• Nie Znaleziono Wyników

SM4T220

N/A
N/A
Protected

Academic year: 2022

Share "SM4T220"

Copied!
7
0
0

Pełen tekst

(1)

November 1992

SM4T6V8C,CA/220C,CA

TRANSIL

. PEAK PULSE POWER= 400 W @ 1ms.

. BREAKDOWN VOLTAGE RANGE : From 6V8 to 220 V.

. UNI AND BIDIRECTIONAL TYPES.

. LOW CLAMPING FACTOR.

. FAST RESPONSE TIME:

Tclamping : 1ps (0 V to VBR).

. JEDEC REGISTRED.

FEATURES

SOD 6

(Plastic)

Symbol Parameter Value Unit

Pp Peak pulse power dissipation See note 1 and derating curve Fig 1.

Tamb = 25°C 400 W

P Power dissipation on infinite heatsink See note 1 and derating curve Fig 1.

Tlead = 50°C 5 W

IFSM Non repetitive surge peak forward current.

For unidirectional types.

Tamb = 25°C t =10 ms

50 A

Tstg Tj

Storage and junction temperature range - 65 to + 175 150

°C°C TL Maximum lead temperature for soldering

during 10 s.

260 °C

ABSOLUTE RATINGS (limiting values) DESCRIPTION

Transil diodes provide high overvoltage protection by clamping action. Their instantaneous reponse to transients makes them praticularly suited to protect voltage sensitive devices such as MOS Technology and low voltage supplied IC’s.

MECHANICAL CHARACTERISTICS

. Body marked with : Logo, Date Code, Type Code and Cathode Band (for unidirectional types only).

. Full compatibility with both gluing and paste soldering technologies.

. Excellent on board stability.

. Tinned copper leads.

. High temperature resistant resin.

1/7

(2)

ELECTRICAL CHARACTERISTICS

I I F

V F VVCL VBR

VRM

I PP

I RM V

Symbol Parameter

VRM Stand-off voltage.

VBR Breakdown voltage.

VCL Clamping voltage.

IRM Leakage current @ VRM.

IPP Surge current.

α

T Voltage temperature coefficient.

VF Forward Voltage drop VF < 3.5V @ IF = 25 A.

Symbol Parameter Value Unit

Rth (j-l) Junction-leads on infinite heatsink 20 °C/W

Rth (j-a) Junction to ambiant. on printed circuit.

With standard footprint dimensions.

100 °C/W

THERMAL RESISTANCES

TYPES

IRM @ VRM VBR @ IR VCL @ IPP VCL @ IPP αT C

max min nom max max max max typ

note2 10/1000µs 8/20µs note3 note4 Uni

directional *

Bi

directional *

µA V V V V mA V A V A 10-4/°C (PF)

SM4T6V8 SM4T6V8A SM4T7V5 SM4T7V5A SM4T10 SM4T10A SM4T12 SM4T12A SM4T15 SM4T15A SM4T18 SM4T18A SM4T22

QD QE QF QG QN QP QS QT QW QX RD RE RH

SM4T6V8C SM4T6V8CA SM4T7V5C SM4T7V5CA SM4T10C SM4T10CA SM4T12C SM4T12CA SM4T15C SM4T15CA SM4T18C SM4T18CA SM4T22C

VD VE VF VG VN VP VS VT VW VX UD UE UH

1000 1000 500 500 10 10 5 5 5 5 5 5 5

5.8 5.8 6.4 6.4 8.55 8.55 10.2 10.2 12.8 12.8 15.3 15.3 18.8

6.45 6.45 7.13 7.13 9.5 9.5 11.4 11.4 14.3 14.3 17.1 17.1 20.9

6.8 6.8 7.5 7.5 10 10 12 12 15 15 18 18 22

7.48 7.14 8.25 7.88 11 10.5 13.2 12.6 16.5 15.8 19.8 18.9 24.2

10 10 10 10 1 1 1 1 1 1 1 1 1

10.5 10.5 11.3 11.3 14.5 14.5 16.7 16.7 21.2 21.2 25.2 25.2 30.6

38 38 35.4 35.4 27.6 27.6 24 24 19 19 16 16 13

13.4 13.4 14.5 14.5 18.6 18.6 21.7 21.7 27.2 27.2 32.5 32.5 39.3

174 174 160 160 124 124 106 106 85 85 71 71 59

5.7 5.7 6.1 6.1 7.3 7.3 7.8 7.8 8.4 8.4 8.8 8.8 9.2

3500 3500 3100 3100 2000 2000 1550 1550 1200 1200 975 975 800

(3)

143

Note 1 :

Note 2 : Note 3 : Note 4 :

For surges greater than the maximum values, the diode will present a short-circuit Anode - Cathode.

Pulse test: TP < 50 ms.

VBR = αT * (Ta - 25) * VBR(25°C).

VR = 0 V, F = 1 MHz. For bidirectional types, capacitance value is divided by 2.

All parameters tested at 25 °C, except where indicated.

* = Marking

0 0%

20 40 60 80 100 %

%

%

%

%

20 40 60 80 100 120 140 160 180 200 Tamb (˚c)

Peak Power (on printed circuit).

Average Power (on infinite heatsink).

Figure 1: Power dissipation derating versus ambient temperature

10 s

1000 s

% IPP

50

0 t

PULSE WAVEFORM 10/1000 s 100

TYPES IRM @ VRM VBR @ IR VCL @ IPP VCL @ IPP αT C

max min nom max max max max typ

note2 10/1000µs 8/20µs note3 note4 Uni

directional *

Bi

directional *

µA V V V V mA V A V A 10-4/°C (PF)

SM4T68 SM4T68A SM4T100 SM4T100A SM4T150 SM4T150A SM4T200 SM4T200A SM4T220 SM4T220A

SN SP SW SX TH TK TS TT TU TV

SM4T68C SM4T68CA SM4T100C SM4T100CA SM4T150C SM4T150CA SM4T200C SM4T200CA SM4T220C SM4T220CA

WN WP WW WX XH XK XS XT XU XV

5 5 5 5 5 5 5 5 5 5

58.1 58.1 85.5 85.5 128 128 171 171 188 188

64.6 64.6 95.0 95.0 143 143 190 190 209 209

68 68 100 100 150 150 200 200 220 220

74.8 71.4 110 105 165 158 220 210 242 231

1 1 1 1 1 1 1 1 1 1

92 92 137 137 207 207 274 274 328 328

4.3 4.3 2.9 2.9 2.0 2.0 1.5 1.5 1.4 1.4

121 121 178 178 265 265 353 353 388 388

19 19 13 13 9 9 6.5 6.5 6 6

10.4 10.4 10.6 10.6 10.8 10.8 10.8 10.8 10.8 10.8

270 270 200 200 145 145 120 120 110 110

3/7

(4)

Pp (W)

0.001 0.01 0.1 1 10 100

10 100 1000 10000 100000

tp (mS ) EXPO.

Tj initial = 25˚C

Figure 2 : Peak pulse power versus exponential pulse duration.

10 100 1000

SM4T 6V8A SM4T 10A SM4T 22A SM4T 39A SM4T 68A SM4T 150A SM4T 220A VCL (V)

t

% Ipp 100

50

0

t r t t < 10r s Tj initial = 25˚C

Figure 3 : Clamping voltage versus peak pulse current.

exponential waveform t = 20 µs ________

t = 1 ms ——————-

t =10 ms ...

(5)

ZTH j-a ( ˚C/W )

0.011 0.1 1 10 100 1000

10 100

Figure 6 : Transient thermal impedance junction-ambient versus pulse duration. For a mounting on PC Board with standard footprint dimensions.

Figure 5 : Peak forward voltage drop versus peak forward current (typical values for unidirectional types).

C (pF)

1 10 100

10 100 1000 10000

VR(V) Tj = 25˚C f = 1 MHz SM4T6V8CA

SM4T 15CA SM4T 30CA SM4T 68CA SM4T 220CA

Figure 4b : Capacitance versus reverse applied voltage for bidirectional types (typical values)

C (pF)

1 10 100

10 100 1000 10000

VR(V) Tj = 25˚C f = 1 MHz SM4T6V8A

SM4T 15A SM4T 30A SM4T 68A SM4T 220A

Figure 4a : Capacitance versus reverse applied voltage for unidirectional types (typical values).

5/7

(6)

SOD 6 (Plastic).

PACKAGE MECHANICAL DATA

F

B C

D a1 A

E

ORDER CODE

SM

4

T

100

C

A

TOLERANCE : A= +/- 5%

= +/- 10%

Ref Millimeters Inches

min max min max

A 2.48 2.61 0.096 0.103

a1 0.10 0.20 0.004 0.008

B 1.96 2.11 0.077 0.083

C 3.65 3.93 0.143 0.155

D 5.39 5.59 0.212 0.220

E 4.15 4.30 0.163 0.170

F 1.00 1.27 0.039 0.050

Weight = 0.12 g.

BIDIRECTIONAL SURFACE MOUNT

BREAKDOWN VOLTAGE

MARKING : Logo, Date Code, Type Code, Cathode Band (for unidirectional types only).

400 WATT

a

b b

FOOTPRINT DIMENSIONS (Millimeter).

SOD 6 Plastic.

Ref Millimeters

a 2.75

b 1.52

c 2.30

(7)

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I2C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I2C Patent. Rights to use these components in an I2C system, is grantede provided that the system conforms to

the I2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

7/7

Cytaty

Powiązane dokumenty

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third

However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third