X

i=m

i X

i

:m;n2Zsu h thatmn;

i 2K

o

of Laurentpolynomialsinone variable and itssubspa e

b

V

w

= n

w+1

X

i= 1

i X

i

:

i 2K

o

:

For 2GandP 2 b

V,Pj isde nedby(1.1). Itisnolongeranelement

of b

V, but a rational fun tion. However, the equation Pj = 0 will make

sense. The spa e

W

w

is de nedsimilarlyto (2.2), i.e.,

W

w

=fP 2 b

V : P +PjS=P +PjU +PjU 2

=0g:

ClearlyW

w



W

w

. Moreover,

W



w

are de nedsimilarlyto W



w :

W +

w

=fP 2

W

w

:P is an even Laurentpolynomialg;

W

w

=fP 2

W

w

:P is an odd Laurentpolynomialg:

Itisobviousthat

W

w

=

W +

w



W

w

. We allanelementofW

w

(respe tively,

W

w

)aperiod polynomial (respe tively,period Laurentpolynomial)ofweight

w. We also all W

w

(respe tively,

W

w

) the spa e of period polynomials

(respe tively,period Laurent polynomials) ofweight w.

Now we onsider a spe ialelement of b

V

w

. Let f

w

be an element of b

V

w

de nedby

f

w (X)=

w+2

X

n=0

neven B

n B

w+2 n

n!(w+2 n)!

X n 1

:

It wasshown inZagier[7, p.453℄that f

w 2

W

w

(the homogeneous version

of this fa t was also proved in [3℄). Let hf

w

i denote the subspa e of

W

w

whi h is spanned by f

w

. We are interested in how di erent

W



w

and W



w

are. Thiswillbe answered inLemmas 2.2 and 2.3. We willalso showthat

W

w

 b

V

w .

Lemma 2.1. For m 2, let P(X) = P

w+m

i= m

i X

i

bea Laurent polyno-

mial su h that Pj(1+S)=Pj(1+U +U 2

)=0. Then

m

=

w+m

=0 .

Proof. Sin e Pj(1+S)=0,wehave

w+m

X

i X

i

+ w+m

X

i



1

X



i

X w

=0;

(4)

namely ,

(2:3)

i

+( 1) w i

w i

=0 fori= m;:::;0;:::;w+m:

Sin e Pj(1+U+U 2

)=0,wehave

(2:4) w+m

X

i= m

i X

i

+ w+m

X

i= m

i



X 1

X



i

X w

+ w+m

X

i= m

i



1

X 1



i

(X 1) w

=0:

Multiply(2.4) byX m

(X 1) m

to obtain

(2:5)

w+m

X

i= m

i X

m+i

(X 1) m

+ w+m

X

i= m

i

(X 1) m+i

X w i+m

+ w+m

X

i= m

i ( 1)

i

(X 1) w i+m

X m

=0:

We al ulatethe oeÆ ientofX 1

onthelefthandsideof(2.5). Sin em2

bytheassumption,we obtain

(2:6) ( 1) m 1

m

m

+( 1)(w+2m)

w+m

+( 1) m

m+1

+( 1)

w+m 1

=0:

Theequations(2.6)and (2.3)implythat(w+m)

w+m

=0. Hen e

w+m

=

0,and then

m

=0by(2.3), ompletingthe proof.

Lemma 2.2.

W

w

=W

w

hf

w i:

Proof. Let P(X) = P

w+m

i= m

i X

i

belong to

W

w

. Then we an assume

m=1 by Lemma2.1above. Set

Q(X)=P(X)

1

(w+2)!

B

w+2 f

w (X):

Thenthefa tthatthe oeÆ ientsofX 1

andX w+1

inQ(X)vanishimplies

thatQ(X)2W

w

. Hen e

W

w

W

w

 hf

w

i. Sin eitis learthatW

w

 hf

w i

W

w

,we ompletetheproof.

Observingf

w 2

W

w

,we have thefollowing :

Lemma 2.3. (1)

W +

w

=W +

w .

(2)

W

w

=W

w

hf

w i.

Note that

W

w

 b

V

w

from Lemma2.2.

3. The mapping . It is easy to see that 1 X w

belongs to W +

w



W

w



W

w

 b

V

w

. So we may onsider the various quotient spa es, e.g.,

W +

=h1 X w

i,

W

w

=h1 X w

i, b

V

w

=h1 X w

i.

(5)

The purpose of thisse tion is to de ne a map q :V

w

! b

V

w

=h1 X w

i

whoseimageisexa tlythespa e

W

w

=h1 X w

i. LetV 0

w

denote thespa eof

polynomialsof degree w+1,namely , V 0

w

=f P

w+1

n=0

n X

n

:

n 2Kg.

Definition 3.1. (1)Let u:V

w

!V

w

bede nedby

uP(X)=Pj(1 U)(X) forP =P(X)2V

w :

(2) Letb:V

w

!V 0

w

bede ned by

bP(X)= w

X

n=0

n

n+1 B

n+1

(X+1)

where we write P(X) = P

w

n=0

n X

n

2 V

w

, with B

n

(X) denoting nth

Bernoullipolynomial.

(3) Lets:V 0

w

! b

V

w

bede nedby

sP(X)=Pj(1 S)(X);

more expli itly ,

sP(X)= w+1

X

n=0

n X

n w+1

X

n=0 ( 1)

n

n X

w n

forP(X)= P

w+1

n=0

n X

n

2V 0

w .

(4) Let :V

w

! b

V

w

be de nedby =sbu:

(5) Letq : b

V

w

! b

V

w

=h1 X w

i betheproje tionmap.

We needtwo lemmasto prove themaintheorem.

Lemma 3.1.

bP(X) bP(X 1)=P(X):

Proof. Set P(X)= P

w

n=0

n X

n

. Then

bP(X) bP(X 1)= w

X

n=0

n

n+1 (B

n+1

(X+1) B

n+1 (X))

= w

X

n=0

n

n+1

(n+1)X n

=P(X):

Thisfollows from thepropertyof Bernoullipolynomials:

(3:1) B

n+1

(X+1) B

n+1

(X)=(n+1)X n

:

Lemma 3.2.

(1)= 1

w+1 (X

w+1

( 1) w+1

X 1

)+(terms of degrees from 0 to w):

1

(6)

Proof.

(1)=sbu(1)=sb(1 X w

)=s



B

1

(X+1)

0+1

B

w+1

(X+1)

w+1



=s



B

1

(X)+X 0

B

w+1 (X)

w+1 X

w



=s



X w+1

w+1

+(terms ofdegrees from 0to w)



= 1

w+1 (X

w+1

( 1) w+1

X 1

)

+(terms of degreesfrom 0 to w):

Now we arereadyto des ribe theimageof thehomomorphism

q :V

w

! b

V

w

=h1 X w

i:

Theorem 3.3.

Imq =

W

w

=h1 X w

i:

Proof. Firstlyweshowthein lusionImq 

W

w

=h1 X w

i,byproving

thatIm 

W

w

. ForP(X)2V

w

,settingP

1

(X) =uP(X);we have

P

1

(X)=Pj(1 U)(X)=P(X) P



X 1

X



X w

:

Next let P

2

(X)=bP

1

(X). Then we have

P

2

(X) P

2

(X 1)=P

1 (X)

byLemma3.1. Furthermore,let P

3

(X)=sP

2

(X). Then we have

P

3

(X)=P

2

j(1 S)(X)=P

2

(X) P

2



1

X



X w

:

By thede nition,P

3

(X)= P(X).

Now we laim thatP

3

j(1+U+U 2

)=0. In fa t,

P

3

j(1+U +U 2

)(X)

=



P

2

(X) P

2



1

X



X w



j(1+U +U 2

)

=P

2

(X) P

2



1

X



X w

+P

2



X 1

X



X w

P

2



1

X 1

X



X 1

X



w

X w

+P

2



1

X 1



(X 1) w

P

2



1

1



1

X 1



w

(X 1) w

(7)

=P

2

(X) P

2

(X 1)+



P

2



X 1

X



P

2



X 1

X 1



X w

+



P

2



1

X 1



P

2



1

X 1

1



(X 1) w

=P

1

(X)+P

1



X 1

X



X w

+P

1



1

X 1



(X 1) w

=P

1

j(1+U+U 2

)(X)=Pj(1 U)(1+U +U 2

)(X)

=Pj(1 U 3

)(X)=0:

Thisshowsthat

(3:2) P(X)2Im fQ2 b

V

w

:Qj(1+U+U 2

)=0g:

Now notingthat1 S 2

=0,we have

(3:3) Ims=fQj(1 S):Q2 b

V

w

g=fQ2 b

V

w

:Qj(1+S)=0g:

Thus

(3:4) Im =ImsbufQ2 b

V

w

:Qj(1+S)=0g:

From (3.2) and (3.4), we obtain

(3:5) Im fQ2 b

V

w

:Qj(1+S)=Qj(1+U+U 2

)=0g=

W

w :

Thisgivesthe in lusionthatweare after,namely ,

(3:6) Imq q(

W

w )=

W

w

=h1 X w

i:

Se ondly we laim that q(

W

w

)Imq . Sin e (1) 2Im 

W

w , and

(1)62W

w

byLemma3.2, we know

W

w

=W

w

h (1)i

notingthat W

w

is a odimension one subspa e of

W

w

. Hen e it suÆ es to

show thein lusionq(W

w

)Imq .

Let Q be any element of W

w

. We now show q(Q) 2 Imq . Sin e

Q 2ker(1+S) = Im(1 S), there is Q

1 2V

w

su h that Q

1

j(1 S)= Q,

namely ,

Q(X)=Q

1

(X) Q

1



1

X



X w

:

LetQ

2

(X) be de nedby

(3:7) Q

2

(X)=Q

1

(X) Q

1

(X 1):

Note thatQ 2V .

(8)

Next we showthat Q

2

j(1+U +U 2

)=0. In fa t,

(3:8) Q

2

j(1+U+U 2

)(X)

=Q

1

(X)+Q

1



X 1

X



X w

+Q

1



1

X 1



(X 1) w

Q

1

(X 1) Q

1



X 1

X 1



X w

Q

1



1

X 1

1



(X 1) w

=



Q

1

(X) Q

1



1

X



X w



+



Q

1



X 1

X



X w

Q

1

(X 1)



+



Q

1



1

X 1



(X 1) w

Q

1



X

X 1



(X 1) w



:

We also have

(3:9) Qj(1+U +U 2

)(X)

=Q(X)+Q



X 1

X



X w

+Q



1

X 1



(X 1) w

=Q

1

(X) Q

1



1

X



X w

+



Q

1



X 1

X



Q

1



X

X 1



X 1

X



w



X w

+



Q

1



1

X 1



Q

1

(X 1)



1

X 1



w



(X 1) w

:

Noti e that the expressions on the right hand sides of (3.8) and (3.9) do

oin ide,sothat we have

(3:10) Q

2

j(1+U +U 2

)=Qj(1+U +U 2

):

In parti ular, sin ethe right handsideof (3.10) is zero bythe assumption

thatQ2W

w

,thismeansQ

2

j(1+U+U 2

)=0 aswe required.

Sin e ker(1+U +U 2

) = Im(1 U), it follows that Q

2

2 Im(1 U).

Hen e there isQ

3

(X)2V

w

su hthat Q

3

j(1 U)=Q

2 .

Finally , we show thatq (Q

3

)=q(Q). Bythe de nitionsof and Q

2 ,

(3:11) q (Q

3

)=qsbu(Q

3

)=qsb(Q

2 ):

Sin e Q

1

(X) Q

1

(X 1)=Q

2

(X) by (3.7), andbQ

2

(X) bQ

2

(X 1) =

Q

2

(X) by Lemma 3.1, bQ

2 Q

1

is a onstant, say . Cal ulate the right

handsideof(3.11) to obtain

qsb(Q

2

)=qs(Q

1

+ )=q(sQ

1

+ (1 X w

))=q(Q+ (1 X w

))=q(Q)

asq((1 X w

))=0. Thismeansq (Q

3

)=q(Q).

Thus we have proved that, for any Q(X) 2 W

w

, there is Q

3

(X) 2 V

w

su h that q (Q

3

) = q(Q). This implies q(W

w

)  Imq , ompleting the

(9)

4. Cal ulation. We al ulate ((X 1) n

) for n = 0;:::;w. Let ne

denote w nforn=0;:::;w. Firstnote that

u((X 1) n

)=(X 1) n

j(1 U)=(X 1) n



1

X



n

X w

=(X 1) n

( 1) n

X e n

;

moreover,

b(X n

)= 1

n+1 B

n+1

(X+1)

bythede nitionofb,and

b((X 1) n

)= 1

n+1 B

n+1 (X)

byLemma3.1and (3.1). Thuswehave

bu((X 1) n

)= B

n+1 (X)

n+1

( 1) n

B

e n+1

(X+1)

e n+1

:

HereweadoptKohnen{Zagier'snotationB 0

n

(X)forthenthBernoullipoly-

nomial withoutits B

1

-term ([5, p.208℄):

B 0

n (X)=

n

X

i=0

i6=1



n

i



B

i X

n i

= X

0in

ieven



n

i



B

i X

n i

:

Then we have

((X 1) n

)=sbu((X 1) n

)

= B

n+1 (X)

n+1 B

n+1

( 1 =X)

n+1 X

w

( 1) n



B

e n+1

(X+1)

e n+1

B

e n+1

( 1 =X+1)

e n+1

X w



= 1

n+1



B

n+1

(X) B

n+1



1

X



X w



( 1) n

e n+1



B

e n+1

(X)+(en+1)X e n

B

e n+1



1

X



X w

(en+1)



1

X



e n

X w



= 1

n+1



B 0

n+1

(X) B 0

n+1



1

X



X w



( 1) n



B 0

e n+1

(X) B 0

e n+1



1



X w



1

 n+1

X n

(10)

+ 1

n+1

 n+1

2

1

X X

w

+ ( 1)

n

e n+1

 e n+1

2 X

e n

( 1) n

e n+1

 e n+1

2



1

X



e n

X w

( 1) n

X e n

+( 1) n



1

X



e n

X w

= 1

n+1



B 0

n+1

(X) B 0

n+1



1

X



X w



( 1) n

e n+1



B 0

e n+1

(X) B 0

e n+1



1

X



X w



:

Summarizing theabove al ulation,we obtain

Lemma 4.1.

((X 1) n

)= 1

n+1



B 0

n+1

(X) B 0

n+1



1

X



X w



( 1) n

e n+1



B 0

e n+1

(X) B 0

e n+1



1

X



X w



:

5. The mapping . In Se tion 3, we de ned the mapping . In this

se tion,we willde ne and studya similarmapping :V

w

! b

V

w

. Firstlet

usde ne auxiliarymappingss 0

:V

w

!V

w , b

0

:V

w

!V 0

w and u

0

:V 0

w

! b

V

w

asfollows:

s 0

P(X)=Pj(1 S)(X);

b 0

P(X)= w

X

n=0

n

n+1 B

n+1

(X) forP(X)= w

X

n=0

n X

n

;

u 0

P(X)=Pj(1 U)(X)=P(X) P



X 1

X



X w

:

Note that, ifP(X)= P

w+1

n=0

n X

n

isan element of V 0

w ,then

P



X 1

X



X w

= w+1

X

n=0

n

(X 1) n

X w n

;

andithastermsofdegreerangingfrom 1tow+1. Thisimpliesu 0

P 2 b

V

w .

Nowlet usde nethemap :V

w

! b

V

w

byletting =u 0

b 0

s 0

:

Lemma 5.1.

(5:1) (X

n

)= ((X 1) n

) for n=0;:::;w:

Proof. We al ulate (X n

):

(X n

)=u 0

b 0

s 0

(X n

)=u 0

b 0



X n



1



n

X w



=u 0

b 0

(X n

( 1) n

X e n

)

(11)

=u 0



B

n+1 (X)

n+1

( 1) n

B

e n+1

(X)

e n+1



= 1

n+1



B

n+1

(X) B

n+1



X 1

X



X w



( 1) n

e n+1



B

e n+1

(X) B

e n+1



X 1

X



X w



= 1

n+1



B

n+1

(X) B

n+1



1

X



X w

(n+1)



1

X



n

X w



( 1) n

e n+1



B

e n+1

(X) B

e n+1



1

X



X w

(en+1)



1

X



e n

X w



= 1

n+1



B 0

n+1

(X) B 0

n+1



1

X



X w

n+1

2 X

n

+ n+1

2



1

X



n

X w

(n+1)( 1) n

X e n



( 1) n

e n+1



B 0

e n+1

(X) B 0

e n+1



1

X



X w

e n+1

2 X

e n

+ e n+1

2



1

X



e n

X w

(en+1)( 1) e n

X n



= 1

n+1



B 0

n+1

(X) B 0

n+1



1

X



X w



( 1) n

e n+1



B 0

e n+1

(X) B 0

e n+1



1

X



X w



= ((X 1) n

):

As a orollary ofthe above relation betweenthemappings and , we

andeterminetheimageofq whereq: b

V

w

! b

V

w

=h1 X w

iistheproje tion

mapas before.

Corollary5.2.

(5:2) Imq =Imq =

W

w

=h1 X w

i:

Proof. Let t : V

w

! V

w

be an isomorphism determined by t(X n

) =

(X 1) n

forn=0;:::;w. Then,byLemma5.1, wehave = t. Itfollows

thatImq =Imq astis anisomorphism.

Note that

B 0

n+1



1

X



= X

0in+1



n+1

i



B

i



1

X



n+1 i

=( 1) n+1

B 0

n+1



1

X



(12)

= B

n+1

(1=X); n odd,

B 0

n+1

(1=X); n even.

Then we obtainthe followingdes riptionfor (X n

) from Lemmas 4.1 and

5.1:

Lemma 5.3. (1) For n evenand 0nw,

(X n

)= 1

n+1 B

0

n+1 (X)+

X w

n+1 B

0

n+1



1

X



1

e n+1

B 0

e n+1

(X)

X w

e n+1

B 0

e n+1



1

X



:

(2) For n odd and 1nw 1,

(X n

)= 1

n+1 B

0

n+1 (X)

X w

n+1 B

0

n+1



1

X



+ 1

e n+1

B 0

e n+1

(X)

X w

e n+1

B 0

e n+1



1

X



:

6. Spanning sets of W



w and

W



w

.From Corollary5.2, we knowthat

bothfq (X n

)g w

n=0

and fq (X n

)g w

n=0 span

W

w

=h1 X w

i.

Sin e (X n

) is aneven(respe tively , odd)Laurent polynomialdepend-

ing on n being odd (respe tively , even), we an derive the following fa t

ratherplainly.

Lemma 6.1. (1) (X n

)2

W +

w

for nodd.

(2) (X n

)2

W

w

for neven.

In what follows, h (X n

)i

0nw;nodd(resp:even)

, denotes the spa e

spanned by (X n

) for n odd (resp. even) and 0  n w. (The notation

hr



(R

n )i

0nw;nodd(even)

will be used inthenext se tion denoting similar

spa es.) Forsubspa es V and W,V +W denotesthesubspa espannedby

V andW.

Lemma 6.2. (1) q(h (X n

)i

0nw;nodd )=q(

W +

w ).

(2) h (X n

)i

0nw;neven

=

W

w .

Proof. We know by Corollary 5.2 that Imq = q(

W

w ) = q(

W +

w ) 

q(

W

w

):Hen e,byLemma 6.1, we have

(6:1) q(h (X

n

)i

0nw;nodd )=q(

W +

w )

and

(6:2) q(h (X

n

)i

0nw;neven )=q(

W ):

(13)

Notethat qj

W

w :

W

w

!q(

W

w

) isan isomorphism. Thisisbe ause

W

w

=

W +

w



W

w

and h1 X w

i

W +

w

. Thuswe also have

(6:3) h (X

n

)i

0nw;neven

=

W

w

from (6.2).

ByLemma6.2,weobtainspanningsetsforW

w ,

W

w ,and

W +

w

=h1 X w

i.

Theorem 6.3. (1)W

w

(respe tively,

W

w

) isspanned by

(X n

)= 1

n+1 B

0

n+1 (X)+

X w

n+1 B

0

n+1



1

X



1

e n+1

B 0

e n+1

(X) X

w

e n+1

B 0

e n+1



1

X



for n evenand 2nw 2 (respe tively, 0nw).

(2) W +

w

=h1 X w

i=

W +

w

=h1 X w

i isspanned by

q (X n

)=q



1

n+1 B

0

n+1 (X)

X w

n+1 B

0

n+1



1

X



+ 1

e n+1

B 0

e n+1

(X) X

w

e n+1

B 0

e n+1



1

X



for n odd and 1nw 1.

Proof. By Lemma 6.2, the theorem is obvious ex ept for the ase of

W

w

. Sin e (X 0

) = (X w

) 62 W

w

, and (X n

) 2 W

w

for n even and

2nw 2,we know thatf (X n

)g

2nw 2;neven

spans W

w .

7.Relationsbetween (X n

)andr



(R

n

).Inthisse tionwewillshow

that (X n

)is relatedto thepolynomialr



(R

n

) studiedbyKohnen{Zagier

[5℄. Thisfa tleadsusto an alternativeproofof thetheoremof Ei hlerand

Shimuraon periodmappings.

Let us re all Kohnen{Zagier's polynomials r



(R

n

). Let S

w+2

denote

the spa e of usp forms of weight w+2 with respe t to SL

2

(Z). First let

r

n :S

w+2

!C bethemapping de nedby

r

n (f)=

1

\

0 f(it)t

n

dt;

(14)

Let r



(f) andr(f)be polynomials de nedby

r +

(f)(X)= X

0nw

neven ( 1)

n=2



w

n



r

n (f)X

w n

;

r (f)(X)= X

0nw

nodd ( 1)

(n 1)=2



w

n



r

n (f)X

w n

;

r(f)(X)= i1

\

0

f(z)(X z) w

dz

for f 2 S

w+2

. Then learly r(f) = ir +

(f)+r (f). Let R

n 2 S

w+2 be

de nedby

(f;R

n )=r

n

(f) foranyf 2S

w+2

where(;) denotesPetersson produ t.

ThefollowingisaresultofKohnen{Zagier[5℄whi hwasprovedapplying

Cohen's[2℄ representation ofR

n .

Theorem 7.1(Kohnen{Zagier). (1) For neven,0nw,

( 1)

(w+2)=2+n=2

2 w

r (R

n )(X)

= 1

n+1 B

0

n+1 (X)

X w

n+1 B

0

n+1



1

X



+ 1

e n+1

B 0

e n+1

(X)+ X

w

e n+1

B 0

e n+1



1

X



e n;0

Æ

n;0 )

(w+2)!

(w+1)B

w+2 w+1

X

m= 1

modd B

m+1

(m+1)!

 B

f m+1

(me +1)!

X m

:

(2) For n odd, 0nn,

( 1)

(w+2)=2+(n 1)=2

2 w

r +

(R

n )(X)

= 1

n+1 B

0

n+1 (X)

X w

n+1 B

0

n+1



1

X



+ 1

e n+1

B 0

e n+1

(X) X

w

e n+1

B 0

e n+1



1

X



w+2

B

w+2

 B

n+1

n+1

 B

e n+1

e n+1

(X w

1):

Comparing Theorem 7.1 and Lemma 5.3, we obtain relations between

(X n

) and r



(R ):

(15)

Proposition7.2. (1) For n even,0nw,

(X n

)= ( 1)

(w+2)=2+n=2

2 w

r (R

n )(X)

e n ;0

Æ

n;0 )

(w+2)!

(w+1)B

w+2 f

w (X):

(2) For n odd, 0nw,

(X n

)=( 1)

(w+2)=2+(n 1)=2

2 w

r +

(R

n )(X)+

w+2

B

w+2

 B

n+1

n+1

 B

e n+1

e n+1

(X w

1):

Westudyrelationsbetweenthepolynomials (X n

)andr



(R

n

)further.

Lemma 7.3. (1) q(hr +

(R

n )i

0nw;nodd

)=q(h (X n

)i

0nw;nodd ) .

(2) hr (R

n )i

0nw;neven +hf

w

i=h (X n

)i

0nw;neven .

Proof. We rst show (1). Theequation in (2)of Proposition7.2 gives

riseto thefollowing ongruen e:

( 1)

(w+2)=2+(n 1)=2

2 w

r +

(R

n

)(X)  (X n

)modh1 X w

i

fornodd. Thisimplies(1).

Next we show (2). Observing that f

w 2

W

w

and using Lemma 6.2(2),

we have

(7:1) h (X n

)i

0nw;neven +hf

w

i=h (X n

)i

0nw;neven :

It is learthat

(7:2) h (X n

)i

0nw;neven +hf

w

i=hr (R

n )i

0nw;neven +hf

w i

from Proposition7.2(1). From(7.1) and (7.2) weobtain

hr (R

n )i

0nw;neven +hf

w

i=h (X n

)i

0nw;neven

ompleting theproof of(2).

CombiningLemmas 6.2and 7.3weobtain:

Lemma 7.4. (1) q(

W +

w

)=q(hr +

(R

n )i

0nw;neven ).

(2)

W

w

=hr (R

n )i

0nw;neven +hf

w i .

We alsoobtainthe followinglemma:

Lemma 7.5. (1) q(W +

w

)=q(hr +

(R

n )i

0nw;neven ).

(2) W

w

=hr (R

n )i

0nw;neven .

Proof. Sin e W +

w

=

W +

w

, we have (1) from Lemma 7.4(1). From

Lemma7.4(2), we know that

W

w

isspannedbyfr (R

n )g

0nw;neven and

f

w

. Observingthatr (R

n

)arepolynomials,andthatW

w

isa odimension

one subspa eof

W ,we obtain(2).

(16)

Remark7.1. (a)In[5℄,thefa tthatfqr



(R n

)g w

n=0

isaspanningsetof

q(W



w

) (Lemma 7.5) is a onsequen eof the Ei hler{Shimuraisomorphism

forperiodmappings.

(b) Inourproofpresentedabove,wedo notneedto invoke thetheorem

of Ei hler and Shimura. As a matter of fa t, our Lemma 7.5 yields an

alternativeprooftothetheoremofEi hlerandShimuraonperiodmappings.

8. The theorem of Ei hler and Shimura

Corollary 8.1. r : S

w+2

! W

w

and qr +

: S

w+2

! W +

w

=h1 X w

i

are isomorphisms.

Proof. From Lemma7.5,weknowr andqr +

aresurje tive. It iswell

known thatthedimension ofS

w+2

is asfollows:

dimS

w+2

= 8

>

>

<

>

>

:



w+2

12



; w+2610 (mod12),



w+2

12



+1; w+210 (mod12).

Ontheother hand, asinLang[6℄,a linearalgebra argument shows

dimW

w

=dimW +

w

=h1 X w

i= 8

>

>

<

>

>

:



w+2

12



; w+2610 (mod12),



w+2

12



+1; w+210 (mod12).

Thisimpliesr and qr +

areisomorphisms.

Remark 8.1. Let M

w+2

denote the spa e of modular forms of weight

w+2. Zagier[7℄ \extended" the Ei hler{Shimura isomorphismto isomor-

phisms r +

:M

w+2

! W +

w

and qr : M

w+2

!

W

w

. As Lemma 7.5 gives

rise to the Ei hler{Shimuraisomorphism (Corollary 8.1), Lemma 7.4 gives

riseto Zagier'sisomorphisms.

Referen es

[1℄ Y.J.ChoieandD.Zagier,Rationalperiodfun tions,in:ATributetoEmilGross-

wald: NumberTheory and Related Analysis, M. Knopp and M. Sheingorn(eds.),

Contemp.Math.143,Amer.Math.So .,1993,89{108.

[2℄ H.Cohen,Sur ertainessommesdeserieslieesauxperiodesdeformesmodulaires,

in:Seminairedetheoriedenombres,Grenoble,1981.

[3℄ S.Fukuhara,Modularforms,generalizedDedekindsymbolsandperiodpolynomials,

preprint,1995.

[4℄ M. I.Knopp,Some new results onthe Ei hler ohomology of automorphi forms,

(17)

[5℄ W. Kohnen and D. Zagier, Modular forms with rational periods, in: Modular

Forms,R.A.Rankin(ed.),EllisHorwood,1984, 197{249.

[6℄ S.Lang,Introdu tion toModularForms,Springer,1976.

[7℄ D.Zagier,PeriodsofmodularformsandJa obithetafun tions,Invent.Math.104

(1991),449{465.

[8℄ |, Periodsof modular forms,tra es of He ke operators, and multiple zeta values,

preprint.

DepartmentofMathemati s

TsudaCollege

Tsuda-ma hi2-1-1

Kodaira-shi,Tokyo187,Japan

E-mail:fukuharatsuda.a .jp

Re eivedon6.11.1996

andinrevisedformon17.1.1997 (3071)

Cytaty

Powiązane dokumenty

In our main results these conditions are weakened and in one case it is only assumed that F is continuous in the second variable uniformly with respect to the first one and in an

In the next section, I treat the simplest such case w = δ and describe how to compute the beginning coefficients of Φ (δ) (x) in a manner analogous to that for ordinary

Besides these the proof uses Borel–Carath´ eodory theorem and Hadamard’s three circles theorem (the application of these last two theorems is similar to that explained in [4], pp..

1991 Mathemati s Subje t Classi ation: Primary 11R45; Se ondary 11B39.. Key words and phrases : Lu as sequen e, Chebotarev

This phenomenon is known in the literature as “absence of the Poincar´e Lemma” and was already proved in case the Levi form is non-degenerate (i.e.. The idea of our proof, which

Zhang, Oscillation theory of differ- ential equations with deviating arguments, Dekker, New York 1987. Received 8

We show that a generalized upper and lower solution method is still valid, and develop a monotone iterative technique for finding minimal and maximal solutions.. In our situation,

In fact, we know the correspondence, at least generically, in the case of second order linear ordinary differential equations of Fuchsian type (with a large parameter) and we