• Nie Znaleziono Wyników

Search for new resonances in events with one lepton and missing transverse momentum in $\mathit{pp}$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Share "Search for new resonances in events with one lepton and missing transverse momentum in $\mathit{pp}$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector"

Copied!
19
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at √

s = 13 TeV with the ATLAS detector

.TheATLAS Collaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received14June2016

Receivedinrevisedform16August2016 Accepted20September2016

Availableonline28September2016 Editor:W.-D.Schlatter

AsearchforWbosonsineventswithonelepton(electronormuon)andmissingtransversemomentum is presented. The search uses 3.2 fb1 of pp collision data collected at

s=13 TeV by the ATLAS experimentattheLHCin2015.Thetransversemassdistributionisexaminedandnosignificantexcess ofeventsabovethelevelexpectedfromStandardModelprocessesisobserved.UpperlimitsontheW bosoncross-sectiontimesbranchingratio toleptons areset asafunctionoftheW mass.Withinthe Sequential StandardModel W massesbelow 4.07 TeVare excludedatthe 95%confidencelevel. This extendsthelimitsetusingLHCdataat

s=8 TeV byaround800 GeV.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Manymodelsofphysics beyondtheStandardModel(SM)pre- dicttheexistence ofnewspin-1 gaugebosons that could bedis- covered atthe Large Hadron Collider (LHC).While the details of themodelsvary, conceptuallytheseparticlesare heavierversions oftheSM W and Z bosonsandaregenericallycalled Wand Z bosons.

In this letter, a search for a W boson is presented using 3.2 fb1 of pp collision data collected with the ATLAS detector in 2015 at a centre-of-mass energy of 13 TeV. The results are interpreted in thecontext of the benchmark SequentialStandard Model(SSM),i.e.theextended gaugemodeldescribed inRef.[1], inwhich the couplingsof the WSSM tofermions are assumedto be identicalto those ofthe SM W boson. Thedecay ofthe SSM W to SM bosons is not allowed and interference between the SSM W and the SM W boson is neglected. The search is con- ductedintheW→ νchannel,whereisanelectronoramuon.

Thesignatureisachargedleptonwithhightransversemomentum (pT) andsubstantialmissingtransversemomentum(EmissT )dueto theundetectedneutrino.Thediscriminanttodistinguishsignaland backgroundisthetransversemass

mT=

2pTEmissT (1cosφν), (1)

 E-mailaddress:atlas.publications@cern.ch.

whereφν istheanglebetweentheleptonandETmissinthetrans- verseplane.1ThedominantbackgroundfortheW→ νsearchis thehigh-mTtailofthecharged-currentDrell–Yan(qq¯W→ ν) process.

PrevioussearchesforWSSM bosonsintheWeνandW μν channels were carried out by both the ATLAS and CMS col- laborations using the Run-1 data. The previous ATLAS analysis is based on data corresponding to an integrated luminosity of 20.3 fb1 taken at a centre-of-mass energy of

s=8 TeV and sets a 95% confidence level (CL) lower limit on the WSSM mass of 3.24 TeV[2]. The CMSCollaboration published a search using 19.7 fb1 of

s=8 TeV data from 2012 which excludes WSSM massesbelow3.28 TeV at95% CL[3].

2. ATLASdetector

The ATLAS experiment [4]atthe LHC isa multi-purposepar- ticledetectorwitha forward–backwardsymmetriccylindricalge- ometry anda near 4π coverage in solid angle. It consistsof an innertrackingdetector(ID)surroundedbyathinsuperconducting solenoidprovidinga2 Taxialmagneticfield,electromagnetic(EM) andhadroniccalorimeters,andamuonspectrometer(MS).Thein- ner trackingdetectorcoversthepseudorapidityrange|η|<2.5.It

1 ATLAS usesaright-handedcoordinatesystemwithitsoriginatthe nominal interactionpoint(IP)inthecentreofthedetectorandthe z-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis points upward.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ beingtheazimuthalanglearoundthebeampipe.Thepseudorapidityisdefinedin termsofthepolarangleθasη= −ln tan(θ/2).

http://dx.doi.org/10.1016/j.physletb.2016.09.040

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

consists of a silicon pixel detector including the newly installed insertableB-layer [5,6],followedbysiliconmicrostrip,andtransi- tionradiationtrackingdetectors.Lead/liquid-argon(LAr)sampling calorimetersprovideEMenergymeasurementswithhighgranular- ity.A hadronic (steel/scintillator-tile) calorimeter covers the cen- tralpseudorapidityrange(|η|<1.7). Theendcapandforwardre- gionsareinstrumentedwithLArcalorimetersforboththeEMand hadronicenergy measurements up to |η|=4.9. The muon spec- trometersurrounds the calorimeters andis based on three large air-coretoroidsuperconductingmagnetswitheightcoilseach.The field integral of the toroids ranges between 2.0 and 6.0 Tm for most of the detector. It includes a system of precision tracking chambers, over |η|<2.7, and fast detectors for triggering, over

|η|<2.4.Atwo-level triggersystemisusedtoselectevents.The first-level triggeris implemented in hardware anduses a subset ofthedetector information.Thisisfollowed by asoftware-based triggersystemthatreducestheacceptedeventratetoabout1 kHz.

3. Backgroundandsignalsimulation

Monte Carlo(MC) simulation samples are used to model the expectedsignal andbackground processes,with theexception of data-driven background estimates forevents in which one final- statejetorphotonsatisfiestheelectronormuonselectioncriteria.

Themain backgroundis duetothe charged-currentDrell–Yan (DY)process,generatedatnext-to-leadingorder(NLO)inQCDus- ing Powheg-Box v2[7]andtheCT10partondistributionfunctions (PDF) [8], with Pythia 8.186 [9] to modelparton showering and hadronisation.The samesetup isused fortheneutral-current DY (qq¯Z/γ→ ) process. In both cases, samples for all three leptonflavoursaregenerated,andthefinal-statephotonradiation (QED FSR) is handled by Photos [10]. The DY samples are nor- malised asa function of massto a next-to-next-to-leading order (NNLO)perturbativeQCD(pQCD)calculationusing VRAP[11] and the CT14NNLO PDF set [12]. In addition, NLO electroweak (EW) correctionsbeyondQEDFSRarecalculatedwith Mcsanc[13,14]at LOinpQCD asa function ofmass.In orderto combinethe QCD andEW terms,the so-calledadditive approachisusedwherethe EWcorrectionsareaddedto theNNLOQCD cross-sectionpredic- tion.

Backgroundsfromtt and¯ singletop-quarkproductionare esti- mated atNLO using Powheg-Box.These processes use theCT10 PDFset andare interfacedto Pythia 6.428[15] forpartonshow- eringandhadronisation. Furtherbackgrounds are duetodiboson (W W , W Z and Z Z ) production. These processes are generated with Sherpa 2.1.1[16]usingtheCT10PDFset.

Signal samplesforthe Weν and Wμν processes are producedatleadingorder(LO)inQCDusing Pythia 8.183andthe NNPDF2.3LOPDFset.The WSSM bosonhasthesamecouplingsto fermionsastheStandard ModelW boson andisassumednot to coupleto the SM W and Z bosons.Interference effectsbetween the W and the SM W boson are neglected. In this model the branchingratiotoa chargedleptonandaneutrinois 8.2%inthe entiremassrangeconsidered inthissearch.The decayWτ ν, wherethe τ leptonsubsequentlydecaysleptonicallyisnottreated aspartofthesignal.Ifincluded,thisdecaywouldconstituteavery smallcontribution.Thesignalsamplesarenormalisedtothesame mass-dependentNNLO pQCD calculation asused fortheDY pro- cess. TheEW correctionsbeyondQEDFSRare not applied tothe signalsamplesbecausethey dependon thecouplingsofthenew particleto W and Z bosons, andarethereforemodel-dependent.

Theresultingcross-sectiontimesbranchingratioforWSSM masses of2,3and4 TeV are153,15.3and2.25 fb,respectively.

For all samples used in this analysis, the effects of multiple interactions per bunch crossing (“pile-up”) are accounted for by

overlayingsimulatedminimum-biasevents.Theinteractionofpar- ticleswiththedetectoranditsresponsearemodelledusingafull ATLAS detectorsimulation[17] performedby Geant4[18].Differ- encesbetweendataandsimulationareaccountedforinthelepton trigger,reconstruction,identification[19,20],andisolationefficien- ciesaswellastheleptonenergy/momentumresolutionandscale [21,20].

4. Objectreconstructionandeventselection

Eventsinthemuonchannelareselectedbyatriggerrequiring that atleastonemuon with pT>50 GeV isfound. Thesemuons must be reconstructed in both the MS and the ID. In the elec- tronchannel,eventsareselectedbyatriggerrequiringatleastone electron candidate with pT>24 GeV that satisfies the medium identification criteria or a trigger requiring at least one electron with pT>120 GeV thatsatisfies the loose identificationcriteria.

Theselectioncutsusedtoselectelectroncandidatesattriggerlevel areverysimilartotheonesusedintheofflinereconstructionand wereoptimisedusingalikelihoodapproach[19].

The selected events must have a reconstructed primary ver- tex,whichistheinteractionvertexwiththehighestsumof p2T of tracksfound intheevent. Eachvertexreconstructed intheevent consistsofatleasttwoassociatedtrackswithpT>0.4 GeV. Only datatakenduring periods whenalldetectorcomponents andthe triggerreadoutarefunctioningwellareconsidered.

Muons are reconstructed from MS tracks and matching ID trackswithin |η|<2.5,requiringthat theMStrackshaveatleast threehitsineachofthethreeseparate layersofMS chambersto ensureoptimalresolutionforhigh-momentummuons[20].Inad- dition,thesecombinedmuonsarerequiredtopassatrackquality selectionbasedonthenumberofhitsintheID.Toreducesensitiv- ityto therelative barrel–endcapalignment intheMS, theregion 1.01<|η|<1.10 is vetoed. Muons are rejected ifthe difference between the muon charge-to-momentumratios measured inthe IDandMS exceedsseventimesthesuminquadratureofthecor- respondinguncertainties,orifthetrackcrossespoorlyalignedMS chambers. Toensure that the muonsoriginate fromthe primary vertex, thetransverseimpactparametersignificance,whichisthe ratiooftheabsolutevalueofthetransverseimpactparameter(d0) toitsuncertainty,hastobebelowthree.Thedistancebetweenthe z-position ofthe point of closest approach of themuon track in the ID tothe beamline andthe z-coordinate ofthe primary ver- texisrequiredtobelessthan10 mm.Furthermore,onlyisolated muonsareconsidered.ThescalarsumoverthetrackpT inaniso- lationcone aroundthe muon(excludingthe muonitself)divided bythemuonpTisrequiredtobebelowapT-dependentcuttuned fora99%efficiency.Theisolationconesize R=

( η)2+ ( φ)2 isdefinedas10 GeV dividedbythemuon pTandhasamaximum sizeof R=0.3.

Electronsare formed fromclustersof cells inthe electromag- neticcalorimeterassociatedwithatrackintheID.TheelectronpT isobtainedfromthecalorimeterenergymeasurementandthedi- rection of the associated track.The electron must be within the range |η|<2.47 and outside the transition region between the barrel and endcap calorimeters (1.37<|η|<1.52). In addition, tight identification criteria [19] need to be satisfied. The identi- fication usesalikelihood discriminantbasedonmeasurements of calorimetershower shapesandmeasurements oftrackproperties fromthe ID. Toensure that theelectrons originate fromthe pri- maryvertex,thetransverseimpactparametersignificancemustbe belowfive.Furthermore,calorimeter- andtrack-basedisolationcri- teria,tunedforanoverallefficiencyof98%,independentofpT,are applied.Thesumofthecalorimetertransverseenergydepositsin theisolation coneofsize R=0.2 (excluding theelectronitself)

(3)

dividedbytheelectron pT isusedinthediscriminationcriterion.

Thetrack-basedisolationisdeterminedsimilarlytothatformuons.

Thescalarsumofthe pT ofall tracksinacone aroundthe elec- tron, divided by the electron pT hasto be below a given value.

Theconehasasize R=10GeV/pT(e)withamaximumvalueof R=0.2.

Thecalculation ofthe missingtransversemomentum isbased on the selected electrons, photons, tau leptons, muons and jets found in the event. The value of EmissT is evaluated by the vec- tor sumofthe pT ofthe physics objects selectedin the analysis andthe tracksnotbelongingtoanyofthesephysics objects[22].

JetsusedintheEmissT calculationarereconstructedfromclustersof calorimetercellswith|η|<5 usingtheanti-kt algorithm[23]with a radius parameter of 0.4. They are calibrated using the method describedinRef.[24]andarerequiredtohave pT>20 GeV.

Events areselected iftheyhaveexactly one electronormuon withpT>55 GeV. The EmissT value foundintheeventisrequired to exceed 55 GeV and the transverse mass has to satisfy mT>

110 GeV.Fortheseselection cutsthe acceptancetimesefficiency, definedasthefractionofsimulatedcandidateeventsthatpassthe eventselection,amountsto81%(75%)fortheelectronchanneland 53%(50%)forthemuonchannelata Wmassof2 TeV (4 TeV).

5. Backgroundestimateandcomparisontodata

Thebackgroundfromprocesseswithatleastonepromptfinal- state lepton is estimated with simulated events. The processes withnon-negligiblecontributionsarecharged-currentDY(W pro- duction),tt and¯ single top-quarkproduction,inthe followingre- ferredtoas“top-quark”background,aswellasneutral-currentDY ( Z/γ production)anddibosonproduction.

Backgroundcontributionsfromeventswhereonefinal-statejet orphotonpassestheleptonselectioncriteriaaredeterminedusing a data-driven “matrix” method. This includes contributions from multijet,heavy-flavourquark and γ + jet production,referredto hereafter as the multijet background. The first step of the ma- trix method is to calculate the factor f , the fraction of lepton candidates that pass the nominal lepton identificationand isola- tionrequirementsinabackground-enriched datasamplecontain- ing“loose”leptoncandidates.Theseloosecandidatessatisfyonlya subset ofthenominalcriteria, whichare stricterthan thetrigger requirements imposed. Potential contamination of prompt final- stateleptons inthebackground-enriched sample isaccountedfor using MC simulation. In addition to the factor f , the fraction of realleptonsr inthesampleoflooseobjectssatisfyingthenominal requirementsisusedinevaluatingthisbackground.Thisprobabil- ityiscomputedfromMCsimulation.

The contribution to the background from events with a fake lepton isdetermined in the following way.The relation between thenumberofrealpromptleptons(NR)orfakeleptons(NF)and the number of measured objects found in the events containing thelooseleptoncandidates(NT,NL)canbewrittenas

NT NL



=

 r f

(1r) (1f)

 NR NF



, (2)

wherethesubscript T referstoleptons thatpassthenominalse- lection.ThesubscriptL correspondstoleptonsthatpasstheloose requirements described above butfail the nominalrequirements.

Thenumberofjetsandphotonsmisidentifiedasleptons(NMultijetT ) inthetotalnumberofobjectspassingthesignalselection(NT) is givenas

NMultijetT = f NF= f rf



r(NL+NT)NT



. (3)

Theright-handsideofEq.(3)isobtainedbysolvingEq.(2).

The simulated top-quarkand diboson samples aswell as the data-driven background estimate are statistically limited atlarge mT.Therefore,theexpectednumberofeventsisextrapolatedinto the high-mT region using parameterisations of themT shape fit- tedtotheexpectedbackgroundinthelow-mT region.Severalfits are carriedout based onthe functions f(mT)=ambTmc log mT T and f(mT)=a/(mT+b)c.Thesefitsexplorevariousfitrangestypically starting between 140 and 200 GeV and extending up to 600 to 900 GeV. Thefitwiththebest χ2 per degreeoffreedom isused asthe extrapolatedbackgroundcontribution,withan uncertainty evaluatedusingtheenvelopeofallperformedfits.

Finally,theexpectednumberofbackgroundeventsiscalculated asthesumofthedata-drivenandsimulatedbackgroundestimates.

The backgroundisdominated bythe charged-currentDY produc- tion for all values ofmT, as can be seen in the upper panel of Fig. 1. Forexample, the contribution fromcharged-current DY is about90%forbothchannelsatmT>1 TeV.Inbothchannels, the numberofobserved eventsagreeswiththebackground estimate, asshownintheuppertwopanelsofFig. 1andinTable 1.Ascan be seen in the middlepanels, the data are systematically above the predictedbackgroundatlowmT butarewithin the±1σ un- certaintyband,whichisdominatedbytheEmissT relatedsystematic uncertainties inthis region.The lower panels ofFig. 1 show the ratioofthedatatotheadjustedbackgroundthat resultsfromthe statisticalanalysisdescribedinSection7.Thedataagreewellwith theadjustedbackgroundprediction.

6. Systematicuncertainties

Experimental systematic uncertainties arise from the back- groundandluminosityestimates,thetriggerselection, thelepton reconstruction, identificationandisolationcriteria[19,20],aswell as effects ofthe energy/momentum scale and resolution [21,20].

Thesystematicuncertaintiesforthetwochannelsaresummarised inTable 2.AtlargemT,thedominantsourceofuncertaintyisdue tothe backgroundextrapolations inthe electronandmuon chan- nels, described inSection 5, andtothe momentum resolutionin the muon channel. The extrapolation uncertainties are shown in Table 2forthedata-drivenmultijetbackgroundandthecombined top-quarkanddibosonbackgrounds.Themultijetbackgroundun- certaintyintheelectronchannelincludesa25%contributionfrom the data-driven estimate,which is dueto thedependenceof the factor f (seeSection5)onthespecificselectionusedtoderivethe background-enrichedsample.Noadditionaluncertaintyisassigned inthemuoncaseasthemultijetbackgroundissmall.

Theelectronandmuonreconstruction,identificationandisola- tion efficienciesaswellastheircorresponding uncertainties were evaluated fromdatausingtag-and-probe methodsin Z bosonde- cays up to a pT ofO(100 GeV).The ratioof theefficiencymea- suredindatatothatoftheMCsimulationisthenusedtocorrect theMCprediction.Forelectrons,theseratiosaremeasuredfollow- ing the prescriptions of Ref. [25], withadjustments forthe 2015 runningconditions.Forhigher-pT electrons,an additionalsystem- aticuncertaintyof2.5%isassignedtotheidentificationefficiency.

Thisisbasedondifferencesobservedbetweendataandsimulation, andtheirpropagationtothesimulatedelectrons.Fortheisolation efficiency,anadditionaluncertaintyof2%isattributedtohigh-pT electronsfromthevariationofthemeanvaluesoftheratioofthe isolation efficiencies between data and simulation in various pT and η bins.For muons,no significant dependenceofthe ratioof the efficiencies measured in dataover the onesmeasured inMC simulationasafunctionofpTisobserved[20].Forhigh-pTmuons an upper limit on the uncertainty of 2–3% per TeV is extracted fromsimulation.Fortheisolationcriterionanextrapolationofthe

Cytaty

Powiązane dokumenty

q Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America. r Also at Department of Financial and Management

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei,

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

To conduct the search, the dilepton invariant mass (m ll ) line shape is examined for a localized excess of events corresponding to a new resonance, where ll corresponds to either

The data distributions for each of the 12 variables used in the BDT analysis are well described by the background expectation in each of the five control regions, demonstrat- ing

33a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. 33b Department of Modern Physics, University of Science and Technology of China,

Important experimental uncertainties include the energy (momentum) scale uncertainty, which contributes about 3% (1%) at low p R T in the electron (muon) channel, in- creasing to