• Nie Znaleziono Wyników

Strontium isotope composition of Badenian (Middle Miocene) Ca-sulphate deposits in West Ukraine: a preliminary study

N/A
N/A
Protected

Academic year: 2022

Share "Strontium isotope composition of Badenian (Middle Miocene) Ca-sulphate deposits in West Ukraine: a preliminary study"

Copied!
12
0
0

Pełen tekst

(1)

Stron tium iso tope com po si tion of Badenian (Mid dle Mio cene) Ca-sul phate de pos its in West Ukraine: a pre lim i nary study

Tadeusz Marek PERYT, Sofiya Petrivna HRYNIV and Rob ert ANCZKIEWICZ

Peryt T. M., Hryniv S. P. and Anczkiewicz R. (2010) – Stron tium iso tope com po si tion of Badenian (Mid dle Mio cene) Ca-sul phate de - pos its in West Ukraine: a pre lim i nary study. Geol. Quart., 54 (4): 465–476. Warszawa.

Stron tium iso tope com po si tions have been mea sured in six pri mary gyp sum sam ples from the most mar ginal part of the Badenian evaporite suc ces sion in the Ukrai nian Carpathian Foredeep Ba sin (Mamalyha quarry sec tion) and in two anhydrite sam ples from the ba - sin-cen tre ha lite zone of the Ukrai nian Carpathian Foredeep, aimed determining the or i gin of brines from which these sulphates were pre - cip i tated. The stron tium iso tope ra tios (87Sr/86Sr) of ha lite fa cies-as so ci ated anhydrite sam ples are very sim i lar (0.708902 and 0.708917, respectively) and higher than the ra tio infferred for Badenian sea wa ter. The stron tium iso tope ra tios (87Sr/86Sr) of six sam ples of pri mary gyp sum from Mamalyha range from 0.709154 to 0.709838; thus they are strongly di ver gent from co eval oce anic val ues. The gyp sum from the lower part of the Mamalyha sec tion shows much higher 87Sr/86Sr ra tios than the gyp sum from the up per part and a clear de creas - ing-up wards trend is ob served. The higher stron tium iso tope ra tios are re lated to the por tion of the gyp sum sec tion show ing both d18O and d34S di ver gent from co eval oce anic val ues. The 87Sr/86Sr ra tios of min er als in ma rine, bed ded evaporite de pos its are com monly higher than that of con tem po ra ne ous sea wa ter which is of ten ex plained in terms of sec ond ary or i gin or recrystallization of these min er als in the pres ence of ra dio genic 87Sr-bear ing flu ids, mostly from a de tri tal source, but the Mamalyha pri mary gyp sum is very pure and clay in ter ca la tions are very thin and rare. High ra dio genic 87Sr/86Sr ra tios in pri mary gyp sum of the Mamalyha quarry in di cate an im por tant ra - dio genic stron tium non-ma rine con tri bu tion to the Badenian ba sin.

Tadeusz M. Peryt, Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute, Rakowiecka 4, PL-00-975 Warszawa, Po land, e-mail:

tadeusz.peryt@pgi.gov.pl; Sofiya P. Hryniv, In sti tute of Ge ol ogy and Geo chem is try of Combustible Min er als, Na tional Acad emy of Sci - ences of Ukraine, Naukova 3A, 79060 Lviv, Ukraine, e-mail: sophia_hryniv@ukr.net; Rob ert Anczkiewicz, In sti tute of Geo log i cal Sci - ences, Pol ish Acad emy of Sci ences, Senacka 1, PL-31-002 Kraków, Po land, e-mail: ndanczki@cyf-kr.edu.pl (re ceived: March 29, 2010;

ac cepted: Oc to ber 10, 2010).

Key words: Mid dle Mio cene, evaporites, stron tium iso topes, gyp sum, Paratethys.

INTRODUCTION

Many an cient evaporite de pos its in ter preted as ma rine in or i gin in fact have a more com plex or i gin. A study based on X-ray microanalysis of pri mary fluid in clu sions in ha lite, iso - to pic anal y sis (d34S and d18O in sulphates), and com - puter-based evap o ra tion mod els, sug gested re charge pro por - tions dur ing Badenian ha lite pre cip i ta tion of the Pol ish Carpathian Foredeep of be tween 20–30% sea wa ter and 65–70% con ti nen tal wa ter, with 5–10% of the con ti nen tal wa - ters re cy cling pre vi ously pre cip i tated ha lite (Cendón et al., 2004). As the re stric tion was smaller dur ing the sul phate pre - cip i ta tion and thus re charge pro por tion was in fa vour of sea - wa ter, the Badenian sul phate evaporites could have pre cip i - tated from wa ter dom i nated by an oce anic source (Flecker and Ellam, 2006). This in turn en cour ages to ap ply stron tium iso - tope stra tig ra phy (McArthur et al., 2001) as the Sr iso to pic

com po si tion of Mio cene sea wa ter is very well-es tab lished (e.g., Hodell et al., 1991; McArthur et al., 2001).

Kasprzyk et al. (2007) re ported 87Sr/86Sr ra tios from 0.708915 to 0.716329 in six sam ples of Badenian sulphates from Po land. They found that sed i men tary gyp sum dis plays stron tium iso tope ra tios close to con tem po ra ne ous (Badenian) seawa ter and anhydrite sam ples have more ra dio genic 87Sr/86Sr ra tios than the gyp sum sam ples. The high 87Sr/86Sr ra tios in anhydrite sam ples were in ter preted as re sult ing from the mix - ing of flu ids of two dif fer ent iso to pic sig na tures, i.e., ma rine wa ters and con ti nen tal wa ters, dur ing sul phate de po si tion and diagenesis, and gyp sum was re garded as hav ing formed from ma rine brines that were sub ject to an im por tant in flow of con ti - nen tal wa ters (Kasprzyk et al., 2007).

The sam ples stud ied by Kasprzyk et al. (2007) de rived from the sul phate ba sin and the ad ja cent gyp sum Zone III of Peryt (2006). In this pa per we pres ent re sults of the study of co eval Ca-sulphates of the Tyras For ma tion (Fig. 1) from the Mamalyha

(2)

sec tion lo cated in the most mar ginal fa cies zone (Zone I of Peryt, 2001) as well as from the ha lite ba sin zone in West Ukraine (Fig. 2) what al lows a more com pre hen sive un der stand ing of con trols on the stron tium iso tope com po si tion of Badenian sulphates. The Mamalyha sec tion was cho sen be cause it was ear lier sub ject both to the study of mi nor and trace el e ments in - clud ing stron tium con tent (Ryka, 1994), and to the study of sul - phur and ox y gen iso topes (Peryt, 2001) that are help ful in ex am - in ing the or i gin of sulphates, par tic u larly when com bined with the use of stron tium iso topes (Lu and Meyers, 2003).

GEOLOGICAL SETTING

The Ukrai nian Carpathian Foredeep Ba sin formed north - east of the overthrusting Carpathian nappes (Oszczypko et al., 2006). The Badenian evaporites oc cur in the outer (Bilche–Volytsya) tec tonic zone and the fore land as well as in the cen tral (Sambir) tec tonic zone (Vul et al., 1998; Figs. 1 and 2). In the outer zone, Badenian evaporites are in cluded into the Tyras For ma tion (Petryczenko et al., 1994; Andreyeva- Grigorovich et al., 1997) which con sists of Ca-sulphates (usu - ally 10–20 m thick) with claystone in ter ca la tions in the basinal fa cies. Petrographic study of Badenian an hyd rites of the basinal fa cies in the Carpathian Foredeep of East ern Po land and West Ukraine showed that they dis play ex ten sive pseudomorphic fea tures in her ited from the pre cur sor gyp sum, and that anhydritization was a diachronous pro cess that started in the ba sin cen tre un der sed i men tary con di tions; the suc ces - sive phases of anhydrite for ma tion oc curred along with sub si - dence un der gone by the foredeep ba sin (Kasprzyk and Ortí, 1998). In lo cal de pres sions Ca-sulphates oc cur with rock salt and claystone in ter ca la tions of con sid er ably greater thick ness (up to 275 m, Panow and Płotnikow, 1996); in the Kalush area in bore hole No. 12 the thick ness of the rock salt with anhydrite is 118 m (Panow and Płotnikow, 1996).

The strati graphic po si tion of evaporites oc cur ring within the Sambir tec tonic zone, and par tic u larly of pot ash de pos its in the Kalush area, is sub ject to dis cus sion (Hryniv et al., 2007, with ref er ences therein) but there also oc curs the Tyras For ma - tion that at tains 40 m in thick ness and is com posed of mas sive anhydrite fol lowed by anhydrite interbedded with clayey and sandy-clayey beds (Korenevskiy et al., 1977) and in ter ca la - tion(s) of rock salt (Kuźniar, 1935; Panow and Płotnikow, 1996). In the Hrynivka 525 bore hole lo cated south of Kalush (Fig. 2), evaporites oc cur in the depth in ter val of 280–541 m and they usu ally show a dip of 30°. The bore hole did not drill through the en tire evaporite se quence con sist ing of rock salt with in ter ca la tions (1–5.5 m thick) of salt brec cia, anhydrite and clay (Fig. 3). The con tent of ha lite var ies from 70.7 to 94.2% (the av er age is 76.3%), and the av er age con tents of anhydrite and wa ter-in sol u ble res i due con tent are 11.9% and 11.8%, re spec tively (Stupnitskiy et al., 1978). The mean bro - mine con tent in ha lite is 36 ±15 ppm (Galamay et al., 2009).

Ha lite is usu ally dark grey in col our; in places, es pe cially when anhydrite nod ules co-oc cur, it is bed ded. In the Hrynivka 522 bore hole which is lo cated 475 m SW of the Hrynivka 525 bore - hole, the rock salt is only 10 m thick (Stupnitskiy et al., 1978;

Khrushchov, 1980, p. 258), and it is cut by overthrusted Balych de pos its. In the Hrynivka 528 bore hole, lo cated 4 km south of the Hrynivka 525 bore hole, the thick ness of rock salt is 65.5 m (Stupnitskiy et al., 1978).

In the Selets’-Stupnytsya area (lo cated 12 km SE of Sambir) the evaporites (60–250 m thick) are un der lain by siliciclastic de pos its of the Bohorodchany For ma tion and are over lain by the Kosiv For ma tion (mostly clays). Microfaunal data in di cate a Badenian age for the evaporites and the ad ja cent strata (Venglinskiy and Kopystyanskaya, 1979; M. A. Klimov in Khrushchov, 1980, p. 258). Klimov (1974) con sid ered that evaporites be long to the Tyras For ma tion and Korenevskiy et al. (1977, p. 60, fig. 25) con cluded that they are of Karpatian age and cor re lated them with the Kalush beds (ap ply ing pres ent strati graphi cal terms). In the bore hole Selets’-Stupnytsya 348, the rock salt suc ces sion oc curs in the depth in ter val of 117.4–176.1 m (Fig. 4); it is folded and the dips range from 10 to 50° (Petrichenko et al., 1974). It com prises, in ad di tion to ha lite (the con tent of which var ies from 63 to 99.5% in var i ous parts of the suc ces sion), also anhydrite, clay and salt brec cia interbeds (up to ca. 5 m thick) and one polyhalite bed (0.3 m thick; Petrichenko et al., 1974). The mean bro mine con tent in ha lite is 79 ±29 ppm (Kovalevich, 1976). The rock salt unit un - der lain by siliciclastic de pos its (claystones, sand stones and siltstones) with thin laminae of satin-spar gyp sum and ha lite; in ad di tion, at the depth of 211.5–212.0 finely crys tal line anhydrite oc curs. The siliciclastic de pos its in cluded into the Tyras For ma tion are un der lain by siltstones of the Bohorodchany For ma tion (Klimov and Korzun, 1975); the bound ary is put at the depth of 236.0 m (Fig. 4).

In the Carpathian fore land, the Tyras For ma tion con sists of gyp sum and the Ratyn Lime stone. The gyp sum is sev eral tens of metres thick and forms a wide (up to 100 km) mar ginal Ca-sul phate plat form. In its most mar ginal part (>15 km wide, the gyp sum fa cies zone I), the gyp sum sec tion con sists en tirely of stromatolitic gyp sum which ex hib its a con sid er able va ri ety of forms, al though pla nar or slightly crenulated stromatolites

Fig. 1. Strati graphic lo ca tion of the Tyras For ma tion and ad ja cent strata in the cen tral zone of the Ukrai nian Carpathian Foredeep and its outer zone and fore land (af ter Oszczypko et al., 2006, sup ple mented) The Mio cene time scale af ter Hilgen et al. (2009), partly recalibrated and cor re lated to re gional stages of the Cen tral Paratethys. The Baden - ian–Sarmatian bound ary af ter Harzhauser and Piller (2004). Cal car e ous nannoplankton zones sensu Peryt (1997). The lower limit of Badenian evaporites af ter de Leeuw et al. (2010) and the up per limit af ter Bukowski et al. (2010)

(3)

Fig. 2A – lo ca tion of area stud ied; B – map show ing the lo ca tion of the bore holes stud ied (Selets’-Stupnytsya 348 and Hrynivka 525) and the Mamalyha out crop tec tonic zones of the Carpathian Foredeep (CF) af ter Vul et al.

(1998): 1 – Boryslav–Pokuttya Zone; 2 – Sambir Zone; 3 – Bilche–Volytsya Zone; fa cies zones of Badenian sulphates af ter Peryt (2006); in the Sambir Zone only ha lite fa cies zones dis cussed in the text are shown; C – geo - log i cal map of area stud ied with out de pos its youn ger than Paleogene (af ter Halets’kyy, 2001)

(4)

pre vail (Figs. 5–8; Peryt, 1996, figs. 12 and 13; 2001). The gyp sum fa cies zone II (> 40 km wide) is lo cated basinward of the fa cies zone I and is char ac ter ized by the oc cur rence of stromatolitic gyp sum in the lower part of the sec tion and sa bre gyp sum in the up per part (Peryt, 2001). In fa cies zone I and the ad ja cent part of fa cies zone II there is a clear channelized sur - face in the up per part of the stromatolitic gyp sum se quence cov ered by len tic u lar lime stones (up to 20 cm thick in the Kudryntsi sec tion) show ing mudstone and wackestone tex tures and bioclasts in di cat ing their ma rine prov e nance (Peryt, 2001;

Peryt and Peryt, 2009). A sim i lar sur face, show ing a re lief of sev eral centi metres, was re corded 8.3 m be low the Ratyn Lime - stone in Mamalyha (Figs. 5 and 8A; Peryt, 2001, fig. 14), and the de pres sions are filled with bioclastic and peloidal lime stone (Peryt, 2001). There are other hor i zon tal dis con ti nu ity sur faces that usu ally can be traced through out the en tire Mamalyha quarry (Peryt, 2001; Bąbel et al., 2009). Most of them are cov - ered by clayey and marly ma te rial, and in some thicker marly in ter ca la tions in the lower part of the gyp sum sec tions cur rent rip ples oc cur, as re corded by Bąbel et al. (2009). In one in ter ca -

Fig. 3. Sec tion of the Hrynivka 525 bore hole (af ter Stupnitskiy et al., 1978) Bro mine data af ter Galamay et al. (2009);

as ter isk shows the lo ca tion of the sam ple stud ied; depth in metres

Fig. 4. Sec tion of the Selets’-Stupnytsya 348 bore hole (af ter Klimov and Korzun, 1975)

Bro mine data af ter Kovalevich (1976); as ter isk shows the lo ca tion of the sam ple stud ied; P – polyhalite bed; AA – thin bed of ar gil la ceous

anhydrite; depth in metres

(5)

la tion (T in Fig. 5) pyroclastic ma te rial is re ported (Bąbel 2005a; Bąbel et al., 2009; Fig. 8B).

Pen e tra tions of the cal car e ous ma te rial from the over ly ing Badenian strata are com mon in the Mamalyha quarry. The Badenian karstification was re lated to subaerial ex po sure of the gyp sum strata dur ing or soon af ter gyp sum de po si tion (Peryt et al., 1998). The lime stone fill ing the sup posed karst cav i ties is mostly peloidal packstone with bioclasts (foraminifers, shells) and gyp sum clasts. Sta ble iso tope val ues ob tained from the lime - stone infills were –2.6 to –6.2‰ d18O and –0.8 to –2.8‰ d13C (n = 4), thus sim i lar to those found in the Ratyn Lime stone of Criva (Peryt and Peryt, 1994). The gyp sum in the Mamalyha quarry rests on lower Badenian sands and marls (3–4 m thick), which in turn over lie eroded Cre ta ceous si li ceous lime stones (ca.

10 m thick; Klimchouk and Andrejchuk, 2005). The up per Badenian gyp sum se quence is ca. 25 m thick and con sists of stromatolitic gyp sum with com mon in ter ca la tions of clastic, lam i nated gyp sum (Peryt, 1996) and lo cally oc cur ring sel e - nite-microbialite gyp sum (Bąbel, 2005b; Fig. 5). Petrographic study of in ferred microbialitic gyp sum showed that they con sist of interlaminated gyp sum (show ing var i ous crys tal sizes) and micritic car bon ate (pos si bly cal cite); the thick ness of car bon ate laminae is usu ally 0.1–0.3 mm, and gyp sum laminae are usu ally thicker (up to 2 mm). In gen eral, the car bon ate is sparse com -

Fig. 5. Mamalyha quarry sec tion, show ing mac ro scopic as pects (left col umn) and mi cro scopic as pects (right col umn)

M – microbialitic gyp sum; 1 – well-de vel oped microbialitic gyp sum; 2 – poorly de vel oped microbialitic gyp - sum with thin sel e nite laminae; 3 – stromatolitic laminae with syngenetic ce lest ite oc cur rences; the Sr con tent,

87Sr/86Sr ra tios, and d34S and d18O val ues (af ter Peryt, 2001). Con tem po ra ne ous sea wa ter d34S and d18O val ues (grey fields) af ter Paytan et al. (1998) and Zak et al. (1980); T – in ter ca la tion with pyroclastic ma te rial (see Bąbel, 2005a; Bąbel et al., 2009; Fig. 8); L – len tic u lar lime stone in ter ca la tion (see Peryt, 2001, fig. 14)

Fig. 6. A – gyp sum from the low est part of the Mamalyha sec tion (0–3 m above the base) show ing very com mon lime stone veins and encrustations (1) and chan nel (ar rowed) fill ings; B – stromatolitic gyp - sum with com mon in ter ca la tions of clastic gyp sum (C) (loose sam ple)

(6)

pared to Badenian stromatolitic gyp sum de scribed by Kasprzyk (1993), yet in some thin sec tions ghosts of ver ti cally-ori ented al - gal fil a ments (1–3 mm long and 0.02–0.2 mm thick) can be seen.

In the up per part of gyp sum sec tion dis con tin u ous, short (3–10 mm long) laminae of up right-growth small (1–3 mm) gyp sum crys tals char ac ter ized by sharp ends are quite com mon.

The ter mi na tions of larger crys tals are lo cally cut, which in di - cates ero sion and/or cor ro sion (cf. Kasprzyk, 1993).

The gyp sum of the Mamalyha quarry is pri mary (Peryt, 1996, 2001) and thus the orig i nal gyp sum microbialitic de pos - its pre serve sed i men tary fab rics. Gyp sum ce men ta tion oc - curred un der the in flu ence of sed i men tary brines. Rarely, epigenetic ce lest ite oc curs that has pre cip i tated in lithified de - posit from diagenetic flu ids that were en riched in stron tium; the

ce lest ite oc cur rence is re lated to voids formed af ter dis solved car bon ate ce ments or to bound aries of gyp sum crys tals.

The top of gyp sum is karstified and cov ered by the Ratyn Lime stone (Peryt and Peryt, 1994) fol lowed by rhodoid lime - stones and marls.

MATERIAL AND METHODS

Eight sam ples have been taken from the up per Badenian Tyras For ma tion: two from an hyd rites (one from the Hrynivka 525 bore hole and one from the Selets’-Stupnytsya 348 bore - hole) and six from gyp sum of the Mamalyha quarry (Figs. 2–5).

In the case of the Mamalyha sec tion, two sam ples pre vi ously ana lysed for sul phur and ox y gen iso to pic com po si tion (Peryt, 2001) were se lected, and four oth ers come from an other sam ple set of gyp sum from West Ukraine (in clud ing 21 sam ples from Mamalyha) in which ma jor, mi nor and many trace el e ments were de ter mined with the use of ICP in ac cred ited lab o ra to ries of the Pol ish Geo log i cal In sti tute and sum ma rized by Ryka (1994). The sam ples stud ied are char ac ter ized in Ta ble 1.

Fig. 7. Stromatolitic gyp sum (Mamalyha, loose sam ple) show ing com mon crenulations

Fig. 8. A – the lo ca tion of the dis tinct bound ary within the up per por - tion of the Mamalyha gyp sum sec tion (ar rowed; see Fig. 5 and Peryt, 2001, fig. 14) that in places is cov ered by len tic u lar lime stone. The brecciated ap pear ance of gyp sum be low the bound ary is a weath er ing fea ture (Peryt, 2001); B – chan nel (ar rowed) filled by clastic gyp sum within the stromatolitic gyp sum from the up per part of the Mamalyha gyp sum sec tion

(7)

The stron tium iso tope com po si tions were ana lysed at the Iso tope Geo chem is try Lab o ra tory, Kraków Re search Cen tre of the In sti tute of Geo log i cal Sci ences, Pol ish Acad emy of Sci - ences. 50–100 mg of pow dered rock sam ple was dis solved on a hot plate in 2.5 to 6N HCl. Dis solved sam ples were first loaded on a stan dard cat ion col umn (DOWEX 50W-X12 resin). The col lected Sr frac tion was fur ther pu ri fied on an Eichrom Sr-spec resin. Af ter con vert ing to ni trates, the sam ple was ana - lysed by MC ICPMS Nep tune in 2% HNO3. Anal y ses were car ried out in a static mode and per for mance of the in stru ment was mon i tored by fre quent anal y ses of SRM987 stan dard. Iso - to pic ra tios were cor rected for in stru men tal mass bias by nor - mal iz ing to 86Sr/88Sr = 0.1194 us ing ex po nen tial law.

Reproducibility of the SRM987 over the pe riod of anal y ses was 87Sr/86Sr = 0.710263 ±13 (mea sure ment pre ci sion er ror, n = 4), which is iden ti cal with long term reproducibility for

nearly 2 years pe riod 87Sr/86Sr = 0.710263 ±13 (mea sure ment pre ci sion er ror, n = 180). The ob tained re sults were nor mal ized to rec om mended SRM987 value 87Sr/86Sr = 0.710248. Pre ci - sion of in di vid ual 87Sr/86Sr ra tios in Ta ble 1 re fers to the last sig nif i cant dig its and is at 2SE level. To tal pro ce dure blank was be low 50 pg.

The 87Sr/86Sr re cord can be used for var i ous pur poses, in - clud ing dat ing and cor re la tion of ma rine sed i ments and es ti ma - tion of the du ra tion of strati graphic gaps, biozones and stages (McArthur et al., 2001, with ref er ences therein). Howarth and McArthur (1997) com piled 87Sr/86Sr data and fit ted to them a nonparametric LOWESS sta tis ti cal re gres sion func tion, and thus it is pos si ble to con vert quickly and eas ily from 87Sr/86Sr to nu mer i cal age. We have ap plied their LOWESS Ver sion 4:

08/04 (McArthur et al., 2001) to es ti mate the 87Sr/86Sr ra tio of the Badenian sea wa ter from nu mer i cal age.

SPH col lec tion

num ber Sam ple de scrip tion

Sr con tent

[%]

87Sr/86Sr

87Sr/86Sr nor mal - ized to 0.710248 SRM987 value

Sam ple lo ca tion

d34S [‰] and d18O [‰]

(af ter Peryt, 2001) Hrynivka 525 bore hole

1354

Small (2–10 mm) anhydrite nod ules ar ranged in dis con tin u ous laminae in rock salt com posed of elon gated (2–4 mm) ha lite crys tals and big ger (10–15 mm) porphyroid

rounded ha lite grains

no data 0.708917 ±9 0.708902 depth 376 m no data

Selets’-Stupnytsya 348 bore hole 904 Nod ules (5–20 mm) of blue anhydrite from

clayey rock salt (ha lite con tent: 63%) no data 0.708932 ±11 0.708917 depth 149 m no data Mamalyha quarry

MAM 38

Mi cro bialitic gyp sum: al ter nated dif fuse gyp sum laminae (1–2 mm thick) made of crys tals of var i ous sizes (0.05–0.1 and 0.1–0.3 mm) and dif fuse thin laminae of

microcrystalline car bon ate

0.03 0.709486 ±15 0.709471

0.7 m above the base of

gyp sum 22.7 and 13.9

MAM 36

Mi cro bialitic gyp sum: al ter nated subparallel gyp sum laminae made of crys tals of var i ous

sizes (<0.01–0.04 and 0.04–0.1 mm) and car bon ate laminae; laminae

are 0.1 to 2 mm thick

0.07 0.709853 ±9 0.709838 3.0 m above

the base of gyp sum

22.4 and 13.6

MAM 32

Mi cro bialitic gyp sum: al ter nated thin (0.3–2 mm) not par al lel gyp sum laminae made of gyp sum crys tals of var i ous sizes (<0.01–0.04 and 0.04–0.1 mm) and dif fuse

very thin (<0.1 mm) laminae of microcrystalline car bon ate

0.05 0.709494 ±12 0.709479 6.2 m above

the base of gyp sum

23.0 and 13.8 (ad ja cent

sam ple)

MAM 27

Mi cro bialitic gyp sum: al ter nated thin (0.5–3 mm) gyp sum laminae made of gyp -

sum crys tals of var i ous sizes (<0.01–0.02 and 0.04–0.1 mm) and rare very crenulated,

thin (0.1–0.2 mm, rarely up to 1 mm) laminae of microcrystalline car bon ate. In ad -

di tion, thin (0.1–0.2 mm) laminae of ver ti - cally-ar ranged par al lel gyp sum crys tals oc cur

0.05 0.709372 ±8 0.709357 11.5 m above

the base of gyp sum

21.5 and 13.9 (ad ja cent

sam ple)

MAM 26

Mi cro bialitic gyp sum: al ter nated thin (0.5–2 mm) gyp sum laminae made of gyp -

sum crys tals of var i ous sizes (0.01–0.02;

0.1–0.4; and 0.3–0.4 mm) and car bon ate laminae (1–2 mm thick)

0.06 0.709169 ±11 0.709154

13.5 m above the base of

gyp sum

22.2 and 12.7 (ad ja cent

sam ple)

MAM 13

Elon gated gyp sum crys tals (0.5–3 mm) with sharp tops, ori ented in var i ous di rec tions,

ar ranged in patches and dif fuse laminae oc cur ring within the mass of fine (0.02–1 mm) equidimensional gyp sum crys tals with dis persed car bon ate ma te rial.

In ad di tion, rare thin dis con tin u ous car bon - ate laminae and ver ti cally-ar ranged sel e nite

crys tals (1 mm long) oc cur

0.09 0.709195 ±17 0.709180

22.3 m above the base of gyp sum and 3.2 m be low the Ratyn Lime stone

21.8–22.3 and 13.2–13.8

(ad ja cent sam ples)

(8)

RESULTS

The stron tium iso tope com po si tion of the sam ples stud ied is shown in Ta ble 1.

The stron tium iso tope ra tios (87Sr/86Sr) of two anhydrite sam ples from Hrynivka and Selets’-Stupnytsya are very sim i lar (0.708902 and 0.708917, re spec tively); they are higher than the ra tio of the Badenian con tem po rary sea wa ter. As sum ing that the Badenian gyp sum was formed some time be tween 13.81 and 13.5 Ma, the times be ing con trolled by Badenian tuffite dat ing (Bukowski et al., 2010; de Leeuw et al., 2010) and the oc cur rence of Badenian sulphates in the lower part of the NN6 Discoaster exilis Zone (Peryt, 1997, 1999; cf. Raffi et al., 2006), and tak ing into con sid er ation the up per and lower con fi - dence lim its (McArthur et al., 2001), the re sulted 87Sr/86Sr val - ues should be be tween 0.708800 and 0.708809.

The stron tium iso tope ra tios (87Sr/86Sr) of the Mamalyha gyp sum vary from 0.709154 to 0.709838 and are strongly di - ver gent from co eval oce anic val ues. The gyp sum from the lower part of the sec tion shows much higher ra tios than the gyp sum from the up per part; a clear de creas ing-up wards trend is ob served (Ta ble 1). The higher stron tium iso tope ra tios are re lated to the por tion of the gyp sum sec tion show ing both d18O and d34S di ver gent from co eval oce anic val ues (Fig. 5).

The re sults of chem i cal anal y ses make it pos si ble to sub di - vide the Mamalyha sec tion into two parts, with the bound ary be tween them be ing lo cated ca. 14 m from the base of the gyp - sum sec tion; at that bound ary also the pet ro graph i cal na ture of the gyp sum changes: be low it microbialitic gyp sum oc curs, and above it thin selenitic gyp sum laminae oc cur. At this bound ary one can ob serve an in crease in d34S val ues, a de crease in d18O val ues, and an in crease in Sr, Ba and Mn con tents (Fig. 5). In the lower part the con tents of those mi nor el e ments are: 0.06%;

24 ppm; and 4 ppm; and in the up per part 0.11%; 64 ppm; and 22 ppm, re spec tively. The mean Sr con tent in Mamalyha is 0.07 ±0.03 (n = 20) if one rel a tively high value of 1.12% is omit ted, thus it is lower than re corded in the set of 124 anal y ses from the en tire Carpathian Foredeep Ba sin ana lysed by Ryka (1994) which yielded a value of 0.13%. Nev er the less, the Sr con tents in Mamalyha are within the ex pected con tents of ma - rine-de rived non-selenitic fa cies (PlayB and Rosell, 2005) al - though there oc cur small (0.03 mm) iso met ric crys tals of ce - lest ite or more rare pris matic ce lest ite crys tals (0.04–0.1 mm long) with rounded ends; the ce lest ite is prob a bly syngenetic and oc curs be low the lime stone in ter ca la tion shown in Fig - ure 8A. The ce lest ite crys tals in the sam ple show ing high Sr con tent (1.12%; Fig. 5) are larger (0.1–0.5 mm), idiomorphic, and clearly lo cated in spaces be tween gyp sum crys tals; they are of epigenetic or i gin. The mean val ues for Ba and Mn are 39

±35 ppm and 11 ±15 ppm, re spec tively. The pu rity of gyp sum (ig nor ing the siliciclastic laminae) is ex pressed in very low Fe and Al con tents (0.01–0.06% and 0.01–0.07%, re spec tively).

The con tent of many other el e ments is at an a lyt i cal lim its (Ryka, 1994).

The sul phur and ox y gen iso tope stud ies of Mamalyha gyp sum (n = 48) showed that the range of d34S val ues is 21.2 to 23.4‰, and the mean d34S value is 21.9 ±0.5‰. The mean d18O value is 13.3 ±0.6‰, and the range is 11.8 to 14.2‰

(Peryt et al., 2002). Both d18O and d34S val ues show a gen eral slight de crease up wards (Fig. 5). The ma jor ity of d18O val ues are higher than the ex pected value with re spect to the con tem - po ra ne ous ocean wa ter val ues of dis solved ma rine sul phate, and only in the up per part of the gyp sum sec tion are ma rine val ues com mon (Fig. 5). The d34S val ues are mostly ma rine ex cept that clearly higher val ues oc cur ring in the low er most part of the sec tion (Fig. 5).

INTERPRETATION AND DISCUSSION

The stron tium iso tope ra tios of anhydrite sam ples from Hrynivka and Selets’-Stupnytsya are slightly in creased com - pared to the con tem po ra ne ous ocean wa ter val ues, and the Mamalyha gyp sum sec tion shows very ra dio genic 87Sr/86Sr com pared to the ra tios ex pected for a Mid dle Mio cene open ocean (Hodell et al., 1991; McArthur et al., 2001). The Sr iso - tope com po si tions of evaporites re flect (1) the com po si tion of the mother brines and/or (2) in ter ac tions be tween the brines and rocks within the evaporite ba sin (e.g., Lu and Meyers, 2003;

Palmer et al., 2004). Sr iso tope ra tios di ver gent from co eval oce anic wa ter val ues in di cate that the pro por tion of oce anic wa ter en ter ing the ba sin was less than ca. 50% and that brines de rived mostly from river run-off and rain wa ter (Flecker and Ellam, 2006). The riverine run off was from two main di rec - tions. The first was the East Eu ro pean Plat form and the sec ond was the Carpathian area. There are no avail able Sr iso tope data for non-ma rine flu ids (river wa ter or ground wa ter) in the study area. The bulk of the Carpathians is built of Me so zoic and Paleogene rocks and one would ex pect a dom i nant in flu ence of Sr from those rocks, i.e. the Sr-iso tope ra tios should be lower than those for con tem po rary Mio cene sea wa ter (see e.g., Kocsis et al., 2009), and not higher. Sim i larly, the rocks ex - posed on the East Eu ro pean Plat form dur ing Badenian gyp sum de po si tion were mostly ear lier Badenian, Cre ta ceous or Vendian–Si lu rian in age, and only some 100 km to the east lower Pro tero zoic and lower Ar chaic crys tal line rocks, mostly gneiss es, oc cur (Fig. 2C). Very old rocks, es pe cially those rich in po tas sium, have high 87Sr/86Sr ra tios: the mean stron tium iso - to pic ra tio in ma jor world rivers is 0.7119 (Palmer and Edmond, 1992) which is high rel a tive to mod ern sea wa ter (0.7092), but there are re ported val ues of 87Sr/86Sr as high as 0.73844 from streams drain ing old (>1000 Ma) ig ne ous and meta mor phic rocks in Can ada (Wadleigh et al., 1985). Dur ing weath er ing of those rocks, the 87Sr/86Sr re mained ei ther un mod - i fied or in creased only slightly in the weath ered res i due (Dasch, 1969), but dif fer ences in the dis tri bu tion of ra dio genic and non-ra dio genic stron tium in the main min er als in the soil mean that the 87Sr/86Sr ra tios of the bulk soils are dif fer ent to the ra tios

(9)

of so lu tions to which the stron tium is re leased (Bain and Ba - con, 1994, with ref er ences therein).

The 87Sr/86Sr ra tios of min er als in ma rine, bed ded evaporite de pos its are of ten higher than that of con tem po ra ne ous seawa - ter, which is of ten ex plained in terms of sec ond ary or i gin or recrystallization of these min er als in pres ence of ra dio genic

87Sr-bear ing flu ids (Chaudhuri and Clauer, 1992; Shields, 2007), mostly from a de tri tal source ma te rial (e.g., Stueber and Pushkar, 1983; Hovorka et al., 2007; Schaefer, 2009).

Kasprzyk et al. (2007) as sumed that the clay in ter ca la tions are the source of ra dio genic Sr in the sul phate unit, and par tic u larly in an hyd rites, but in Mamalyha clay in ter ca la tions are very thin and rare, and the gyp sum it self con tains neg li gi ble con tents of Fe (0.01–0.06%) and Al (0.01–0.07%); usu ally the con tents of Fe and Al are close to the lower lim its of their ranges. There - fore, al though rel a tively slightly ra dio genic 87Sr/86Sr in an hyd - rites formed in the ha lite fa cies (such as at Selets’-Stupnytsya and Hrynivka) could have been de rived from clay in ter ca la - tions, for in ter pre ta tion of the Mamalyha highly ra dio genic

87Sr/86Sr another explanation is needed.

In a pi lot study of sulphates from the Badenian of the Pol - ish Carpathian Foredeep Ba sin, Kasprzyk et al. (2007) no - ticed that the anhydrite sam ples have more ra dio genic

87Sr/86Sr ra tios than the gyp sum sam ples, and also trend to - wards higher d34S and d18O val ues. The high 87Sr/86Sr ra tios in the anhydrite sam ples was in ter preted as re sulted from the mix ing of flu ids of two dif fer ent iso to pic sig na tures, i.e., ma - rine wa ters and con ti nen tal wa ters, dur ing sul phate de po si tion and diagenesis (Kasprzyk et al., 2007). In par tic u lar, interbedded siliciclastic de pos its could be im por tant sources of highly ra dio genic stron tium by sim ple mix ing and in ter ac - tions be tween the brines and rocks (Denison, pers. comm., 2007, in Kasprzyk et al., 2007), and the dif fer ent stron tium iso tope com po si tions of gyp sum and anhydrite seem to re flect two dif fer ent hy dro log i cal prov e nances of sul phate for ma tion in the Badenian ba sin (Kasprzyk et al., 2007). How ever, al - though one sam ple of Badenian pri mary gyp sum (lam i nated gyp sum) from South ern Po land stud ied by Kasprzyk et al.

(2007) showed a slightly ra dio genic value (0.708915), the other one (selenitic gyp sum) had more ra dio genic 87Sr/86Sr (0.709157, Kasprzyk et al., 2007) that is com pa ra ble to the ra - tios re corded in the up per part of the pri mary gyp sum at Mamalyha. On the other hand, the anhydrite sam ples from Hrynivka and Selets’-Stupnytsya show 87Sr/86Sr ra tios very close to the ra tio re ported by Kasprzyk et al. (2007) from lam -

i nated clastic, pri mary gyp sum, and thus not nec es sar ily the stron tium iso tope com po si tions of gyp sum and anhydrite are dif fer ent, as as sumed by Kasprzyk et al. (2007; Fig. 9).

High ra dio genic 87Sr/86Sr ra tios in the pri mary gyp sum of the Mamalyha quarry in di cate a ra dio genic stron tium non-ma - rine con tri bu tion to the ba sin, and clearly lower 87Sr/86Sr ra tios in the up per part than in the lower part of the gyp sum se quence of Mamalyha re quire an ex pla na tion. A pos si bil ity that this de - crease in 87Sr/86Sr ra tios through time re flects an in crease in the dis tance from high-ra dio genic Sr source is not sup ported by data which sug gest the transgressive na ture of the Tyras gyp - sum in the Ukrai nian Carpathian Foredeep (Peryt, 2001, 2006).

There fore, we sug gest that the re corded higher 87Sr/86Sr ra tios in the lower part of gyp sum se quence re flect a higher pro por - tion of run off dur ing an ini tial lowstand sit u a tion (cf. Rhodes et al., 2002). The lower 87Sr/86Sr ra tios in the up per part of the gyp sum se quence are due to changes in the catch ment, ei ther in bed rock or in soils, or both.

Quite com mon low bro mine con tents of ha lite in the rock salt suc ces sions of Selets’-Stupnytsya and Hrynivka in di cate ma jor re - cy cling dur ing the Tyras de po si tion; the Hrynivka 525 sec tion (Fig. 3) shows gen er ally lower Br con tents than the Selets-Stupnytsya 348 sec tion (Fig. 4). The ha lite-as so ci ated anhydrite in the Hrynivka 525 sec tion shows d34S val ues of 21.6‰ (anhydrite nod ule in ha lite, depth 454 m) and 22.2‰

(anhydrite oc cur ring in salt brec cia, depth 342 m; Galamay, 1997) which are sim i lar to d34S val ues of other Badenian an hyd rites of West Ukraine (19.7–21.6‰; Kovalevych and Vityk, 1995;

Galamay, 1997), Ro ma nia (20.3–21.1‰; Galamay, 1997) and Po land (Peryt et al., 2002; Kasprzyk et al., 2007). Taken to gether, both geo chem i cal mark ers in di cate that al though the par ent brines were of ma rine or i gin, they were sub ject to sig nif i cant in flows of me te oric wa ters (cf. Cendón et al., 2004).

The re cy cling is also man i fested in the Mamalyha gyp sum.

The high d34S val ues in the lower part of the Mamalyha gyp sum sec tion may be ex plained in two ways. The first in ter pre ta tion fol lows the con cept of Cendón et al. (2004) that the high d34S val ues may be the re sult of re cy cling of co eval sulphates de pos - ited on the mar ginal set tings. This is in ac cor dance with the com mon phys i cal re cy cling shown by the com mon clastic gyp - sum within stromatolitic gyp sum (Figs. 4 and 6B). In ad di tion, the re corded slight up wards trend to wards more ma rine val ues of both d18O and d34S val ues (Fig. 5) agrees with the over all transgressive na ture of the Badenian gyp sum (Peryt, 2001, 2006). In ad di tion, the ox y gen, sul phur and stron tium iso to pic

Fig. 9. Ranges of 87Sr/86Sr ra tios in Badenian gyp sum and anhydrite of the Carpathian Foredeep in Po land (Kasprzyk et al., 2007) and Ukraine (this pa per)

Con tem po ra ne ous, Badenian sea wa ter val ues af ter McArthur et al. (2001) as sum ing that the Badenian evaporites of the Pol ish and Carpathian Foredeep Ba sin were formed be tween 13.81 and 13.5 Ma (cf. Bukowski et al., 2010; de Leeuw et al., 2010)

(10)

com po si tions of the gyp sum dis play an upsection de crease while the stron tium con tent in creases (Fig. 5). In the Gulf of Carpentaria (N Aus tra lia) non-ma rine evaporites formed at about 70 ka show a sim i lar trend as far as the ox y gen and sul - phur iso to pic com po si tions and the stron tium con tent (PlayB et al., 2007) are con cerned, but the 87Sr/86Sr ra tio in creases there also, as op posed to the Mamalyha sec tion. The ox y gen and stron tium iso to pic com po si tions of the Carpentaria gyp sum dis play a slight pos i tive covariance which is in ter preted by PlayB et al. ( 2007) as due to an in crease in con ti nen tal in put prob a bly as so ci ated with dis so lu tion of pre vi ously de pos ited gyp sum with ris ing wa ter level in Lake Carpentaria. The stron - tium iso tope dataset of the Mamalyha gyp sum is cer tainly too small to al low for test ing the cor re la tion among d34S, d18O val - ues and Sr iso topes within in di vid ual gyp sum sam ples, es pe - cially be cause a part of the stron tium iso tope anal y ses was done on an other sam ple set than the sul phur and ox y gen iso tope anal y ses. How ever, it seems clear that high d18O val ues are char ac ter is tic of the part of the Mamalyha sec tion show ing higher 87Sr/86Sr ra tios, thus sup port ing the im por tance of evaporite re cy cling in the Mamalyha geo chem i cal re cord. Al - though clearly the sul phur and stron tium iso topes had dif fer ent mech a nisms for their in crease (e.g., Lu et al., 2001; Lu and Meyers, 2003), both can be re lated to the dis so lu tion of pre vi - ously de pos ited gyp sum dur ing the rise of Badenian wa ter level (cf. PlayB et al., 2007).

The sec ond pos si bil ity is that the high d34S val ues re sulted from pro longed strat i fi ca tion and an ef fi cient “sul phur pump”

op er a tion, as en vis aged for the hypersaline Lake Lisan (Torfstein et al., 2005). How ever, the Mamalyha gyp sum orig i - nated in the very low re lief, coastal sa lina sys tem strongly af - fected by in flow of con ti nen tal wa ter (Peryt, 1996). This in flow is in ferred based on re gional pre mises in di cat ing a sa lin ity gra di - ent de crease to ward the land (Peryt, 1996) as well as be cause of the oc cur rence of clayey and marly in ter ca la tions (Bąbel et al., 2009) and the com mon in ter ca la tions of clastic, lam i nated gyp - sum (Peryt, 1996; Bąbel et al., 2009). There fore, it seems that a con cep tual model de scrib ing the sul phur cy cle un der the par tic u - lar lim no logi cal-geo chem i cal con fig u ra tion of Lake Lisan has no ap pli ca tion to the Badenian Carpathian Foredeep Ba sin.

CONCLUSIONS

1. Highly ra dio genic 87Sr/86Sr ra tios (from 0.709154 to 0.709838) in Badenian pri mary gyp sum of the Mamalyha gyp - sum (West Ukraine) show a ma jor non-ma rine con tri bu tion to the ba sin. There is a gen eral de crease of 87Sr/86Sr ra tios up the Mamalyha gyp sum sec tion.

2. The high ra dio genic 87Sr/86Sr ra tios in the Mamalyha gyp sum sec tion are ac com pa nied by in creased d18O and d34S val ues. The high d34S val ues re sulted from re cy cling of co eval sulphates de pos ited on the mar ginal set tings. The up wards trend to wards more ma rine val ues of both d18O and d34S val - ues agrees with the over all transgressive na ture of the Badenian gyp sum.

3. Ha lite fa cies-as so ci ated anhydrite from the Selets’-Stupnytsya 348 and Hrynivka 525 bore holes shows very sim i lar 87Sr/86Sr ra tios (0.708902 and 0.708917, respectively) that are higher than the ra tio of the Badenian con - tem po rary sea wa ter (0.708800–0.708809) but con sid er ably lower than the ra tios of the Mamalyha gyp sum sec tion. Al - though the dataset is cer tainly too small to val i date the as sump - tion con clu sively, the con cept of dif fer ent stron tium iso tope com po si tions of gyp sum and anhydrite, and hence two dif fer - ent hy dro log i cal prov e nances of sul phate for ma tion, in the Badenian ba sin should be treated with cau tion. It seems that both pri mary gyp sum and anhydrite show high ra dio genic

87Sr/86Sr ra tios in the Badenian, and the range of 87Sr/86Sr ra tios for gyp sum over laps with a part of the range of the 87Sr/86Sr ratios for anhydrite.

Ac knowl edge ments. Stron tium iso tope anal y ses were funded by spe cial grant No. Ukraina/193/2006 (Min is try of Sci ence and Higher Ed u ca tion) to M. Kotarba. M. Jasionowski and A.V. Poberezhskyy are thanked for their help in the field, I. I. Turchinov for shar ing his vast knowl edge of Mio cene evaporites of West Ukraine, and M. Bąbel and F. H. Lu for their com ments on the manu script of this pa per.

REFERENCES

ANDREYEVA-GRIGOROVICH A. S., KULCHYTSKY Y. O., GRUZMAN A. D., LOZYNYAK P. Y., PETRASHKEVICH M. I., PORTNYAGINA L. O., IVANINA A. V., SMIRNOV S. E., TROFIMOVICH N. A., SAVITSKAYA N. A. and SHVAREVA N. J.

(1997) – Re gional strati graphic scheme of Neo gene for ma tions of the Cen tral Paratethys in the Ukraine. Geol. Carpath., 48: 123–136.

BAIN D. C. and BACON J. R. (1994) – Stron tium iso topes as in di ca tors of min eral weath er ing in catch ments. Catena, 22: 201–214.

BĄBEL M. (2005a) – Event stra tig ra phy of the Badenian sel e nite evaporites (Mid dle Mio cene) of the north ern Carpathian Foredeep.

Acta Geol. Pol., 55 (1): 9–29.

BĄBEL M. (2005b) – Sel e nite-gyp sum microbialite fa cies and sed i men - tary evo lu tion of the Badenian evaporite ba sin of the north ern Carpathian Foredeep. Acta Geol. Pol., 55 (2): 187–210.

BĄBEL M., OLSZEWSKA-NEJBERT D., BOGUCKYJ A., JACYSZYN A. and ŚLIWIŃSKI M. (2009) – Gyp sum of the Mamalyha re gion, West Ukraine. In: The Old est Loesses of Podolia and Pokucie: Prob - lems of Gen e sis, Stra tig ra phy and Palaeo ge ogra phy (in Pol ish):

169–186. Vyd. Tsentr LUN im. I. Franko, Lviv.

BUKOWSKI K., de LEEUW A., GONERA M., KUIPER K. F., KRZYWIEC P. and PERYT D. (2010) – Badenian tuffite lev els within the Carpathian orogenic front (Gdów–Bochnia area, South ern Po - land): ra dio-iso to pic dat ing and strati graphic po si tion. Geol. Quart., 54 (4): 449–464.

CENDÓN D. I., PERYT T. M., AYORA C., PUEYO J. J. and TABERNER C. (2004) – The im por tance of re cy cling pro cesses in the Mid dle Mio cene Badenian evaporite ba sin (Carpathian foredeep):

palaeoenvironmental im pli ca tions. Palaeogeogr., Palaeoclimatol., Palaeoecol., 212: 141–158.

(11)

DASCH E. J. (1969) – Stron tium iso topes in weath er ing pro files, deep-sea sed i ments, and sed i men tary rocks. Geochim. Cosmochim. Acta, 33:

1521–1552.

De LEEUW A., BUKOWSKI K., KRIJGSMAN W. and KUIPER K. F.

(2010) – The age of the Badenian Sa lin ity Cri sis; im pact of Mio cene cli mate vari abil ity on the Circum- Med i ter ra nean re gion. Ge ol ogy, 38:

715–718.

FLECKER R. and ELLAM R. M. (2006) – Iden ti fy ing Late Mio cene ep i - sodes of con nec tion and iso la tion in the Med i ter ra nean-Paratethyan realm us ing Sr iso topes. Sed i ment. Geol., 188–189: 189–203.

GALAMAY A. R. (1997) – Or i gin of the mid dle Mio cene Badenian salts in the Carpathian re gion (in Pol ish). Prz. Geol., 45 (10/1): 1012–1017.

GALAMAY A., KRYZHEVYCH V. and BILYK L. (2009) – Con di tions of Badenian salts sed i men ta tion (Cen tral part of the Ukrai nian Carpathians Foredeep) (in Ukrai nian). Miner. Zb., 59 (1): 52–64.

HALETS’KYY L. S., ed. (2001) – At las “Ge ol ogy and Min eral De pos its of Ukraine” 1:5 000 000 (in Ukrai nian). Inst. Geol. Sc., NANU, Kiev.

HARZHAUSER M. and PILLER W. E. (2004) – In te grated stra tig ra phy of the Sarmatian (Up per Mid dle Mio cene) in the west ern Cen tral Paratethys. Stra tig ra phy, 1: 65–86.

HILGEN F. J., ABELS H. A., IACCARINO S., KRIJGSMAN W., RAFFI I., SPROVIERI R., TURCO E. and ZACHARIASSE W. J. (2009) – The Global Stratotype Sec tion and Point (GSSP) of the Serravallian Stage (Mid dle Mio cene). Ep i sodes, 32: 152–166.

HODELL D. A., MUELLER P. A. and GARRIDO J. R. (1991) – Vari a tions in the stron tium iso to pic com po si tion of sea wa ter dur ing the Neo gene.

Ge ol ogy, 19: 24–27.

HOVORKA S. D., HOLT R. M. and POWERS D. W. (2007) – Depth in di - ca tors in Perm ian Ba sin evaporites. Geol. Soc., Lon don, Spec. Publ., 285: 335–364.

HOWARTH R. J. and McARTHUR J. M. (1997) – Sta tis tics for stron tium iso tope stra tig ra phy. A ro bust LOWESS fit to the ma rine Sr-iso tope curve for 0–206 Ma, with look-up ta ble for the der i va tion of nu mer i cal age. J. Geol., 105: 441–456.

HRYNIV S. P., DOLISHNIY B. V., KHMELEVSKA O. V., POBEREZHSKYY A. V. and VOVNYUK S. V. (2007) – Evaporites of Ukraine: a re view. Geol. Soc. Lon don, Spec. Publ., 285: 309–334.

KASPRZYK A. (1993) – Stromatolitic fa cies in the Badenian (mid dle Mio cene) gyp sum de pos its of south ern Po land. Neues Jahrb. Geol.

Paläont. Abh., 187 (3): 375–395.

KASPRZYK A. and ORTÍ F. (1998) – Palaeogeographic and burial con - trols on anhydrite gen e sis: the Badenian ba sin in the Carpathian Foredeep (south ern Po land, west ern Ukraine). Sedimentology, 45:

889–907.

KASPRZYK A., PUEYO J. J., HAŁAS S. and FUENLABRADA J. M.

(2007) – Sul phur, ox y gen and stron tium iso tope com po si tion of Mid - dle Mio cene (Badenian) cal cium sulphates from the Carpathian Foredeep, Po land: palaeoenvironmental im pli ca tions. Geol. Quart., 51 (3): 285–294.

KHRUSHCHOV D. P. (1980) – Li thol ogy and geo chem is try of halogenic for ma tions of the Carpathian Foredeep (in Rus sian). Naukova Dumka, Kiev.

KLIMCHOUK A. and ANDREJCHUK V. (2005) – Karst break down mech a nisms from ob ser va tions in the gyp sum caves of the West ern Ukraine: im pli ca tions for sub si dence haz ard as sess ment. En vi ron.

Geol., 48: 336–359.

KLIMOV M. A. (1974) – K-bear ing halogenic for ma tions of the Forecarpathians and per spec tives of ex plo ra tion for K-salt de pos its.

In: Ge ol ogy and Min eral De pos its of Salt-bear ing Strata (in Rus sian):

146–156. Naukova Dumka, Kiev.

KLIMOV A. and KORZUN N. I. (1975) – Geo log i cal re port about re con - nais sance ex plo ra tion of po tas sium salts in the Sambor-Kalush area of the Lvov and Ivano-Frankovsk prov inces of USSR dur ing 1971–1975 (Morshyn Geo log i cal Ex plo ra tion Group) (in Rus sian). Lviv.

KOCSIS L., VENNEMANN T. W., HEGNER E., FONTIGNIE D. and TÜTKEN T. (2009) – Con straints on Mio cene ocean og ra phy and cli - mate in the West ern and Cen tral Paratethys: O-, Sr- and Nd-iso tope com po si tions of ma rine fish and mam mal re mains. Palaeogeogr.

Palaeoclimat. Palaeoecol., 271: 117–129.

KOVALEVICH V. M. (1976) – Some geo chem i cal fea tures and physico-chem i cal con di tions of or i gin of the Vorotyshcha salt-bear ing for ma tion of the Forecarpathians (in Rus sian). Ph.D. the sis, IGGGI AN USSR, Lviv.

KOVALEVYCH V. M. and VITYK M. O. (1995) – Cor re la tion of sul fur and ox y gen iso topes in evaporites with chem i cal com po si tion of brines of Phanerozoic evaporite bas ins (in Ukrai nian). Dop. NAN Ukrainy, 3: 83–85.

KUZNIAR C. (1935) – Re port from stud ies done in 1934 in the en vi rons of Kalush (in Pol ish). Pos. Nauk. Państw. Inst. Geol., 41: 6–7.

LU F. H. and MEYERS W. J. (2003) – Sr, S and O (SO4) iso topes and the depositional en vi ron ments of the Up per Mio cene evaporites, Spain. J.

Sed i ment. Res., 73: 444–450.

LU F. H., MEYERS W. J. and SCHOONEN M. A. (2001) – S and O (SO4) iso topes, si mul ta neous mod el ling, and en vi ron men tal sig nif i cance of the Nijar Messinian gyp sum, Spain. Geochim. Cosmochim. Acta, 65:

3081–3092.

McARTHUR J. M., HOWARTH R. J. and BAILEY T. R. (2001) – Stron - tium iso tope stra tig ra phy: LOWESS Ver sion 3: best fit to the ma rine Sr-iso tope curve for 0–509 Ma and ac com pa ny ing look-up ta ble for de riv ing nu mer i cal age. J. Geol., 109: 155–170.

OSZCZYPKO N., KRZYWIEC P., POPADYUK I. and PERYT T. (2006) – Carpathian Foredeep Ba sin (Po land and Ukraine): its sed i men tary, struc tural, and geodynamic evo lu tion. Am. Ass. Petrol. Geol. Mem., 84: 293–350.

PALMER M. R. and EDMOND J. M. (1992) – Con trols over the stron tium iso tope com po si tion of river wa ter. Geochim. Cosmochim. Acta, 56:

2099–2111.

PALMER M. R., HELVACÍ C. and FALLICK A. (2004) – Sul phur, sul - phate ox y gen and stron tium iso tope com po si tion of Ce no zoic Turk ish evaporites. Chem. Geol., 209: 341–356.

PANOW G. M. and PŁOTNIKOW A. M. (1996) – Badenian evaporites of the Ukrai nian part of Carpathian Foredeep: lithofacies and thick ness (in Pol ish). Prz. Geol., 44 (10): 1024–028.

PAYTAN A., KASTNER M., CAMPBELL D. and THIEMENS M. H.

(1998) – Sul fur iso to pic com po si tion of Ce no zoic sea wa ter sul fate.

Sci ence, 282: 1459–1462.

PERYT D. (1997) – Cal car e ous nannoplankton stra tig ra phy of the Mid dle Mio cene in the Gliwice area (Up per Silesia, Po land). Bull. Pol. Acad.

Earth Sc., 45: 119–131.

PERYT D. (1999) – Cal car e ous nannoplankton as sem blages of the Badenian evaporites in the Carpathian Foredeep. Biul. Państw. Inst.

Geol., 387: 158–161.

PERYT D. and GEDL P. (2010) – Palaeoenvironmental changes pre ced ing the Mid dle Mio cene Badenian sa lin ity cri sis in the north ern Pol ish Carpathian Foredeep Ba sin (Borków quarry) in ferred from foraminifers and dinoflagellate cysts. Geol. Quart., 54 (4): 487–508.

PERYT D. and PERYT T. M. (2009) – En vi ron men tal changes in the de - clin ing Mid dle Mio cene Badenian evaporite ba sin of the Ukrai nian Carpathian Foredeep (Kudryntsi sec tion). Geol. Carpath., 60:

505–517.

PERYT T. M. (1996) – Sedimentology of Badenian (mid dle Mio cene) gyp - sum in east ern Galicia, Podolia and Bukovina (West Ukraine).

Sedimentology, 43 (3): 571–588.

PERYT T. M. (2001) – Gyp sum fa cies tran si tions in ba sin-mar ginal evaporites: mid dle Mio cene (Badenian) of West Ukraine.

Sedimentology, 48: 1103–1119.

PERYT T. M. (2006) – The be gin ning, de vel op ment and ter mi na tion of the Mid dle Mio cene Badenian sa lin ity cri sis in Cen tral Paratethys. Sed i - ment. Geol., 188–189: 379–396.

PERYT T. M. and PERYT D. (1994) – Badenian (Mid dle Mio cene) Ratyn Lime stone in west ern Ukraine and north ern Moldavia: microfacies, cal car e ous nannoplankton and iso tope geo chem is try. Bull. Pol. Acad.

Earth Sc., 42: 127–136.

PERYT T. M., JASIONOWSKI M., KAROLI S., PETRICHENKO O. I., POBEREGSKI A. V. and TURCHINOV I. I. (1998) – Cor re la tion and sed i men tary his tory of the Badenian gyp sum in the Carpathian Foredeep (Ukraine, Po land and Czech Re pub lic). Prz. Geol., 46 (8/2):

729–732.

(12)

PERYT T. M., SZARAN J., JASIONOWSKI M., HALAS S., PERYT D., POBEREZHSKYY A., KAROLI S. and WÓJTOWICZ A. (2002) – S and O iso tope com po si tion of the Badenian (Mid dle Mio cene) sulphates in the Carpathian Foredeep. Geol. Carpath., 53: 391–398.

PETRICHENKO O. I., KOVALEVICH V. M. and CHALYY V. N. (1974) – Geo chem i cal en vi ron ment of salt-for ma tion in the Tortonian evaporite ba sin of north-west ern Forecarpathians (in Rus sian). Geol. Geokh.

Gor. Iskop., 41: 74–80.

PETRYCZENKO O. I., PANOW G. M., PERYT T. M., SREBRODOLSKI B. I., POBEREŻSKI A. W. and KOWALEWICZ W. M. (1994) – Out - line of ge ol ogy of the Mio cene evaporite for ma tions of the Ukrai nian part of the Carpathian Foredeep (in Pol ish). Prz. Geol., 42 (9):

734–737.

PLAYƒ E. CENDÓN D. I., TRAVÉ A., CHIVAS A. R. and GARCÍA A.

(2007) – Non-ma rine evaporites with both in her ited ma rine and con ti - nen tal sig na tures: the Gulf of Carpentaria, Aus tra lia, at 70 ka.

Sediment. Geol., 201: 267–285.

PLAYƒ E. and ROSELL L. (2005) – The ce lest ite prob lem in gyp sum Sr geo chem is try: an eval u a tion of pu ri fy ing meth ods of gypsiferous sam - ples. Chem. Geol., 221: 102–116.

RAFFI I., BACKMAN J., FORNACIARI E., PÄLIKE H., RIO D., LOURENS L. and HILGEN F. (2006) – A re view of cal car e ous nannofossil astrobiochronology en com pass ing the past 25 mil lion years. Quat. Sc. Rev., 25: 3113–3137.

RHODES M. K., CARROLL A. R., PIETRAS J. T., BEARD B. L. and JOHNSON C. M. (2002) – Stron tium iso tope re cord of paleohydrology and con ti nen tal weath er ing, Eocene Green River For - ma tion, Wy o ming. Ge ol ogy, 30: 167–170.

RYKA W. (1994) – Chem i cal com po si tion of the Badenian gyp sum of the Carpathian Foredeep (in Pol ish). Prz. Geol., 42 (9): 766–769.

SCHAEFER M. O. (2009) – Paleoproterozoic Mis sis sippi Val ley-Type Pb-Zn de pos its of the Ghaap Group, Transvaal Supergroup in

Griqualand West, South Af rica. Ph.D. the sis, http://hdl.han - dle.net/10210/1969

SHIELDS G. A. (2007) – A nor mal ized sea wa ter stron tium iso tope curve:

pos si ble im pli ca tions for Neoproterozoic-Cam brian weath er ing rates and the fur ther ox y gen a tion of the Earth. eEarth, 2: 35–42.

STUEBER A. M. and PUSHKAR P. (1983) – Ap pli ca tion of stron tium iso - topes to or i gin of Smackover brines and diagenetic phases, south ern Ar kan sas. Am. Ass. Petrol. Geol. Bull., 67: 553–554.

STUPNITSKIY V. M., FEDCHENKO A. I. and KORZUN N. I. (1978) – Re port about re sults of re con nais sance ex plo ra tion of po tas sium salts in the Nezhukhov-Grinivka area of the Lvov and Ivano-Frankovsk prov inces of USSR dur ing 1975–1978 (in Rus sian). Kiev.

TORFSTEIN A., GAVRIELI I. and STEIN M. (2005) – The sources and evo lu tion of sul fur in the hypersaline Lake Lisan (paleo-Dead Sea).

Earth Planet. Sc. Lett., 236: 61–77.

VENGLINSKIY I. V. and KOPYSTYANSKAYA S. P. (1979) – Microfaunistic re mains from the Tortonian salt de pos its of the NW Forecarpathians (in Rus sian). In: The Ques tions of Ge ol ogy and Geo - chem is try of Sa lifer ous De pos its (ed. V. I. Kityk): 128–135. Naukova Dumka, Kiev.

VUL M. Y., DENEGA B. I., KRUPSKY Y. Z., NIMETS M. V., SVYRYDENKO V. G. and FEDYSHYN V. O., eds. (1998) – At las of Oil and Gas Fields of Ukraine in Six Vol umes (in Ukrai nian). West ern Oil-and-Gas-Bear ing Re gion, 4. Vyd. Tsentr Evropy, Lviv.

WADLEIGH M. A., VEIZER J. and BROOKS C. (1985) – Stron tium and its iso topes in Ca na dian rivers: fluxes and global im pli ca tions.

Geochim. Cosmochim. Acta, 49: 1727–1736.

ZAK I., SAKAI H. and KAPLAN I. R. (1980) – Fac tors con trol ling the

18O/16O and 34S/32S iso tope ra tios of ocean sul fate, evaporites, and in - ter sti tial sul fates from mod ern deep-sea sed i ments. In: Iso tope Ma rine Chem is try: 339–373. Uchida Rokakuho, To kyo.

Cytaty

Powiązane dokumenty

Thus, the dominance of Argyrotheca species (shallow water fauna) and the absence of Megerlia truncata and Megathiris detruncata (deeper water fauna) support this

Cardinal process and loop of the investigated specimens resemble closely those observed in Terebratula styriaca from the Miocene of the Vienna Basin (cf DREGER 1889;

Gonera M (2013) Globorotaliid in ter vals of the sub-evaporite Badenian (Mid dle Mio cene) in the Up per Silesia Ba sin (Cen tral Paratethys, Po land). decoraperta Zone alias

In case of the lens-shaped habit every axis lying in the plane of flatness of the lenticular crystal (b is only one of them) is in the same degree favored in radial

The specimens from the PiDcz6w Limestones, as well as those from the Mal0sz6w mads, have ornamentation , of the external surface indistinguishable from whlit occurs in the

The tax o nomic com po si tion of plank tonic foraminifera (Globigerinina) in the xe no liths (re de pos ited clasts and blocks) is the same as in the other parts of

The lower bound ary of the Wielician substage lies at change from the Mid dle Mio cene Cli mate Op ti mum to the Mid dle Mio cene Cli mate Tran si tion, at the point where a nor - mal

There fore, in the walls of ex po sures, the gi ant crys tals are com monly seen as the large {010} cleav age sur faces, shin ing in the sun light like big mir - rors, or as com po