• Nie Znaleziono Wyników

Laser emission spectra of two- and three-component solutions of organic scintillators

N/A
N/A
Protected

Academic year: 2021

Share "Laser emission spectra of two- and three-component solutions of organic scintillators"

Copied!
8
0
0

Pełen tekst

(1)

Optica Applicata, Vol. I X , No. 1, 1979

Laser emission spectra

of two- and three-component solutions

of organic scintillators

Ireneusz Słomka, Ewa Staniszewska

Laboratory of Nonlinear Optics and Chemical Physics U niversity of W arsaw, W arsaw, Poland.

In the paper scintillator oxazole solutions have been in vestigated in order to obtain laser radiation covering the spectral range 356-440 nm. It has been stated th a t the laser em ission spectra from tw o-com ponent solutions of seven oxazole scintillators in different solvents do not cover the above range to a sa tis­ factory degree. The gaps occurring in the spectrum m ay be filled w ith the em is­ sion spectra of properly chosen three-com ponent m ixtures.

Aryl derivatives of oxazoles and oxadiazoles, the fluorescence bands of which lie within the violet and near ultraviolet range were first applied to dye lasers in 1968 [1-3]. These heterocyclic compounds called organic scintillators are not organic dyes in the classical sense, as they contain no auxochromic groups [4]. Many of them exhibit high fluorescence efficiency, high absorption coefficient and other parameters advantageous for laser light generation. As the light generated belongs to the short-wave part of the visible spectrum, the oxazole solutions may be applied as the laser sources for excitation of other dyes.

The solutions of seven scintillators examined in the present paper are given in table.

For each scintillator the absorption spectra of two-component solutions (scintillator -f solvent) in four solvents have been examined. The obtained absorption curves shown in fig. 1 have been denoted by connective numbers, according to the used solvent. The spectra have been recorded for solutions of concentration of order of 10"5 M. The apparature used did not allow to measure the absorption of solutions of lasing concentrations (of order of 10~3-1(T 2 M). The lack of curves for the ethanol solutions in the graphs Id and le is caused by the fact that the BBO and POPOP are practically insoluble in ethanol.

The position of emission line from a nitrogen laser (A = 337.1 nm, which corresponds to v ^ 29.7 xlO 3 cm-1), which is used in excitation of solutions

to generate the laser action, is marked in fig. 1. For each solution this line lies within the region of strong absorption.

(2)

26 I. Sło m k a, E. St a n isz e w sk a

Chemical formula System atic name

Abbrevia­ tion presently used Molecu­ lar mass

0 O

0

c, 5h n o 2,5-diphenyloxazole PPO 221 ~ C 1 9 H 13 N O 2-(l-n aph th yl)-5-ph e-n yloxazole a-NPO 271

o o C t e

C2 0 H 2 2 N 2 <~> 2-plienyl-5-(4-biphe- n y l)-1,3,4 oxadiazole P B D 298 c 24 H 16 n2o2 1,4-di--(2-(5-phenyloxazolyl)) -benzene PO PO P 364

0 0 O

0 0

c2 7h1 9no 2,5-di-(4-biphenylyl)--oxazolo BBO 373 H 3 c" " C H3 C X H X N 2 ° 2 l,4-di-(2-(4-m ethyl-5- -phenyloxazolyl)) - -benzene dim ethyl-PO ethyl-PO P 392 H 3 c C H 3 ^ 3 0 ^ 3 0 ^ 2 ^ 2 ^ 2,5-di-(5-tert-butyl-2- -benzoxazolyl)-thio­ phene BB O T 431

The curves have been obtained from a Specord UV VIS spectropho­ tometer as functions

E = / (v ) = — lg — 1 o

(3)

Laser emission spectra ... 27

___ i _ _i __.1__ ¡w i ii , , , | , C / / /

3 6 3 U 3 2 3 0 2 8 2 6 X 2 2 * 1 0 0 0

Pig. 1. The absorption curves o f the exam ined organic scintillators in four

solvents: 1) toluene, 2 ) o-xylen e, 3 )

p-xylene, 4 ) ethanol. The position of

the nitrogen laser em issive line is marked

In the solutions of examined scintillators laser actions have been obtained and the respective emissive curves drawn. Optimal concentra­ tions (varying between 10-3 and 10“2 M), have been established experi­ mentally for each solution.

Fig. 2 presents the experimental setup used to obtain the emissive spectra. The spectra were recorded in the DFS-13 spectrograph with a 1200 line/mm grating on a Fotopan CD-135 film of 27 Din sensitivity. The parallel sides of a quartz cuvette created a sufficiently good resonator for all the lasing solutions.

The densitograms were produced on a C. Zeiss 32-C-616 microphoto­ meter. The curves obtained are presented in fig. 3. The curves for toluene

(4)

28 I . Sł o m k a, E . St a n is z e w s k a and xylene solutions are slightly shifted with respect to each other of order of single nanometers. More pronounced differences occur for ethanol which causes a shift of maxima broadening of emission band by a magnitude approaching several nm (curves 3c, 3d, 3f and 3g).

Fig. 2. E xperim ental setup

In fig. 4 the selected curves from fig. 3 have been combined to cover the whole spectral range. It may be seen that there exist intervals, in which the laser radiation intensity of the examined two-component solutions drops down. Any improvement of this coverage by changing the concentration or the sort of solvents is not possible.

In accordance with the theory of wavelength shifters [5] the emissive spectrum of an organic scintillator solution can be modified by adding another scintillator. Several three-component mixtures of the studied scintillators have been examined in different proportions of the used components. Fig. 5, in which the emissive curves from three mixtures mixed in different proportions of components in the same solvent (toluene) are presented, may serve as an example of the obtained results. These curves complete the unfilled fragments of the spectrum in fig. 4. This, in turn, is illustrated in fig. 6, which shows the possibility of covering the 356-440 nm spectrum range with an intensive laser radiation, if the solutions of several organic scintillators and their mixtures are used. Quite satisfactory results may be obtained by using the following solutions:

a) PBD in ethanol,

b) PPO + a-JSTPO ( 6: 1) in toluene, c) a-NPO in toluene,

(5)

i n t e n s i t y ( a r b . u n i t s ) i n t e n s i t y ( o r b . u n i t s )

i i i I i i I I i I i ...I i I i I i i I i i I I i i i i i I I i I I i i i i I 1 I I I I I I I I I i I I I I I I I I I I I____ I__ I I I I I „1 i l „ I— I— L_1_J— 1— I— I i I I I I__ I I I I I I l

3 6 0 3 7 0 3 8 0 3 9 0 4 0 0 41 0 42 0 43 0 440 X [ n m ]

3 6 0 3 7 0 3 8 0 3 9 0 40 0 41 0 4 2 0 4 3 0 . 4 4 0 X [ n n

(6)

30 I. Sł o m k a, E. St a n is z e w s k a

Fig. 4. Selected curves from fig. 3 com bined in order to cover the considered spectral range

Fig. 5. Curves of laser em ission for several three-com ponent m ixtures

P P O + a N P O - 1 — 10 : 1, V - 6 : 1 , 1" 4 : 1 ; P B D + B B O T - 1 - 200 : 1, V - 100 : 1, 1" - 70 : 1

(7)

in te n s it y ( a r b . u n it s )

Laser emission spectra ... 31

d) a-hlPO + POPOP (15:1) in toluene, e) PBD + BBOT (70:1) in toluene, f) BBO in o-xylene,

g) BBOT in ethanol. This is presented in fig. 7.

Fig. 8 shows a typical pulse appearing in all the observed laser actions, which has been found to be completely consistent in shape with the initia­ ting pulse of the pumping nitrogen laser.

Fig. 7. A p ossib ility of covering b y in tensive laser radiation of the spectral range 356-440 nm

Fig. 8. A pulse of th e lasing action of an scintillator excited b y a pulse of nitrogen laser. H orizontal scale — 5 ns/cm

References

[1] Borisevich N . A., Gruzinskij V. V ., Kalosha I. I., Tolkachev V. A ., Zh.

Prikl. Spektroskopii 11, 173 (1969).

[2] Abakumov G. A ., Simonov A. P ., Fadeev V. V., Kharitonov L. A t, Khokhlov

(8)

32 I. Sło m k a, E. St a n is z e w s k a

[3] Nabojkin Yu. V., Ogurtsova L. A ., Podgornyj A. P., Pokrovskaya F . S.,

Tezisy DoTcladov X V I I I Vsesoyuznogo Soveshchaniya po Lyuminescencii, K iev 1969.

{4] Pavlopoulos T. G., Hammond P. R ., J. Amer. Chem. Soc. 96, 6568 (1974).

15] Schram E ., Organic Scintillation, Detectors, Elsevier Publ. Co., A m sterdam -

L on don -N ew York 1963. Deceived, February 17, 1978 Эмиссионные лазерны е спектры двойны х и тройных растворов органических сцинтилляторов Исследованы растворы оксазоловых сцинтилляторов для перекрытия лазерным излучением области видимого спектра 356-440 нм. Обнаружено, что лазерные спектры испускания двой­ ных растворов семи оксазоловых сцинтилляторов в разных растворителях не дают удо­ влетворительного покрытия видимого спектра. Пробелы в спектре могут быть удовле­ творительно пополнены эмиссионными спектрами соответственно отобранных трехком­ понентных смесей.

Cytaty

Powiązane dokumenty

Pater familias i jego zadania według Jana Chryzostoma; następnie prof. dr hab. Jan Iluka (Gdańsk, UG) przedstawił zagad- nienie:  Agape jako wartość życia rodzinnego

A precursor luminescence pulse consisting of atomic line emission is observed as much as 150 nanoseconds prior to the collapse point of laser-induced bubbles in

Olga Lipińska Pułtusk. Informator Archeologiczny : badania

addresses the type of component-based damage analysis mentioned here, but does not include many of the elements that are key in the multi-hazard analysis proposed in this paper, such

[r]

1972.. Po jego ogłoszeniu zaczęły wpływać pisma poszczególnych adwokatów, zarówno czynnych w zespole i na radcostwach jak i emerytów, ustosunkowujące się do

– zasiłek na dziecko zwiększa dochód na osobę w gospodarstwie domowym i służy zwiększeniu liczby nabywanych i konsumowanych koszyków produk- tów spożywczych

Responsorja drugiego nokturnu przedstawiają się jako re ­ gularne ośmiozgłoskowce rymowane, które zaczynają się psuć znów w trzeciem responsorjum, ponieważ