• Nie Znaleziono Wyników

ROBUST BAYESIAN ESTIMATION IN A NORMAL MODEL WITH ASYMMETRIC LOSS FUNCTION

N/A
N/A
Protected

Academic year: 2021

Share "ROBUST BAYESIAN ESTIMATION IN A NORMAL MODEL WITH ASYMMETRIC LOSS FUNCTION"

Copied!
8
0
0

Pełen tekst

(1)

A. B O R A T Y ´N S K A and M. D R O Z D O W I C Z (Warszawa)

ROBUST BAYESIAN ESTIMATION IN A NORMAL MODEL WITH ASYMMETRIC LOSS FUNCTION

Abstract. The problem of robust Bayesian estimation in a normal model with asymmetric loss function (LINEX) is considered. Some uncertainty about the prior is assumed by introducing two classes of priors. The most robust and conditional Γ -minimax estimators are constructed. The situa- tions when those estimators coincide are presented.

1. Introduction and notation. In Bayesian statistical inference the goal of research are optimal decisions under a specified loss function and a prior distribution over the parameter space. However the arbitrariness of a unique prior distribution is a permanent problem. Robust Bayesian inference deals with the problem of expressing uncertainty of the prior information using a class Γ of priors and of measuring the range of a posterior quantity while the prior distribution Π runs over the class Γ . It is interesting not only in calculating the range but also in constructing optimal procedures.

In the problem of estimation of an unknown parameter two concepts of optimality are considered: the idea of conditional Γ -minimax estimators (see DasGupta and Studden [4], Betro and Ruggeri [1]) and the idea of stable estimators developed in M¸ eczarski and Zieli´ nski [6] and Boraty´ nska and M¸ eczarski [3]. The first concept is connected with the problem of ef- ficiency of the estimator with respect to the posterior risk when the priors run over Γ . The second one is connected with the problem of finding an estimator with the smallest oscillation of the posterior risk when the priors run over Γ . Sometimes those two estimators coincide (see M¸ eczarski [5] and Boraty´ nska [2]).

In all papers mentioned above the quadratic loss function was consid- ered. However in many situations a quadratic loss function seems inappro-

1991 Mathematics Subject Classification: Primary 62C10; Secondary 62F15, 62F35.

Key words and phrases: Bayes estimators, classes of priors, robust Bayesian estima- tion, asymmetric loss function.

[85]

(2)

priate in that it assigns the same loss to overestimates as to equal under- estimates.

In this paper we estimate an unknown parameter θ and consider the asymmetric loss function (LINEX)

L(θ, d) = exp(a(θ − d)) − a(θ − d) − 1,

where a is a known parameter and a 6= 0. Exhaustive motivations to use LINEX are presented in Varian [7] and Zellner [8]. We find the conditional Γ -minimax estimators and the stable estimators, and present conditions when those estimators coincide, in a normal model with two classes of con- jugate priors given below.

Let X

1

, . . . , X

n

be i.i.d. random variables with normal N (θ, b

2

) distri- bution where θ is unknown and b

2

is known. Set X = (X

1

, . . . , X

n

). Let Π

µ00

= N (µ

0

, σ

20

) be a fixed prior distribution of θ.

Define X = 1

n

n

X

i=1

X

i

, v

n

= n(X − µ

0

)

b

2

, λ = λ(σ) =  1 σ

2

+ n

b

2



−1

,

m = m(µ) = µ

 1 − n

b

2

 1 σ

02

+ n

b

2



−1

 , w

n

=  a

2 + nX b

2

 1 σ

02

+ n

b

2



−1

.

If X = x then the posterior distribution is the normal distribution N (µ

0

+ v

n

λ

0

, λ

0

) = N (m

0

+ w

n

− aλ

0

/2, λ

0

),

where λ

0

= λ(σ

0

) and m

0

= m(µ

0

). The posterior risk of an estimator b θ with LINEX loss function is equal to

Ee

a(θ− bθ)

− aEθ + ab θ − 1,

where Ey(θ) denotes the expected value of a function y(θ) when θ has the posterior distribution. Thus under the prior Π

µ00

,

Ee

= exp(aµ

0

+ (a

2

/2 + av

n

0

) = exp(am + aw

n

) and

Eθ = µ

0

+ v

n

λ

0

= m

0

+ w

n

− aλ

0

/2.

The minimum of the posterior risk as a function of θ is reached for θ = b 1

a ln Ee

.

Thus the Bayes estimator with LINEX loss function is given by the formula θ b

Bayµ00

= 1

a ln Ee

= µ

0

+ (a/2 + v

n

0

= m

0

+ w

n

.

(3)

Now suppose that the prior distribution is not exactly specified and consider two classes of prior distributions of θ:

Γ

µ0

= {Π

µ0

: Π

µ0

= N (µ

0

, σ

2

), σ ∈ (σ

1

, σ

2

)}, where σ

1

< σ

2

are fixed and σ

0

∈ (σ

1

, σ

2

), and

Γ

σ0

= {Π

µ,σ0

: Π

µ,σ0

= N (µ, σ

02

), µ ∈ (µ

1

, µ

2

)},

where µ

1

< µ

2

are fixed and µ

0

∈ (µ

1

, µ

2

). The classes Γ

µ0

and Γ

σ0

express two types of uncertainty about the elicited prior.

Let R

x

(µ, σ, b θ ) denote the posterior risk of the estimator b θ when the prior is normal N (µ, σ

2

). The posterior risk can be expressed by two formulas as a function of λ and m:

R(µ

0

, σ, b θ) = %

µ0

(λ, b θ)

= exp(−ab θ + aµ

0

+ (a

2

/2 + av

n

)λ) − a(µ

0

+ λv

n

) + ab θ − 1 and

R(µ, σ

0

, b θ) = %

σ0

(m, b θ)

= exp(−ab θ + am + aw

n

) − a(m + w

n

) + a

2

λ

0

/2 + ab θ − 1.

Observe that λ is an increasing function of σ and therefore if σ ∈ (σ

1

, σ

2

) then λ ∈ (λ

1

, λ

2

), where λ

i

= λ(σ

i

), i = 1, 2. Similarly, m is an increasing function of µ and therefore if µ ∈ (µ

1

, µ

2

) then m ∈ (m

1

, m

2

), where m

i

= m(µ

i

), i = 1, 2. The ranges of the posterior risk of the estimator b θ when the prior runs over Γ

µ0

and Γ

σ0

are

r

µ0

(b θ) = sup

λ∈(λ12)

%

µ0

(λ, b θ) − inf

λ∈(λ12)

%

µ0

(λ, b θ) and

r

σ0

(b θ) = sup

m∈(m1,m2)

%

σ0

(m, b θ) − inf

m∈(m1,m2)

%

σ0

(m, b θ), respectively.

2. The range of the posterior risk for the Bayes estimator.

Consider the prior Π

µ00

, note that Π

µ00

∈ Γ

µ0

and Π

µ00

∈ Γ

σ0

, and consider the Bayes estimator

θ b

Bayµ00

= µ

0

+ (a/2 + v

n

0

= m

0

+ w

n

.

The posterior risk of this estimator under an arbitrary prior Π

µ0

∈ Γ

µ0

is

%

µ0

(λ, b θ

Bayµ00

) = exp((a

2

/2 + av

n

)(λ − λ

0

)) − av

n

(λ − λ

0

) + a

2

λ

0

/2 − 1.

Denote it by f (λ). Now computations lead to the following form of the

(4)

oscillation of %

µ0

for b θ

Bayµ00

while λ runs over (λ

1

, λ

2

):

r

µ0

(b θ

Bayµ00

) =

f (λ

2

) − f (λ

1

) if −a/2 ≤ v

n

< 0 and a > 0, or 0 < v

n

≤ −a/2 and a < 0, or b λ < λ

1

, f (λ

2

) − f (b λ) otherwise,

where

b λ = λ

0

+ (a

2

/2 + av

n

)

−1

ln v

n

a/2 + v

n

. Thus

r

µ0

(b θ

Bayµ00

)

=

 

 

e

z(λ1−λ0)

[e

− 1] − av

n

δ if −a/2 < v

n

< 0 and a > 0, or 0 < v

n

≤ −a/2 and a < 0, or b λ < λ

1

,

a

2

δ/2 if v

n

= −a/2,

e

z(λ2−λ0)

+ av

n

(b λ − λ

2

− 1/z) otherwise, where z = a

2

/2 + av

n

and δ = λ

2

− λ

1

.

Consider the class Γ

σ0

. The posterior risk of this estimator under an arbitrary prior Π

µ,σ0

∈ Γ

σ0

is

%

σ0

(m, b θ

Bayµ00

) = e

−a(m0−m)

+ a(m

0

− m) + a

2

λ

0

/2 − 1 and the oscillation of %

σ0

is equal to

r

σ0

(b θ

Bayµ00

) =

 e

−a(m0−m2)

+ a(m

0

− m

2

) − 1 for m

0

≤ m, b e

−a(m0−m1)

+ a(m

0

− m

1

) − 1 for m

0

> m, b where

m = m b

1

+ 1

a ln exp(am

2

− am

1

) − 1 a(m

2

− m

1

) .

3. Most stable and conditional Γ -minimax estimators. Now the problem is to find most stable estimators b θ

µ0

and b θ

σ0

, i.e. those satisfying

inf

θb

r

µ0

(b θ ) = r

µ0

(b θ

µ0

) and inf

θb

r

σ0

(b θ) = r

σ0

(b θ

σ0

)

and to find the conditional Γ -minimax estimators e θ

µ0

and e θ

σ0

, i.e. those satisfying

inf

θb

sup

σ∈[σ12]

R

x

0

, σ, b θ ) = sup

σ∈[σ12]

R

x

0

, σ, e θ

µ0

) and

inf

θb

sup

µ∈[µ12]

R

x

(µ, σ

0

, b θ ) = sup

µ∈[µ12]

R

x

(µ, σ

0

, e θ

σ0

).

We use the following theorem proved by M¸ eczarski [5].

(5)

Theorem 1 (M¸ eczarski [5]). Let Γ = {Π

α

: α ∈ [α

1

, α

2

]} be a set of prior distributions, where α is a real parameter. Let %(α, d) be the posterior risk of a decision d based on an observation x when the prior is Π

α

. Assume that the function %(α, d) satisfies the following conditions:

1. %(α, ·) is a strictly convex function for any α;

2. for any d the minimum point α

min

(d) of %(·, d) is unique and α

min

is a strictly monotone function of d;

3. for any α and d such that α

min

(d ) = α we have

∀d

1

< d

2

≤ d %(α, d

2

) − %(α, d

1

)

d

2

− d

1

< %(α

min

(d

2

), d

2

) − %(α

min

(d

1

), d

1

) d

2

− d

1

and

∀d

2

> d

1

≥ d %(α, d

2

) − %(α, d

1

)

d

2

− d

1

> %(α

min

(d

2

), d

2

) − %(α

min

(d

1

), d

1

)

d

2

− d

1

;

4. the function %(α

1

, d) − %(α

2

, d) is a monotone function of d.

Then

(i) if there exists b d such that sup

α∈[α12]

%(α, b d ) = %(α

1

, b d ) = %(α

2

, b d ) then b d is the most stable;

(ii) if b d satisfying (i) belongs to L

Γ

= {d : ∀x ∈ X ∃α ∈ [α

1

, α

2

] d(x) = d

Bayα

(x)} then b d is conditional Γ -minimax.

We now prove our results.

Theorem 2. If the class of priors is Γ

σ0

then θ b

σ0

= b θ

Bayµ10

+ 1

a ln exp[a(m

2

− m

1

)] − 1 a(m

2

− m

1

) and e θ

σ0

= b θ

σ0

for all values x of the random variable X.

P r o o f. Let us check the conditions of Theorem 1 for

%

σ0

(m, b θ) = exp(−ab θ + am + aw

n

) − a(m + w

n

) + a

2

λ

0

/2 + ab θ − 1.

The function %

σ0

(m, ·) is convex and

∂%

σ0

(m, b θ)

∂m = a exp(−ab θ + am + aw

n

) − a,

thus the minimum point m

min

(b θ) = b θ − w

n

, and m

min

is an increasing

function of b θ.

(6)

To check condition 3 it is enough to show the inequalities

∀θ

1

< θ

2

≤ b θ e

a bθ

e

−aθ2

− e

−aθ1

θ

2

− θ

1

< −a and

∀θ

2

> θ

1

≥ b θ e

a bθ

e

−aθ2

− e

−aθ1

θ

2

− θ

1

> −a.

These hold by the Lagrange formula. The last condition of Theorem 1 is also true, thus b θ

σ0

is a solution of the equation

%

σ0

(m

1

, b θ) = %

σ0

(m

2

, b θ).

To obtain the conditional Γ -minimax estimator note that for all values x of the random variable X we have b θ

σ0

(x) ∈ [b θ

Bayµ10

(x), b θ

Bayµ20

(x)].

Theorem 3. Let the class of priors be Γ

µ0

. Then the most stable esti- mator b θ

µ0

of θ in the class of all estimators of θ exists only for the values of X satisfying

v

n

(v

n

+ a/2) > 0 or v

n

= −a/2.

For v

n

(v

n

+ a/2) > 0,

b θ

µ0

= b θ

Bayµ01

+ 1

a ln e

2−λ1)(a2/2+avn)

− 1 av

n

2

− λ

1

) .

For v

n

= −a/2 the range of the posterior risk does not depend on the value of b θ.

The conditional Γ -minimax estimator is

θ e

µ0

=

θ b

µ0

if v

n

(v

n

+ a/2) > 0 and

exp[(λ

1

− λ

2

)(a

2

/2 + av

n

)] + av

n

2

− λ

1

)) ≥ 1, θ b

Bayµ02

otherwise.

The most stable estimator in the class

L = {b θ : ∀x ∃σ ∈ [σ

1

, σ

2

] b θ(x) = b θ

Bayµ0

(x)}

is equal to the conditional Γ -minimax estimator in the class of all estima- tors.

P r o o f. Let us check the conditions of Theorem 1 for

%

µ0

(λ, b θ) = exp(−ab θ + aµ

0

+ (a

2

/2 + av

n

)λ) − a(µ

0

+ λv

n

) + ab θ − 1.

The function %

µ0

(λ, ·) is convex and

∂%

µ0

(λ, b θ)

∂λ = (a

2

/2 + av

n

) exp(−ab θ + aµ

0

+ λ(a

2

/2 + av

n

)) − av

n

.

(7)

Thus the minimum point is

λ

min

(b θ) = ab θ − aµ

0

+ ln

a/2+vvn

n

a

2

/2 + av

n

and λ

min

exists iff v

n

(v

n

+ a/2) > 0.

For v

n

satisfying v

n

(v

n

+ a/2) ≤ 0 the function %

µ0

(·, b θ) is an increasing function of λ and the oscillation of the posterior risk

r

µ0

(b θ) = − av

n

2

− λ

1

) + exp(−ab θ + aµ

0

+ (a

2

/2 + av

n

1

)

× [exp((a

2

/2 + av

n

)(λ

2

− λ

1

)) − 1]

is a monotone function of b θ (decreasing for a > 0 and −a/2 < v

n

≤ 0, constant for v

n

= −a/2 and increasing for a < 0 and 0 ≤ v

n

< −a/2).

Thus the most stable estimator does not exist for v

n

(v

n

+ a/2) ≤ 0 and v

n

6= −a/2. For v

n

= −a/2 the oscillation r

µ0

(b θ) = a

2

2

− λ

1

)/2 does not depend on the value of b θ. The conditional Γ -minimax estimator e θ

µ0

is equal to b θ

Bayµ02

.

Let us consider the situation when v

n

(v

n

+ a/2) > 0. The minimum point λ

min

and the function %

µ0

2

, ·) − %

µ0

1

, ·) are monotone functions of θ. Condition 3 of Theorem 1 is similar to that in Theorem 2 so we obtain b the most stable estimator as a solution of the equation

%

µ0

1

, b θ

µ0

) = %

µ0

2

, b θ

µ0

).

To find the conditional Γ -minimax estimator we check when b θ

µ0

∈ L.

For v

n

+ a/2 > 0 we have b θ

Bayµ01

< b θ

Bayµ02

. Solving the inequalities θ b

Bayµ01

≤ b θ

µ0

≤ b θ

Bayµ02

we obtain the condition

(∗) exp[(λ

1

− λ

2

)(a

2

/2 + av

n

)] + av

n

2

− λ

1

) ≥ 1.

For v

n

+ a/2 < 0 we have b θ

Bayµ01

> b θ

Bayµ0, σ2

. Solving the inequalities θ b

Bayµ01

≥ b θ

µ0

≥ b θ

Bayµ02

we also obtain (∗). Thus if v

n

(v

n

+ a/2) > 0 and (∗) is true then e θ

µ0

= b θ

µ0

. If v

n

+ a/2 > 0 and v

n

> 0 and (∗) is not true then

θ b

Bayµ01

< b θ

Bayµ02

< b θ

µ0

and

sup

λ∈[λ12]

%

µ0

(λ, b θ) =  %

µ0

2

, b θ) if b θ ≤ b θ

µ0

,

%

µ0

1

, b θ) if b θ ≥ b θ

µ0

,

and the oscillation r

µ0

(b θ) is a decreasing function for b θ < b θ

µ0

.

(8)

If v

n

+ a/2 < 0 and v

n

< 0 and (∗) is not true then θ b

Bayµ01

> b θ

Bayµ02

> b θ

µ0

and

sup

λ∈[λ12]

%

µ0

(λ, b θ) =  %

µ0

1

, b θ) if b θ ≤ b θ

µ0

,

%

µ0

2

, b θ) if b θ ≥ b θ

µ0

, and the oscillation r

µ0

(b θ) is an increasing function for b θ > b θ

µ0

.

Thus if v

n

(v

n

+ a/2) > 0 and (∗) is not true then e θ

µ0

= b θ

Bayµ02

and b θ

Bayµ02

is the most stable estimator in the class L.

The monotonicity of the function r

µ0

shows that b θ

Bayµ02

is also the most stable estimator in the class L for v

n

(v

n

+ a/2) ≤ 0.

References

[1] B. B e t r o and F. R u g g e r i, Conditional Γ -minimax actions under convex losses, Comm. Statist. Theory Methods 21 (1992), 1051–1066.

[2] A. B o r a t y ´n s k a, Stability of Bayesian inference in exponential families, Statist.

Probab. Lett. 36 (1997), 173–178.

[3] A. B o r a t y ´n s k a and M. M ¸e c z a r s k i, Robust Bayesian estimation in the one-dimen- sional normal model , Statistics and Decision 12 (1994), 221–230.

[4] A. D a s G u p t a and W. J. S t u d d e n, Frequentist behavior of robust Bayes estimates of normal means, Statist. Decisions 7 (1989), 333–361.

[5] M. M ¸e c z a r s k i, Stability and conditional Γ -minimaxity in Bayesian inference, Appl.

Math. (Warsaw) 22 (1993), 117–122.

[6] M. M ¸e c z a r s k i and R. Z i e l i ´n s k i, Stability of the Bayesian estimator of the Poisson mean under the inexactly specified gamma prior , Statist. Probab. Lett. 12 (1991), 329–333.

[7] H. R. V a r i a n, A Bayesian approach to real estate assessment , in: Studies in Bayesian Econometrics and Statistics, North-Holland, 1974, 195–208.

[8] A. Z e l l n e r, Bayesian estimation and prediction using asymmetric loss functions, J.

Amer. Statist. Assoc. 81 (1986), 446–451.

Agata Boraty´nska

Institute of Applied Mathematics University of Warsaw

Banacha 2

02-097 Warszawa, Poland E-mail: agatab@mimuw.edu.pl

Monika Drozdowicz Wojciechowskiego 22 02-495 Warszawa, Poland

Received on 2.9.1998;

revised version on 3.12.1998

Cytaty

Powiązane dokumenty

1 Driving speed, absolute steering speed, gaze road center, Rating Scale Mental Effort (RSME), and workload estimate distribution as a function of travelled distance along

Une mère rêveuse et un père respon- sable, mais faible et totalement subordonné aux velléités de son épouse romanesque, placés dans un endroit où personne ne les connaît et

Pawel Kmiotek, Yassine Ruichek, ”A Fixed Size Assumption Based Data Association Method for Coalescing Objects Tracking using a Laser Scanner Sensor”, The 2009 IEEE

Celami tego zadania jest detekcja oraz estymacja stanu obiektów dynamicznych.. W pracy zaproponowano nowy model reprezentacji obiektów bazujący na zorientowanym

Niemiecka społeczność Królestwa Polskiego w latach Wielkiej Wojny, Stanisław Czerep – Polacy – żołnierze armii rosyj- skiej w walce na obszarze Królestwa

Losonczi [9] proved the stability of the Hosszú equation in the class of real functions defined on the set of all reals and posed the problem of the stability of this equation in

W kontekście wdrażania otwartego dostępu należy podkreślić rolę bibliotek naukowych, które od lat biorą aktywny udział w promocji idei otwartego dostępu do publikacji

Przedstawione wyniki nie wykazały znamiennych różnic poziomu szybkości i zwinności między dwiema grupami 8-letnich dzieci z płaskostopiem i z prawidłowo