• Nie Znaleziono Wyników

The polynomial interpolation for technical experiments

N/A
N/A
Protected

Academic year: 2022

Share "The polynomial interpolation for technical experiments"

Copied!
4
0
0

Pełen tekst

(1)

Scientific Researchof the Instituteof Mathematicsand Computer Science

THE POLYNOMIAL INTERPOLATION FOR TECHNICAL EXPERIMENTS

Grzegorz Biernat, Anita Ciekot

Institute of Mathematics and Computer Science, Czestochowa University of Technology, Poland email: gbiernat@imi.pcz.pl

Abstract. In the article there are the interpolation of the empirical processes by polynomials of several variables.

Introduction

The interpolation formulas by polynomials of several variables are the un- known in the interpolation methods ([1]). In the empirical processes the measure- ment steps are constant. Using the Kronecker tensor product of matrices [2, 3]

the interpolation formula was given in the theorem 1.

1. Kronecker’s tensor product

Let A

1( )n1

A

2( )n2

⊗ ... ⊗ A

k( )nk

be the Kronecker tensor product of matrices

( ) ( ) ( )nk

k n

n

A A

A

11

,

22

,..., of degrees respectively n

1

, n

2

,..., n

k

.

Proposition 1. The determinant of the Kronecker tensor product is given by the formula

( ) ( ) ( )

( A

1n1

A

2n2

... A

knk

) ( det A

1( )n1

)

nˆ1n2...nk

( det A

2( )n2

)

n1nˆ2...nk

... ( det A

k( )nn

)

n1n2...nˆk

det ⊗ ⊗ ⊗ =

where the symbol ^ omit above given numbers.

Proof. This follows from the definition of the Kronecker tensor product by induc-

tion on degrees n

1

, n

2

,..., n

k

[2, 3].

(2)

G. Biernat, A. Ciekot 20

Let

( )

( ) ( )

( ) ( ( ) ) ( ( ) )

( ) ( )

 

 

 

 

 

∆ +

∆ +

∆ +

− +

− +

− +

∆ +

∆ +

∆ +

=

i i

i i

i i

ii i

i

i

p i i i p

i i i i

i i

p i i i p

i i i i

i i

p i i p

i i i

i

p i p

i i

p i

p X p

X p

X

p X p

X p

X

X X

X

X X

X

X

0 1

0 0

0 1 0

0

0 1

0 0

0 1

0 0

1

1 1

1 1

1 1

L L

M M

M M

L L

be a matrix of degree p

i

+ 1 where ∆

i

> 0 . Proposition 2. We have

( )

2

1

3

2

... ( 1 )

2 ( 21)

det

i i i

i i

p p i i i

p p p

i

p p

X

+

− ∆

=

Proof. It result immediately of the Vandermonde determinant [2, 3].

From both above propositions we obtain

Proposition 3. The next tensor determinant is given by the fornula

( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

=

+ + + +

 

 

 − ∆

=

=

k

i

p p p p

p i i i

p p p k p

p

k i i

i i

i k

p p

X X

X

1

1 ...

1 ˆ ...

1 2

1 2

2 1 2

1

1 2

1

1 ...

3 2 ...

det

2. Polynomial interpolation

Consider the empirical process dependant on finite quantity of parameters with given initial conditions and measurement steps and know results. Thus let parameters X

1

, X

2

,..., X

k

take initial positive values X

01

, X

02

,..., X

0k

and the values X

01

+ I

1

1

, X

02

+ I

2

2

,..., X

0k

+ I

k

k

with fixed positive steps

k

1

,

2

,..., , where 0 ≤ I

1

p

1

, 0 ≤ I

2

p

2

,..., 0 ≤ I

k

p

k

. The results W

I1I2...Ik

at all steps X

01

+ I

1

1

, X

02

+ I

2

2

,..., X

0k

+ I

k

k

are know. So and the problem of polynomial interpolation follows to the question about to determine of coeffi- cients of the polynomial

( ) ∑

=

k k

k k

p i

p i

p i

i k i i i i i

k

a X X X

X X X W

0 0 0

2 1 ...

2 1

2 2

1 1

2 1 2

1

...

,..., ,

M

(3)

The polynomial interpolation for technical experiments 21

for it

( ) ( ) ( )

k

k k

k

k II I

p i

p i

p i

i k k k i i

i i

i

X I X I X I W

a

...

0 0 0

0 2

2 02 1 1 01

... 12

2 2

1 1

2 1

2

1

+ ∆ + ∆ ... + ∆ =

M

(*)

where 0 ≤ I

1

p

1

, 0 ≤ I

2

p

2

,..., 0 ≤ I

k

p

k

. Let A

ii ...ik

2

1

be the i

1

i

2

... i

k

-th algebraic replacement of the matrix

( ) ( ) ( )pk

k p

p

X X

X

1 1

2 2

⊗ ... ⊗ of linear sysytems (*) by a column vector

Ik

I

W

I ...

2

1

.

Theorem 1. The linear systems of equations (*) has the unique solution and

( ) ( ) ( )

(

k k

)

k p

k p

p

i i i i

i

i

X X X

a A

= ⊗

...

det

det

2 1

2 1 2

1

2 1

...

...

for 0 ≤ i

1

p

1

, 0 ≤ i

2

p

2

,..., 0 ≤ i

k

p

k

.

Proof. Take the order corresponding to the tensor product

k k

k p p pp p

p

a a

a a

a

00...0 00...1 00... 0 ... ...

2 1 2

,..., ,...,

,..., ,

Then the determinant of the system (1) is equal with it at the proposition 3 and the Cramer’s formulas are used.

3. Example

In the standard process of the nitriding under glow discharge ([4]) the parame- ters were as follow: temperature T

0

= 793 K, T

1

= 823 K, T

2

= 853 K, pressure

Pa, 150

p

0

= p

1

= 300 Pa and time of the treatment t

0

= 5 h, t

1

= 10 h, t

2

= 15 h.

After nitriding surface layers were characterized by surface microhardness meas- urements

k j ipt

H

T

for 0 ≤ i ≤ 2 , 0 ≤ j ≤ 1 and 0 ≤ k ≤ 2 .

So which the steps ∆T = 30 by temperature, ∆p = 150 by pressure and ∆t = 5 by time we obtain the next polynomial inerpolation formula for the surface micro- hardness

( ) ∑ ( )

= ∆

2 0

1 0

2 0 18 9

18

det

4 , 1 ,

k j i

k j i

ijk

T p t

t A p t T

p T H

where A denote the ijk -th algebraic replacement of the matrix

ijk

(4)

G. Biernat, A. Ciekot 22

 

 

 ⊗

 

⊗ 

 

 

2 2 2

2 1 1

2 0 0

1 0 2

2 2

2 1 1

2 0 0

1 1 1 1

1 1

1 1

t t

t t

t t p

p T

T T T

T T

by a column vector

k j ipt

H

T

. (In this case the linear system (1) has the ( 18 × 18 )

type). After the normalization

10 T = ∆ T

∆ and

10 p = ∆ p

∆ we obtain

( ) ∑ ( )

=

2 0

1 0

2 0 18 9

18

det

5 19 3 4 , 1 ,

k j i

k j i

ijk

T p t

A t

p T H

where A denote the ijk-th algebraic replacement of the matrix

ijk

 

 

 ⊗

 

⊗ 

 

 

2 2 2

2 2 2

15 15 1

10 10 1

5 5 1 30 1

15 1 58 58 1

55 55 1

52 52 1

by a column wector H

Tipjtk

.

References

[1] Kincaid D., Cheney W., Numerical Analysis. Mathematics of Scientific Computing, The Univer- sity of Texas at Austin, 2002.

[2] Gantmacher F.R., The theory of matrices, Vol. 1, 2, Chelsea 1974.

[3] Lancaster P., Theory of Matrices, Acad. Press 1969.

[4] Grant Nr 3T08C06726, Modyfikacja powierzchni tytanu i jego stopów drogą azotowania w wyładowaniu jarzeniowym w celu poprawy własności eksploatacyjnych warstwy wierzchniej.

Cytaty

Powiązane dokumenty

In the next section, I treat the simplest such case w = δ and describe how to compute the beginning coefficients of Φ (δ) (x) in a manner analogous to that for ordinary

A necessary and sufficient conditions are given for the set of algebraic elements of a semisimplo commutative Banach algebra to be closed.. In this paper we are

Maksimum czułości zależne jest od kąta patrzenia, gdy kąt maleje ekstremum funkcji przesuwa się nieznacznie w stronę większych wartości, odwrotna zależność dotyczy

cem, ściętym w Troyes. Jego Pasja nie ma jednak wartości historycznej33. Znamy ponadto poświęconą mu Pasję, która po­ chodzi z V wieku. Wspomina ją Martyrologium Hierony- 30

Poza tym w związku z odmiennością koncepcji wolności słowa w Pierwszej Poprawce do Konstytucji USA oraz EKPC uzasadniona jest ostrożność w korzystaniu przez

On the other hand surprisingly, the leader of WKH6ORYHQLDQ1DWLRQDO3DUW\=PDJR-HOLQþLþ3OHPHQLWLZKRLQWKHQDWLRQDO parliamentary elections took a very critical

The sensitivity analysis shows that the influence of pouring temperature on the temperature field is the most essential in the casting sub-domain and sand mix layer close to

The advantage of a hybrid formulation is that the dual basis functions and degrees of freedom can be defined using element mass matrices only, instead of the global mass