• Nie Znaleziono Wyników

ON CERTAIN UNIVALENCE CRITERIA

N/A
N/A
Protected

Academic year: 2021

Share "ON CERTAIN UNIVALENCE CRITERIA"

Copied!
4
0
0

Pełen tekst

(1)

C O L L O Q U I U M M A T H E M A T I C U M

VOL. LXII 1991 FASC. I

ON CERTAIN UNIVALENCE CRITERIA

BY

A . W E S O L O W S K I (LUBLIN)

1. Let D = {z : |z| < 1} and let S f denote the Schwarzian derivative S f =  f 00 (z)

f 0 (z)

 0

− 1 2

 f 00 (z) f 0 )z)

 2

. Epstein (see e.g. [4]) gave the following

Theorem E. Let f be meromorphic and g analytic in D. If both func- tions are locally univalent in D and if

1

2 (1 − |z| 2 ) 2 (S f (z) − S g (z)) + (1 − |z| 2 )z g 00 (z) g 0 (z)

≤ 1 for z ∈ D, then f is univalent in D.

Ch. Pommerenke [4] has given another proof of this theorem omitting an additional technical assumption introduced by Epstein.

We want to transfer this result to the exterior of the unit circle. We start with meromorphic functions in D. Note that we cannot simply apply the transformation w → 1/w to Theorem E, since g 00 /g 0 does not transform correctly.

2. Theorem 1. Let f and g be meromorphic functions in D of the form f (z) = a

z + a 0 + a 1 z + . . . , g(z) = b

z + b 0 + b 1 z + . . . If both functions are locally univalent in D and if

(2.1)

 1

|z| 2 − 1

 

2 + zg 00 (z) g 0 (z)

 + 1

2 (1 − |z| 2 ) 2 (S f (z) − S g (z))

≤ 1, for z ∈ D, then f is univalent in D.

P r o o f. We may assume a = b = 1, a 0 = 0. Let v(z) = p

g 0 (z)/f 0 (z) = 1 + βz 2 + . . . , (2.2)

u(z) = f (z)v(z) = 1

z + c 1 z + . . .

(2.3)

(2)

40 A . W E S O L O W S K I

For t ∈ I = [0, ∞) we consider (see e.g. [1], p. 38) the function (2.4) f (z, t) =  u(ze −t ) + (e −t − e −3t )zu 0 (ze −t )

v(ze −t ) + (e −t − e −3t )zv 0 (ze −t )

 −1

, z ∈ D.

For each fixed t ∈ I the function f (z, t) is meromorphic in D. From (2.2) and (2.3) it follows that there exist constants r 0 > 0 and K 0 such that (2.5) |f (z, t)| ≤ K 0 e t for |z| < r 0 , t ∈ I.

From (2.2) and (2.3) we also conclude that

(2.6) f (z, t) = e t z + O(z 2 ) as z → 0 . Write

f 0 (z, t) = ∂f (z, t)

∂z , f (z, t) = ˙ ∂f (z, t)

∂t . After some calculation we obtain from (2.4)

w =

f (z, t) − zf ˙ 0 (z, t) f (z, t) + zf ˙ 0 (z, t) (2.7)

= − 2ae 3t (u 0 v − uv 0 ) + az 2 e 2t (u 00 v − uv 00 ) + a 2 z 2 a 2t (u 00 v 0 − u 0 v 00 ) u 0 v − uv 0

where a = e −t − e −3t and where u, v, . . . are evaluated at ze −t . From (2.3) together with (2.2) we obtain

u 0 v − uv 0 = f 0 v 2 ,

u 00 v − uv 00 = f 00 v 2 + 2f 0 v 0 v = f 0 v 2 g 00 /g 0 ,

u 00 v 0 − u 0 v 00 = f 00 v 0 v − f 0 v 00 v + 2f 0 (v 0 ) 2 = 1 2 f 0 v 2 (S f − S g ).

Thus, it follows from (2.7) that, for z ∈ D, w = − (e 2t − 1)



2 + ze −t g 00 (ze −t ) g 0 (ze −t )

 (2.8)

− 1

2 (e 2t − 1) 2 z 2 e −4t (S f (ze −t ) − S g (ze −t )).

The right-hand side of (2.8) is 0 for t = 0 and is analytic in D = {z : |z| ≤ 1}

if t > 0. Then, putting ze −t = ζ, e −t = |ζ| and replacing ζ by z we deduce from (2.8) and (2.1) that

f (z, t) − zf ˙ 0 (z, t) f (z, t) + zf ˙ 0 (z, t)

≤ 1, so

f (z, t) = zf ˙ 0 (z, t)p(z, t), Re p(z, t) > 0 for z ∈ D, t ∈ I.

(3)

UNIVALENCE CRITERIA 41

Thus, from (2.5) and (2.6) it follows that f (z, t), t ∈ I, is a L¨ owner chain ([4], Theorem 6.2) and that f (z, t) is univalent in D.

In particular, we conclude from (2.3) and (2.4) that f (z, 0) = 1/f (z) = v(z)/u(z) is univalent in D.

Theorem 1, on substituting F (z) = f (1/z), G(z) = g(1/z), z ∈ E = {z :

|z| > 1}, gives

Theorem 2. Let F and G be meromorphic and locally univalent in E.

If (2.9)

1

2 (|z| 2 − 1) 2 z

z (S F (z) − S G (z)) − (|z| 2 − 1) zG 00 (z) G 0 (z)

≤ 1, z ∈ E, then F is univalent in E.

If G = F then (2.9) gives

(2.10) (|z| 2 − 1)|zG 00 (z)/G 0 (z)| ≤ 1, z ∈ E, which is the known Becker univalence criterion [2].

If G = z then (2.9) implies

(2.11) (|z| 2 − 1) 2 |S F (z)| ≤ 2, z ∈ E, which is a univalence criterion of Nehari type [3].

Example. We will now show that the functions

(2.12) F (z) =

 z

z − 1



√ 2

, G(z) = 2z 2 2z − 1

satisfy the assumptions of the univalence criterion (2.9) but G does not satisfy (2.10). Indeed, if 1 < x < 2 then

(x 2 − 1) xG 00 (x)

G 0 (x) = x 2 − 1

(x − 1)(2x − 1) = x + 1 2x − 1 > 1.

On the other hand,

1

2 (|z| 2 − 1) 2 z

z (S F − S G ) − (|z| 2 − 1) zG 00 G 0

= 1 2

|z| 2 − 1

|z − 1|

|z| 2 − 1

|z| 2 (z − 1) − 2 2z − 1

= 1 2

(|z| 2 − 1)||z| 2 − 2z + 1|

|z| 2 |z − 1| 2 |2z − 1|

≤ 1 2

|z| 2 − 1

|z| 2 |2z − 1|



1 + ||z| 2 − z|

|z − 1| 2



≤ 1 2

3r 2 − 1

r 2 (2r − 1) < 1.

(4)

42 A . W E S O L O W S K I

REFERENCES

[1] J. B e c k e r, L¨ ownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math. 255 (1972), 23–43.

[2] —, ¨ Uber hom¨ oomorphe Fortsetzung schlichter Funktionen, Ann. Acad. Sci. Fenn. 538 (1973), 3–11.

[3] Z. N e h a r i, The Schwarzian derivative and schlicht functions, Bull. Amer. Math.

Soc. 55 (1949), 545–551.

[4] Ch. P o m m e r e n k e, On the Epstein univalence criterion, Results Math. 10 (1986), 143–146.

[5] —, ¨ Uber die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159–173.

DEPARTMENT OF APPLIED MATHEMATICS MARIA CURIE-SK LODOWSKA UNIVERSITY PL. MARII CURIE-SK LODOWSKIEJ 1 20-031 LUBLIN, POLAND

Re¸ cu par la R´ edaction le 6.6.1989 ;

en version modifi´ ee le 14.12.1990

Cytaty

Powiązane dokumenty

In this note we consider a certain class of convolution operators acting on the L p spaces of the one dimensional torus.. We prove that the identity minus such an operator is

Theorem 2.. One cannot hope to prove a statement similar to Theorem 2 for purely atomic measures. The main difficulty is that this operator is not globally invertible. [G], [Ba]

Before we start the derivation of the fundamental pursuit equation in the electromagnetic and gravitational field, we remind the basic notions of the relativistic theory

We find that our model of allele frequency distributions at SNP sites is consistent with SNP statistics derived based on new SNP data at ATM, BLM, RQL and WRN gene regions..

The proofs of both theorems are similar to the part of Cohen’s argument presented above as “Lemma 1 implies the Factorization Theorem”.. Indeed, Lemma

The new tool here is an improved version of a result about enumerating certain lattice points due to E.. A result about enumerating certain

Besides these the proof uses Borel–Carath´ eodory theorem and Hadamard’s three circles theorem (the application of these last two theorems is similar to that explained in [4], pp..

Although it can be deduced from the general statements on Hirzebruch surfaces that these scrolls are not isomorphic we give here a simple direct argument..