• Nie Znaleziono Wyników

Abstract. We determine all natural transformations of the rth order cotangent bundle functor T

N/A
N/A
Protected

Academic year: 2021

Share "Abstract. We determine all natural transformations of the rth order cotangent bundle functor T"

Copied!
7
0
0

Pełen tekst

(1)

POLONICI MATHEMATICI LVIII.1 (1993)

Natural transformations of higher order cotangent bundle functors

by Jan Kurek (Lublin)

Abstract. We determine all natural transformations of the rth order cotangent bundle functor T

r∗

into T

s∗

in the following cases: r = s, r < s, r > s. We deduce that all natural transformations of T

r∗

into itself form an r-parameter family linearly generated by the pth power transformations with p = 1, . . . , r.

Using general methods developed in [2]–[5], we deduce that all natural transformations of the rth order cotangent bundle functor T

r∗

into itself form an r-parameter family generated by the pth power transformations A

r,rp

with p = 1, . . . , r.

Then we deduce that all natural transformations of T

r∗

into T

(r+q)∗

form an r-parameter family generated by the generalized pth power transforma- tions A

r,r+qp

with p = q + 1, . . . , q + r.

Moreover, we deduce that all natural transformations of T

r∗

into T

(r−q)∗

form an (r − q)-parameter family generated by the generalized pth power transformations A

r,r−qp

with p = 1, . . . , r − q.

The author is grateful to Professor I. Kol´ aˇ r for suggesting the problem and for valuable remarks and useful discussions.

1. Let M be a smooth n-dimensional manifold. Let T

r∗

M = J

r

(M, R)

0

be the space of all r-jets j

xr

f of smooth functions f : M → R with source at x ∈ M and target at 0 ∈ R. The fibre bundle π

M

: T

r∗

M → M with source r-jet projection π

M

: j

xr

f 7→ x has a canonical structure of a vector bundle with

(1.1) j

xr

f + j

xr

g = j

rx

(f + g) , k · j

xr

f = j

xr

(k · f ) for x ∈ M and k ∈ R [1].

1991 Mathematics Subject Classification: Primary 58A20.

Key words and phrases: higher order cotangent bundle, jet, pth power transformation.

(2)

The vector bundle π

M

: T

r∗

M → M is called the r-th cotangent bundle over M .

Every local diffeomorphism ϕ : M → N is extended to a vector bundle morphism T

r∗

ϕ : T

r∗

M → T

r∗

N , j

xr

f 7→ j

ϕ(x)r

(f ◦ϕ

−1

), where ϕ

−1

is locally defined. Hence, the rth cotangent bundle functor T

r∗

is defined on the cat- egory Mf

n

of smooth n-dimensional manifolds with local diffeomorphisms as morphisms and has values in the category VB of vector bundles.

If (x

i

) are local coordinates on M , then we have the induced fibre coor- dinates (u

i

, u

i1i2

, . . . , u

i1...ir

) on T

r∗

M (symmetric in all indices):

(1.2)

u

i

(j

xr

f ) = ∂f

∂x

i

(x)

, u

i1i2

(j

xr

f ) = ∂

2

f

∂x

i1

∂x

i2

(x)

, . . . , u

i1...ir

(j

xr

f ) = ∂

r

f

∂x

i1

. . . ∂x

ir

(x)

.

Since the functor T

r∗

takes values in the category VB of vector bundles, we may define natural transformations A

r,rp

of T

r∗

into itself for p = 1, . . . , r.

Definition 1. The natural transformation A

r,rp

of the rth cotangent bundle functor T

r∗

into itself defined by

(1.3) A

r,rp

: j

xr

f 7→ j

xr

(f )

p

,

where (f )

p

denotes the pth power of f , is called the p-th power transforma- tion.

Definition 2. The natural transformation A

r,sp

of T

r∗

into T

s∗

defined by

(1.4) A

r,sp

: j

xr

f 7→ j

xs

(f )

p

is called the generalized p-th power transformation.

We note that in the case s = r + q this definition is correct only for p = q + 1, . . . , q + r.

Definition 3. The natural transformation P

r,r−q

of T

r∗

into T

(r−q)∗

defined by

(1.5) P

r,r−q

: j

xr

f 7→ j

xr−q

f is called a projection.

Note that

(1.6) A

r,r−qp

= A

r−q,r−qp

◦ P

r,r−q

for p = 1, . . . , r − q .

2. In this part we determine, by induction on r, all natural transforma-

tions of T

r∗

into itself.

(3)

Theorem 1. All natural transformations A : T

r∗

→ T

r∗

form the r- parameter family

(2.1) A = k

1

A

r,r1

+ k

2

A

r,r2

+ . . . + k

r

A

r,rr

with any real parameters k

1

, k

2

, . . . , k

r

∈ R.

P r o o f. The functor T

r∗

is defined on the category Mf

n

of n-dimen- sional smooth manifolds with local diffeomorphisms as morphisms and is of order r. Thus, its standard fibre S = (T

r∗

R

n

)

0

is a G

rn

-space, where G

rn

is the group of all invertible r-jets from R

n

into R

n

with source and target at 0.

According to general standard methods [2]–[5], the natural transfor- mations A : T

r∗

→ T

r∗

are in bijection with the G

rn

-equivariant maps f

r,r

: (T

r∗

R

n

)

0

→ (T

r∗

R

n

)

0

of the standard fibres.

Let e a = a

−1

denote the inverse element in G

rn

and let (2.2) t

(i1...ir)

= 1

r!

X

σ∈Sr

t

iσ(1)...iσ(r)

denote the symmetrization of a tensor with components t

i1...ir

.

By (1.2) the action of an element (a

ij1

, a

ij1j2

, . . . , a

ij1...jr

) ∈ G

rn

on (u

i1

, u

i1i2

, . . . , u

i1...ir

) ∈ (T

r∗

R

n

)

0

is given by

(2.3)

u

i1

= u

j1

e a

ji11

, u

i1i2

= u

j1j2

e a

ji11

e a

ji22

+ u

j1

e a

ji11i2

, . . . , u

i1...ir

= u

j1...jr

e a

ji11

. . . e a

jirr

+ u

j1...jr−1

r!

(r − 2)!2! e a

j(i1

1

. . . e a

jir−2r−2

e a

jir−1

r−1ir)

+ . . . + u

j1...jr−s

 r!

(r − s − 1)!(s + 1)! e a

j(i1

1

. . . e a

jir−s−1r−s−1

e a

jr−si

r−s...ir)

+ . . .



+ u

j1j2

 r!

(r − 1)!1! e a

j(i1

1

e a

ji2

2...ir)

+ . . .



+ u

j1

e a

ji11...ir

.

I. Consider the case r = 2. The equivariance of a G

2n

-equivariant map f

2,2

= (f

i

, f

ij

) of (T

2∗

R

n

)

0

into itself with respect to homotheties in G

2n

: e a

ij

= kδ

ji

, e a

ij1j2

= 0, gives the homogeneity conditions

(2.4) kf

i

(u

i

, u

ij

) = f

i

(ku

i

, k

2

u

ij

) , k

2

f

ij

(u

i

, u

ij

) = f

ij

(ku

i

, k

2

u

ij

) . By the homogeneous function theorem [2]–[5], we deduce that, first, the f

i

are linear in u

i

and independent of u

ij

, and secondly, the f

ij

are linear in u

ij

and quadratic in u

i

. Using the invariant tensor theorem for G

1n

[2]–[5], we obtain f

2,2

in the form

(2.5) f

i

= k

1

u

i

, f

ij

= k

2

u

i

u

j

+ k

3

u

ij

with any real parameters k

1

, k

2

, k

3

∈ R.

(4)

The equivariance of f

2,2

of the form (2.5) with respect to the kernel of the projection G

2n

→ G

1n

: e a

ij

= δ

ji

and e a

ijk

arbitrary, gives

(2.6) k

3

= k

1

.

This proves our theorem for r = 2.

II. Suppose that the theorem holds for r − 1 and the G

r−1n

-equivariant maps f

r−1,r−1

of (T

(r−1)∗

R

n

)

0

into itself define the (r−1)–parameter family A = k

1

A

r−1,r−11

+ . . . + k

r−1

A

r−1,r−1r−1

with any real parameters k

1

, . . . , k

r−1

∈ R.

Our aim is to obtain the general form of any G

rn

-equivariant map of (T

r∗

R

n

)

0

into itself.

Let (u

1

, u

2

, . . . , u

r

) := (u

i1

, u

i1i2

, . . . , u

i1...ir

) denote the fibre coordinates on T

r∗

M . We assume that a G

rn

-equivariant map f

r,r

is of the general form f

r,r

= (f

1

, . . . , f

r−1

, f

r

) and the given map f

r−1,r−1

defines the first r − 1 components (f

1

, . . . , f

r−1

) of f

r,r

.

Considering the equivariance of f

r,r

with respect to the homotheties e a

ij

= kδ

ji

, e a

ij1j2

= 0, . . . , e a

ij1...jr

= 0 in G

rn

, for the rth component f

r

we obtain the homogeneity condition

(2.7) k

r

f

r

(u

1

, u

2

, . . . , u

r

) = f

r

(ku

1

, k

2

u

2

, . . . , k

r

u

r

) .

By the homogeneous function theorem [2]–[5], f

r

is of the general form f

i1...ir

= h

r

u

i1

· . . . · u

ir

+ h

r−1

u

(i1

. . . u

ir−2

u

ir−1ir)

(2.8)

+ . . . + h

2,1

u

(i1

u

i2...ir)

+ h

2,2

u

(i1i2

u

i3...ir)

+ . . . + h

1

u

i1...ir

with any real parameters h

1

, h

2,1

, h

2,2

, . . . , h

r−1

, h

r

∈ R. The equivariance of f

r,r

with respect to the kernel of the projection G

rn

→ G

r−1n

: e a

ij

= δ

ji

, e a

ij1j2

= 0, . . . , e a

ij1...jr−1

= 0 and e a

ij1...jr

arbitrary, gives

(2.9) h

1

= k

1

.

Thus, we obtain the 1st power transformation A

r,r1

.

Now, considering the equivariance of A−k

1

A

r,r1

with respect to the kernel of the projection G

r−1n

→ G

1n

: e a

ij

= δ

ji

and e a

ij1j2

, . . . , e a

ij1...jr−1

arbitrary, we obtain

(2.10) h

2,1

= r!

1!(r − 1)! k

2

, h

2,2

= r!

2!(r − 2)! k

2

, . . . Thus, we obtain the 2nd power transformation A

r,r2

.

Then, considering the equivariance of A − k

1

A

r,r1

− k

2

A

r,r2

with respect

to the kernel of the projection G

r−2n

→ G

1n

, we obtain the general form

of the 3rd power transformation A

r,r3

. Continuing this procedure gives the

next power transformations A

r,r3

, . . . , A

r,rr−2

. The equivariance of A−k

1

A

r,r1

k

2

A

r,r2

−. . .−k

r−2

A

r,rr−2

with respect to the kernel of the projection G

2n

→ G

1n

:

(5)

e a

ij

= δ

ji

and e a

ijk

arbitrary, leads to the next relation

(2.11) h

r−1

= r!

(r − 2)!2! k

r−1

.

Thus, we obtain the (r − 1)th power transformation A

r,rr−1

. Finally, the G

rn

-equivariant map

(2.12) A − k

1

A

r,r1

− k

2

A

r,r2

− . . . − k

r−1

A

r,rr−1

= h

r

A

r,rr

is defined by the rth power transformation with any real parameter h

r

∈ R.

If we put h

r

= k

r

, this proves our theorem.

3. In this part we determine all natural transformations T

r∗

→ T

s∗

in two cases: r < s and r > s.

Theorem 2. All natural transformations A : T

r∗

→ T

(r+q)∗

form the r-parameter family

(3.1) A = k

q+1

A

r,r+qq+1

+ k

q+2

A

r,r+qq+2

+ . . . + k

q+r

A

r,r+qq+r

with any real parameters k

q+1

, k

q+2

, . . . , k

q+r

∈ R.

P r o o f. We apply induction on q.

I. Consider the case q = 1. According to general standard methods [2]–

[5], the natural transformations A : T

r∗

→ T

(r+1)∗

are in bijection with the G

r+1n

-equivariant maps of the standard fibres f

r,r+1

: (T

r∗

R

n

)

0

→ (T

(r+1)∗

R

n

)

0

.

Considering the equivariance of f

r,r+1

= (f

1

, . . . , f

r

, f

r+1

) with respect to homotheties: e a

ij

= kδ

ji

, e a

ij1j2

= 0, . . . , e a

ij1...jr+1

= 0, we obtain the homogeneity conditions

(3.2)

kf

1

(u

1

, u

2

, . . . , u

r

) = f

1

(ku

1

, k

2

u

2

, . . . , k

r

u

r

), . . . , k

r

f

r

(u

1

, u

2

, . . . , u

r

) = f

r

(ku

1

, k

2

u

2

, . . . , k

r

u

r

), k

r+1

f

r+1

(u

1

, u

2

, . . . , u

r

) = f

r+1

(ku

1

, k

2

u

2

, . . . , k

r

u

r

).

Additionally, using the equivariance of f

r,r

= (f

1

, . . . , f

r

) with respect to the kernel of the projection G

rn

→ G

1n

, we obtain, by Theorem 1, the r- parameter family of the form (2.1): A = k

1

A

r,r1

+ k

2

A

r,r2

+ . . . + k

r

A

r,rr

with any real parameters k

1

, k

2

, . . . , k

r

∈ R.

Moreover, by the homogeneous function theorem and the invariant tensor theorem [2]–[5], we deduce that the (r+1)th component f

r+1

is of the general form

f

i1...ir+1

= l

r+1

u

i1

u

i2

. . . u

ir+1

+ l

r

u

(i1

. . . u

ir−1

u

irir+1)

(3.3)

+ . . . + l

2,1

u

(i1

u

i2...ir+1)

+ l

2,2

u

(i1i2

u

i3...ir+1)

+ . . .

with any real parameters l

2,1

, l

2,2

, . . . , l

r

, l

r+1

∈ R.

(6)

The equivariance of f

r,r+1

with respect to the kernel of the projections G

r+1n

→ G

rn

and G

r+1n

→ G

1n

gives the relations

(3.4) k

1

= 0 ,

(3.5) l

2,1

= (r + 1)!

r!1! k

2

, l

2,2

= (r + 1)!

(r − 1)!2! k

2

, . . . , l

r

= (r + 1)!

(r − 1)!2! k

r

. If we put l

r+1

= k

r+1

, this gives the r-parameter family f

r,r+1

= (f

r,r

, f

r+1

) of the form

(3.6) A = k

2

A

r,r+12

+ . . . + k

r+1

A

r,r+1r+1

with any real parameters k

2

, . . . , k

r+1

∈ R.

II. Suppose that the theorem holds for q − 1 and the G

r+q−1n

-equivariant maps f

r,r+q−1

: (T

r∗

R

n

)

0

→ (T

(r+q−1)∗

R

n

)

0

define the r-parameter family (3.7) A = k

q

A

r,r+q−1q

+ k

q+1

A

r,r+q−1q+1

+ . . . + k

q+r−1

A

r,r+q−1q+r−1

with any real parameters k

q

, k

q+1

, . . . , k

q+r−1

∈ R.

Consider a G

r+qn

-equivariant map f

r,r+q

: (T

r∗

R

n

)

0

→ (T

(r+q)∗

R

n

)

0

of the form f

r,r+q

= (f

r,r+q−1

, f

r+q

).

The equivariance of f

r,r+q

with respect to the homotheties in G

r+qn

: e a

ij

= kδ

ji

, e a

ij1j2

= 0, . . . , e a

ij1...jr+q

= 0, gives for the (r + q)th component f

r+q

the homogeneity condition

(3.8) k

r+q

f

r+q

(u

1

, u

2

, . . . , u

r

) = f

r+q

(ku

1

, k

2

u

2

, . . . , k

r

u

r

) .

By the homogeneous function theorem and the invariant tensor theorem [2]–[5], f

r+q

is of the form

f

i1...ir+q

= l

r+q

u

i1

. . . u

ir+q

+ l

r+q−1

u

(i1

. . . u

ir+q−2

u

ir+q−1ir+q)

(3.9)

+ . . . + l

q+1

u

(i1

. . . u

iq

u

iq+1...iq+r)

with any real parameters l

q+1

, . . . , l

q+r−1

, l

q+r

∈ R.

The equivariance of f

r,r+q

with respect to the kernel of the projections G

r+qn

→ G

rn

and G

r+qn

→ G

1n

gives the relations

(3.10) k

q

= 0, . . . ,

(3.11) l

q+1

= (q + r)!

r!q! k

q+1

, . . . , l

q+r−1

= (q + r)!

(q + r − 2)!2! k

q+r−1

. If we put l

q+r

= k

q+r

, this proves our theorem.

Theorem 3. All natural transformations A : T

r∗

→ T

(r−q)∗

form the (r − q)-parameter family

(3.12) A = k

1

A

r,r−q1

+ k

2

A

r,r−q2

+ . . . + k

r−q

A

r,r−qr−q

with any real parameters k

1

, k

2

, . . . , k

r−q

∈ R.

P r o o f. Applying the same general procedure, we conclude that each A :

T

r∗

→ T

(r−q)∗

is the composition of the projection P

r,r−q

: T

r∗

→ T

(r−q)∗

(7)

and a transformation A of T

(r−q)∗

into itself: A = A ◦ P

r,r−q

. This proves our theorem.

References

[1] J. G a n c a r z e w i c z, Differential Geometry , PWN, Warszawa 1987 (in Polish).

[2] I. K o l ´ aˇ r, Some natural operators in differential geometry , in: Proc. Conf. Diff. Geom.

and its Applications, Brno 1986, Kluwer, Dordrecht 1987, 91–110.

[3] I. K o l ´ aˇ r and G. V o s m a n s k a, Natural transformations of higher order tangent bun- dles and jet spaces, ˇ Casopis Pˇ est. Mat. 114 (2) (1989), 181–186.

[4] I. K o l ´ aˇ r, P. M i c h o r and J. S l o v a k, Natural Operations in Differential Geometry , to appear.

[5] J. K u r e k, On natural operators on sectorform fields, ˇ Casopis Pˇ est. Mat. 115 (3) (1990), 232–239.

INSTITUTE OF MATHEMATICS

MARIA CURIE-SK LODOWSKA UNIVERSITY PL. M. CURIE-SK LODOWSKIEJ 1

20-031 LUBLIN, POLAND

Re¸ cu par la R´ edaction le 20.5.1991

evis´ e le 10.2.1992 et 29.6.1992

Cytaty

Powiązane dokumenty

− for each algebraic type scheme ∀α 1...

M., The natural liftings of connections to tensor powers of the cotangent bundle, AGMP-8 Proceedings (Brno 2012), Miskolc Mathematical Notes, to appear.. [6] Kur´ eˇ s, M.,

Riemannian manifold, higher order vector tangent bundle, higher order cotangent bundle, natural tensor, natural operator....

W pracy wyznacza się wszystkie operatory naturalne pierwszego rzędu transformujące 1- formy na rozmaitości do wiązki stycznej. Podstawowymi operatorami tego typu są podniesienie

1.10. Next, consider the tangent bundle τ n,n−2 and the twisted orthogonal complement bundle β n,n−2 0. We briefly recall the definition of the latter. 99) that in this case the

Via the Crofton formulas the above inequality is a con- sequence of Milnor’s results concerning the Betti numbers of an algebraic variety (see [Mi1], [Mi2], in which the

The paper is divided into two parts: a brief exposition of the geometrical structures we are handling (the tangent and normal groupoids) which covers the first section, and the use

Riemannian manifold, higher order prolongation of a vector bundle, natural tensor, natural operator.... Now we give some