• Nie Znaleziono Wyników

Spectral tuning of mechanical systems

N/A
N/A
Protected

Academic year: 2022

Share "Spectral tuning of mechanical systems"

Copied!
6
0
0

Pełen tekst

(1)

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 1993

Seria: MECHANIKA z. 113 Nr kol. 1198

Vladimir ZEMAN , Josef NEMECEK Department of Mechanics

University of West Bohemia in Pilsen

SPECTRAL TUNING OF MECHANICAL SYSTEMS

Summary. Spectral tuning of linear conservative mechanical systems containing N subsystems by modal synthesis method is presented.

STROJENIE WIDMOWE SYSTEMÓW MECHANICZNYCH

Streszczenie. Przedstawiono strojenie widmowe liniowych zachowaw­

czych systemów mechanicznych zawierających N podsystemów za pomocą metody syntezy modalnej.

CIIEKTPAJIbHAH HACTPOflKA MEXAHHHECKHX C H C T E M

Pe3K>Me. B CT a T t e np M B O H H T C H MeTOn cneKTpaJibHoii H a c T p o K K H JIHHeHHbIX KOHCepBaTHBHbIX MeXaHKH eCKMX CHCTeM COCTaBJieHHblX H3 H cyócHCTeM. P e m e H M e «cnohb3yeT MeTOna MOflaJibHoro c m h te3a.

1. INTRODUCTION

First possible step for improvement of the dynamic properties of the stationary polyharmonic (periodic, harmonic ) or parametric excited mechanical systems is elimination of resonances by suitable tuning of the conservative part of their mathematical models (

11

.

We consider a mechanical system containing N subsystems bounded by elastic discrete couplings. The free undamped vibration of dismembered subsystem "k" in the neighbourhood of an assumed stable equilibrium position (for

0

) is described in the first approximation and after discretization by linear conservative mathematical model in matrix form

W q k ( t ) + W q k ( t ) = f k ( t)> k = 1>2 -- - N- ( 1)

Mass and stiffness real time independent matrices M^, of the uncoupled subsystems are symmetric oforder arepositive definite and positive

(2)

Jj

definite or seraidefinite. They depend on the vector PkeR of the chosen design variables (tuning parameters ) of the corresponding subsystem "k" . The generalized coordinate vector Ct) expresses node displacements of the subsystem "k". The internal force effect of the other subsystems is described by vector f*(t).

Configuration of the whole system is described by the generalized N

coordinate vector q(t) ( q (t) ] of dimension n= £ n . The influence k=l

of the elastic couplings between subsystems is expressed in a mathematical model of system by real stiffness coupling matrix K of order n. This matrix

C

satisfys the condition 3 E (c)

f i(t) = - T j ! . - Kc . q(t). (

2

)

where f (t) = (fI(t)] e Rn is internal coupling force vector of the whol

I k

system and E (c) is potential energyof the couplings undergouing to the free p

vibration.

The linear conservative part of the mathematical model of the mechanical system in the form (

1

) can be written as

M q (t) + (K + K ) q (t) = 0 , (3)

C

where M = diag (M ), K = diag (K ) are block - diagonalmatrices of order

k k

N n = Y n .

k =

1

k

2. SPECTRAL TUNING METHOD

Spectral tuning of the linear conservative mathematical model (3) is understood as a vector calculation p = [p ]

6

Rs of tuning parameters p which in the feasible domain

pL s p < pU j =

1

,

2

, ... s

minimizes the objective function

2

(p)

iMp) = E vv U xj-

1

.

v nV

where v € {1, 2, m>, m < n are required natural frequencies. Actual

(3)

Spectral tuning of mechanical 447

natural frequencies ^ ( p ) depend on vector of the tuning parameters chosen on the basis of dynamic sensitivity analysis

a n ,2

3

p.

3(K + K ) a M

3

P,

V .

V (5)

Eigenvectors in (5) satisfy the normality conditions v^ M v = 1.

A proceeding approximation method [2] was applied for tuning. This method is based on the linear approximation of the dependence

1

(p)

l(p)=l(p )+L(p )(p-p ), (

6

)

o o o

where 1 (p) = in^(p)] e R

1

is the tuning vectorcorresponding to topical tuning parameters and

L(p) = J L H z L

a p

a tr tp )

v

3

P.

eR (7)

is the tuning matrix.

Let 1 = [il^] e R be the vector of squares of required natural frequencies. Iterative formula of the tuning corresponding to dependence (

6

)

has in the r-th iteration form

l=l(pr) L+ (£ )(p-p ),r=

0

,

1

,

2

... (

8

)

From (

8

) we get the vector of new tuning parameters in the r-th iteration p = p + L + (p ) [1 - 1 (p )] , r = 0, 1, 2, . . . (9)

where

(LT L

) ' 1

LT for 1 > s L = <L for

1

= s

LT (L L

7 ) ' 1

for 1 < s.

If all the tuning parameters represent design parameters of subsystem L € {1, 2, .... N}, the components of the tuning matrix defined in (5) can be rewritten into the form

( d K

T I* L ML (

10

)

I _ n I

a

Pj - vl,w I

a

p^

v a

p^ jv l.w’

where M , K are mass and stiffness matrices of the uncoupled subystem

(4)

L. The subvectors ^ of the mode shapes correspond to generalized coordinates of the tuned subsystem L.

If the tuning parameters are coupling parameters between subsystems, the formula (

1 0

) has the form

a n 2 V _ T a kC

a - j r = a Pj vu ' (11)

3. ALGORITHM OF THE TUNING USING THE MODAL SYNTHESIS METHOD AND REDUCED MODEL

Spectral and modal V matrices of the isolated subsystems satisfy the orthonormality conditions

VT M V = I , VT K V = A . k = 1,2, ...N , (12)

k k k k k k k k

where I are unit matrices of order n .

k k

Let matrices and A^be decomposed into submatrices assigned to master mode shapes (index m) at number m^, to slave mode shapes (index s) at number s^ and to other mode shapes ( index o )

V = ["V SV °V ], A = [mA SA °A ]. (13)

k k k k k k k k

The generalized coordinate vectors q (t) of each subsystem can be

k

transformed by modal submatrices of the isolated subsystems into the form q (t) = "V mx (t) + SV sx (t), k = 1, 2,. . ,N (14)

k k k k

Slave modal coordinates can be approximated by the formula sx (t) ~ SA

_1

SVT f

1

(t)

k k k k

and after their elimination in (14) we get the reduced conservative matche-

N

matical model of order m = Y m << n in the form [3]

^ k k = 1

mx(t) + [mA +

V

K (I + SH K r

1

”V] mx(t) =

0

, (15)

C n C

where mx(t) = [mx (t)],mA = diag(mA ),"V = diag(V ) and

k k k

SH = diag(sV V

1

SVT )

k k k

is so called residual flexibility matrix [4] of the system and I is unit

n

matrix of order n.

By means of QL or Jacobi algorithm we can calculate natural frequencies

(5)

Spectral tuning of mechanical 449

and eigenvectors “x^, v = 1, 2, m of the reduced model (15).

Frequencies represent approximately n natural frequencies of the whole system. Eigenvectors “x^ have to be transformed by the formula [3]

v = (I + SHK )-1 mV mx , V v V

v = l , 2

,. . ,m. (16)

Natural frequencies and eigenvectors calculated from the reduced model (15) are used for the spectral tuning (9).

Algorithm of the tuning using the reduced model has form:

1. Assemblage of the mass and stiffness matrices M^ip), Kfc(p) of the iso­

lated subsystems for p = p (start) and k = 1,2, ..,N.

O

2. Calculation of spectral and modal matrices A (p ), V (p ) of the isolated

k o k o

subsystems for k = 1, 2, .., N.

3. Decomposition of modal and spectral matrices A^tp ) and vk^P ) an£*

assemblage of the matrices mA(p ), ”v(p ), sH(p ).

o o o

4. Creation of the compressed coupling matrix K e Rc,c, c « n, by letting out of null lines and columns of K and assemblage of the Bool’s matrix B satisfying the condition K = BT K B .

c c

5. Application of the Householder identity for the matrix inversion

(I + SH K )"*= I - SH BT(I + K B eH bV ’k B.

n c n c c c

6

. Construction of the reduced mathematical model (15) of order m, m << n and calculation of its natural frequencies eigenvectors x^ and transformation of eigenvectors x^ into v^ according to (16).

7. Calculation of the tuning matrix L(p ).

8

. Calculation of the vector of new tuning parametersO

p = p + L+ (p ) [1 - 1 (p )). N

0 0 o

9. Setting p = p , assemblage of the nefc mass M (p) and stiffness K (p)

o L L

matrices of the isolated subsystem L and go back to the step

2

for k = L.

This method enables to perform an optimal choice of design parameters for a given project of tuning from the dynamical sensitivity point of view. The modal synthesis method enables to gain substantial reduction of number of degrees of fredom of compound mechanical systems and to realize their spectral tuning at the PC computers. The described method was used successfully for tuning of shaft systems with spur gears [5].

(6)

REFERENCES

[1] Zeman V. : Optimization of Dynamie Mechanical Systems. Proceedings of the I-st Intern. Scientific Conference “Achievements in the Mechani­

cal and Material Engineering, Gliwice, 1992, pp. 209 - 219.

[2] Zeman V.: Methods of Spectral Tuning and Reconstruction in the Dynamics of Machines (in Czech). Strojn. as., 32, No.5, 1981, pp. 525 - 541.

[3] Zeman V. , Neme'cek J. : Modelling of Vibration of Gear Transmissions.

ZN Pol.Śl. - Mechanika, 31th Symposium "Modelling in Mechanics", Gliwice, 1992.

[4] Irretier H.: A modal synthesis method with free interfaces and residual lexibility matrices for frame structures. Building Journal, Vol.37, 1989, n. 9, pp. 601 - 610.

[5] Zeman V., Neme”cek J. : Spectral Tuning of Shaft Systems with Gears (in Czech). Proceedings of the

6

th Int. Conf. on the Theory of Machines and Mechanisms, Vol. A, Liberec, 1992.

Recenzent: Prof. Eugeniusz Świtoński

Wpłynęło do Redakcji dnia 4. 10. 1992

Streszczenie

Artykuł przedstawia orginalną metodę strojenia widmowego wybranych parametrów konstrukcyjnych liniowych zachowawczych systemów mechanicznych zawierających N podsystemów. Metoda wykorzystuje postępujące przybliżenia liniowe zależności wektorowe zestrajania od wektora parametrów konstrukcyjnych zestrajania. Parametry konstrukcyjne dla danego zagadnienia zestrajania są wybierane z punktu widzenia wrażliwości dynamicznej.

Przedstawiona metoda opiera się na dominantach tak zwanych kształtów try­

bu wzorcowego (podstawowego) podsystemów niesprzężonych.

Wpływ sprzężeń sprężystych pomiędzy podsystemami jest wyrażany macierzą sprzężenia sztywności.

Stosowany jest matematyczny model zachowawczy z mniejszą ilością stopni swobody dla zestrajania.

Metoda zestrajania widmowego została zastosowana do zestrajania systemów wału z przekładniami zębatymi czołowymi.

Cytaty

Powiązane dokumenty

It can be used to controller tuning in the control systems where processes are described by static higher order lag elements, controller settings are selected based on the

Grabau zwraca uwagę na problem jakości przekładu w komunikacji prawniczej i wskazuje, że uczest- nicy postępowania mający wpływ na nie (tzn. sędziowie) powinni być świadomi

generalized spectra ®î(/4b B) and Ш( Л2, В) of the factor algebras, combined with the above notion of the generalized spectral dynamical system, naturally led to

The immediate consequence of this result is that the properties of Riesz-spectral systems and operators (Cur- tain and Zwart, 1995; Kuiper and Zwart, 1993) can be used in the

In this paper, we focus on the use of S MART MO- BILE for sensitivity analysis and reliable (or verified) simulation of the kinematics and dynamics of closed loop systems.. We begin

Next to space applications, where reliability, power consumption and size are very critical, a large applica- tion area can be envisioned in implant- able sensors

sie badań wspomnianych kierunków – stwierdza, że mieści się w nich „ob- serwacja, analiza i interpretacja złożonych relacji między językiem a kulturą, opisywanie języka

The main purpose of this paper is to inform the technical community about new tuning methods of torsional oscillating mechanical systems (TOMS) during operation in a steady state