• Nie Znaleziono Wyników

Cartesian closed categories CCC

N/A
N/A
Protected

Academic year: 2021

Share "Cartesian closed categories CCC"

Copied!
145
0
0

Pełen tekst

(1)

Cartesian closed categories CCC

'

&

$

% '

&

$

% typed

functional

programming catego vs.

ry theo

ry '

&

$

% '

&

$

%

typed lamb

da-calculi vs.

catego

ry theo ry

Andrzej Tarlecki: Category Theory, 2021 - 130 -

(2)

Cartesian closed categories CCC

'

&

$

% '

&

$

% typed

functional

programming catego vs.

ry theo

ry '

&

$

% '

&

$

%

typed lamb

da-calculi vs.

catego

ry theo ry

Andrzej Tarlecki: Category Theory, 2021 - 130 -

(3)

Cartesian closed categories CCC

'

&

$

% '

&

$

% typed

functional

programming catego vs.

ry theo

ry '

&

$

% '

&

$

% typed lamb

da-calculi vs.

catego

ry theo ry

Andrzej Tarlecki: Category Theory, 2021 - 130 -

(4)

Cartesian categories

Definition: A category K is Cartesian if it comes equipped with finite products.

Equivalently:

• 1 ∈ |K| — a terminal object

• A × B — a product of A and B, for every A, B ∈ |K|

Examples: Set, Pfn, Cpo, semilattices, Cat, TΣ,Φop , . . .

Recall the definitions of these categories and the constructions of products in each of them

Andrzej Tarlecki: Category Theory, 2021 - 131 -

(5)

Cartesian categories

Definition: A category K is Cartesian if it comes equipped with finite products.

Equivalently:

• 1 ∈ |K| — a terminal object

• A × B — a product of A and B, for every A, B ∈ |K|

Examples: Set, Pfn, Cpo, semilattices, Cat, TΣ,Φop , . . .

Recall the definitions of these categories and the constructions of products in each of them

Andrzej Tarlecki: Category Theory, 2021 - 131 -

(6)

Cartesian categories

Definition: A category K is Cartesian if it comes equipped with finite products.

Equivalently:

• 1 ∈ |K| — a terminal object

• A × B — a product of A and B, for every A, B ∈ |K|

Examples: Set, Pfn, Cpo, semilattices, Cat, TΣ,Φop , . . .

Recall the definitions of these categories and the constructions of products in each of them

Andrzej Tarlecki: Category Theory, 2021 - 131 -

(7)

Cartesian categories

Definition: A category K is Cartesian if it comes equipped with finite products.

Equivalently:

• 1 ∈ |K| — a terminal object

• A × B — a product of A and B, for every A, B ∈ |K|

Examples: Set, Pfn, Cpo, semilattices, Cat, TΣ,Φop , . . .

Recall the definitions of these categories and the constructions of products in each of them

Andrzej Tarlecki: Category Theory, 2021 - 131 -

(8)

Cartesian categories

Definition: A category K is Cartesian if it comes equipped with finite products.

Equivalently:

• 1 ∈ |K| — a terminal object

• A × B — a product of A and B, for every A, B ∈ |K|

Examples: Set, Pfn, Cpo, semilattices, Cat, TΣ,Φop , . . .

Recall the definitions of these categories and the constructions of products in each of them

Andrzej Tarlecki: Category Theory, 2021 - 131 -

(9)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(10)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(11)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(12)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(13)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(14)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(15)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(16)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

BTW: for g : A → A0 and h : B → B0

g × h = hπA,B;g, πA,B0 ;hi : A × B → A0 × B0

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(17)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Examples: Set, Cpo, Cat, . . .

Heyting semilattices (b ⇐ c is such that for all a, a ∧ b ≤ c iff a ≤ (b ⇐ c)) Non-examples: Pfn, TΣ,Φop .

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(18)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Examples: Set, Cpo, Cat, . . .

Heyting semilattices (b ⇐ c is such that for all a, a ∧ b ≤ c iff a ≤ (b ⇐ c)) Non-examples: Pfn, TΣ,Φop .

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(19)

Cartesian closed categories

Definition: A Cartesian category K is closed if for all B, C ∈ |K| we indicate [B→C] ∈ |K| and εB,C : [B→C] × B → C such that for all A ∈ |K| and

f : A × B → C there is a unique Λ(f ) : A → [B→C] satisfying (Λ(f ) × idB);εB,C = f

[B→C] [B→C] × B -

εB,C

A A × B *

f

C 6

∃! Λ(f )

6 Λ(f ) × idB

× B -

K K

Examples: Set, Cpo, Cat, . . .

Heyting semilattices (b ⇐ c is such that for all a, a ∧ b ≤ c iff a ≤ (b ⇐ c)) Non-examples: Pfn, TΣ,Φop .

Andrzej Tarlecki: Category Theory, 2021 - 132 -

(20)

Summing up

A category K is a Cartesian closed category (CCC ) if:

• C : K → 1 has a right adjoint C1: 1 → K, yielding 1 ∈ |K|.

• ∆ : K → K × K has a right adjoint × : K × K → K with counit given by πA,B : A × B → A and πA,B0 : A × B → B for A, B ∈ |K|.

• for each B ∈ |K|, × B : K → K has right adjoint [B→ ] : K → K, with counit given by εB,C : [B→C] × B → C, for C ∈ |K|.

Andrzej Tarlecki: Category Theory, 2021 - 133 -

(21)

Summing up

A category K is a Cartesian closed category (CCC) if:

• C : K → 1 has a right adjoint C1: 1 → K, yielding 1 ∈ |K|.

• ∆ : K → K × K has a right adjoint × : K × K → K with counit given by πA,B : A × B → A and πA,B0 : A × B → B for A, B ∈ |K|.

• for each B ∈ |K|, × B : K → K has right adjoint [B→ ] : K → K, with counit given by εB,C : [B→C] × B → C, for C ∈ |K|.

Andrzej Tarlecki: Category Theory, 2021 - 133 -

(22)

Summing up

A category K is a Cartesian closed category (CCC) if:

• C : K → 1 has a right adjoint C1: 1 → K, yielding 1 ∈ |K|.

• ∆ : K → K × K has a right adjoint × : K × K → K with counit given by πA,B : A × B → A and πA,B0 : A × B → B for A, B ∈ |K|.

• for each B ∈ |K|, × B : K → K has right adjoint [B→ ] : K → K, with counit given by εB,C : [B→C] × B → C, for C ∈ |K|.

Andrzej Tarlecki: Category Theory, 2021 - 133 -

(23)

Summing up

A category K is a Cartesian closed category (CCC) if:

• C : K → 1 has a right adjoint C1: 1 → K, yielding 1 ∈ |K|.

• ∆ : K → K × K has a right adjoint × : K × K → K with counit given by πA,B : A × B → A and πA,B0 : A × B → B for A, B ∈ |K|.

• for each B ∈ |K|, × B : K → K has right adjoint [B→ ] : K → K, with counit given by εB,C : [B→C] × B → C, for C ∈ |K|.

Andrzej Tarlecki: Category Theory, 2021 - 133 -

(24)

Summing up

A category K is a Cartesian closed category (CCC) if:

• C : K → 1 has a right adjoint C1: 1 → K, yielding 1 ∈ |K|.

• ∆ : K → K × K has a right adjoint × : K × K → K with counit given by πA,B : A × B → A and πA,B0 : A × B → B for A, B ∈ |K|.

• for each B ∈ |K|, × B : K → K has right adjoint [B→ ] : K → K, with counit given by εB,C : [B→C] × B → C, for C ∈ |K|.

Andrzej Tarlecki: Category Theory, 2021 - 133 -

(25)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(26)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(27)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(28)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(29)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(30)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(31)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(32)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(33)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(34)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(35)

Spelling this out

• 1 ∈ |K|

− for A ∈ |K|: hiA: A → 1 such that hiA = f for all f : A → 1.

• for A, B ∈ |K|, A × B ∈ |K|, πA,B : A × B → A, πA,B0 : A × B → B:

− for C ∈ |K|, for f : C → A, g : C → B: hf, gi : C → A × B such that

− hf, gi;πA,B = f and hf, gi;πA,B0 = g

− for h : C → A × B, h = hh;πA,B, h;πA,B0 i

• for B, C ∈ |K|, [B→C] ∈ |K|, εB,C : [B→C] × B → C:

− for A ∈ |K|, for f : A × B → C: Λ(f ) : A → [B→C] such that

− (Λ(f ) × idB);εB,C = f

− for h : A → [B→C], Λ((h × idB);εB,C) = h.

Andrzej Tarlecki: Category Theory, 2021 - 134 -

(36)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(37)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(38)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(39)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(40)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(41)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(42)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(43)

Typed λ-calculus with products

Types The set T of types τ ∈ T is such that

• 1 ∈ T

• τ ×τ0 ∈ T , for all τ, τ0 ∈ T

• τ →τ0 ∈ T , for all τ, τ0 ∈ T Note:

T need

not be the least such that.. .

Contexts Contexts Γ are of the form:

• x11, . . . , xnn,

where n ≥ 0, x1, . . . , xn are distinct variables, and τ1, . . . , τn ∈ T

Andrzej Tarlecki: Category Theory, 2021 - 135 -

(44)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(45)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(46)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(47)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(48)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(49)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(50)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(51)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(52)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(53)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(54)

Typed terms in contexts

Γ ` t : τ

Typing/formation rules coming next

Omitting the usual definitions, like:

• free variables FV (M ),

• substitution M [N/x], etc. Same for the usual simple properties, like:

• weakening — context extension;

• subject reduction;

• uniqueness of types;

• removing unused variables from contexts;

etc

Andrzej Tarlecki: Category Theory, 2021 - 136 -

(55)

Typing rules

x11, . . . , xnn ` xi: τi x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Γ ` M : τ →τ0 Γ ` N : τ

Γ ` M N : τ0

Γ ` hi : 1

Γ ` M : τ Γ ` N : τ0 Γ ` hM, N i : τ ×τ0

Γ ` πτ,τ0 : τ ×τ0→τ Γ ` πτ,τ0 0 : τ ×τ0→τ0

Andrzej Tarlecki: Category Theory, 2021 - 137 -

(56)

Typing rules

x11, . . . , xnn ` xi: τi x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Γ ` M : τ →τ0 Γ ` N : τ

Γ ` M N : τ0

Γ ` hi : 1

Γ ` M : τ Γ ` N : τ0 Γ ` hM, N i : τ ×τ0

Γ ` πτ,τ0 : τ ×τ0→τ Γ ` πτ,τ0 0 : τ ×τ0→τ0

Andrzej Tarlecki: Category Theory, 2021 - 137 -

(57)

Typing rules

x11, . . . , xnn ` xi: τi x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Γ ` M : τ →τ0 Γ ` N : τ

Γ ` M N : τ0

Γ ` hi : 1

Γ ` M : τ Γ ` N : τ0 Γ ` hM, N i : τ ×τ0

Γ ` πτ,τ0 : τ ×τ0→τ Γ ` πτ,τ0 0 : τ ×τ0→τ0

Andrzej Tarlecki: Category Theory, 2021 - 137 -

(58)

Typing rules

x11, . . . , xnn ` xi: τi x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Γ ` M : τ →τ0 Γ ` N : τ

Γ ` M N : τ0

Γ ` hi : 1

Γ ` M : τ Γ ` N : τ0 Γ ` hM, N i : τ ×τ0

Γ ` πτ,τ0 : τ ×τ0→τ Γ ` πτ,τ0 0 : τ ×τ0→τ0

Andrzej Tarlecki: Category Theory, 2021 - 137 -

(59)

Typing rules

x11, . . . , xnn ` xi: τi x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Γ ` M : τ →τ0 Γ ` N : τ

Γ ` M N : τ0

Γ ` hi : 1

Γ ` M : τ Γ ` N : τ0 Γ ` hM, N i : τ ×τ0

Γ ` πτ,τ0 : τ ×τ0→τ Γ ` πτ,τ0 0 : τ ×τ0→τ0

Andrzej Tarlecki: Category Theory, 2021 - 137 -

(60)

Typing rules

x11, . . . , xnn ` xi: τi x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Γ ` M : τ →τ0 Γ ` N : τ

Γ ` M N : τ0

Γ ` hi : 1

Γ ` M : τ Γ ` N : τ0 Γ ` hM, N i : τ ×τ0

Γ ` πτ,τ0 : τ ×τ0→τ Γ ` πτ,τ0 0 : τ ×τ0→τ0

Andrzej Tarlecki: Category Theory, 2021 - 137 -

(61)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(62)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(63)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(64)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(65)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(66)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(67)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(68)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

[[M ]] : [[Γ]] → [[τ ]]

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(69)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

[[M ]] : [[Γ]] → [[τ ]]

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(70)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

[[M ]]Γ: [[Γ]] → [[τ ]]

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(71)

Semantics

Let K be an arbitrary but fixed CCC.

• Types denote objects, [[τ ]] ∈ |K|, where:

− [[1]] = 1

− [[τ ×τ0]] = [[τ ]] × [[τ0]]

− [[τ →τ0]] = [[[τ ]]→[[τ0]]]

• So do contexts:

− [[x11, . . . , xnn]] = [[τ1]] × . . . × [[τn]]

• Terms denote morphisms:

Weakening – context extension:

If Γ ` M : τ then Γ, Γ0 ` M : τ

− [[M ]]Γ: [[Γ]] → [[τ ]],

− [[M ]]Γ,Γ0 : [[Γ, Γ0]] → [[τ ]], and [[M ]]Γ,Γ0 = ρ;π[[Γ]],[[Γ0]];[[M ]]Γ where ρ : [[Γ, Γ0]] → [[Γ]] × [[Γ0]]

is the obvious isomorphism.

[[M ]]Γ: [[Γ]] → [[τ ]]

defined by induction on the derivation of Γ ` M : τ (coming next).

Andrzej Tarlecki: Category Theory, 2021 - 138 -

(72)

Semantics of λ-terms

− [[xi]] = πi: [[Γ]] → [[τi]] for Γ = x11, . . . , xnn, πi is the obvious projection.

Andrzej Tarlecki: Category Theory, 2021 - 139 -

(73)

Semantics of λ-terms

− [[xi]] = πi: [[Γ]] → [[τi]] for Γ = x11, . . . , xnn, πi is the obvious projection.

x11, . . . , xnn ` xi: τi

Andrzej Tarlecki: Category Theory, 2021 - 139 -

(74)

Semantics of λ-terms

− [[xi]] = πi: [[Γ]] → [[τi]] for Γ = x11, . . . , xnn, πi is the obvious projection.

x11, . . . , xnn ` xi: τi

Andrzej Tarlecki: Category Theory, 2021 - 139 -

(75)

Semantics of λ-terms

− [[xi]] = πi: [[Γ]] → [[τi]] for Γ = x11, . . . , xnn, πi is the obvious projection.

− [[λxii.M ]] = Λ(ρ;[[M ]]) : [[Γ0]] → [[τi→τ ]] for Γ = x11, . . . , xnn, Γ0 = x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn, and Γ ` M : τ , where ρ : [[Γ0]] × [[τi]] → [[Γ]] is the obvious isomorphism.

Andrzej Tarlecki: Category Theory, 2021 - 139 -

(76)

Semantics of λ-terms

− [[xi]] = πi: [[Γ]] → [[τi]] for Γ = x11, . . . , xnn, πi is the obvious projection.

− [[λxii.M ]] = Λ(ρ;[[M ]]) : [[Γ0]] → [[τi→τ ]] for Γ = x11, . . . , xnn, Γ0 = x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn, and Γ ` M : τ , where ρ : [[Γ0]] × [[τi]] → [[Γ]] is the obvious isomorphism.

x11, . . . , xnn ` M : τ

x11, . . . , xi−1i−1, xi+1i+1, . . . , xnn ` λxii.M : τi→τ Given [[M ]] : [[Γ]] → [[τ ]], define [[λxii.M ]] : [[Γ0]] → [[τi→τ ]].

Easy: ρ;[[M ]] : [[Γ0]] × [[τi]] → [[τ ]], hence Λ(ρ;[[M ]]) : [[Γ0]] → [[[τi]]→[[τ ]]].

Andrzej Tarlecki: Category Theory, 2021 - 139 -

Cytaty

Powiązane dokumenty

In this paper we give a version of the theorem on local integral invariants of systems of ordinary differential equations1. We give, as an immediate conclusion of this theorem,

In a special case where the base field k is algebraically closed and a proper component of the intersection is a closed point, intersection multiplicity is an invariant of

The purpose of this section is to develop the method of proof of Theorem 2 and prove the following theorem..

Only their identification with one another permits to approach to cogito (the first fact) as the first principle (cogito, ergo sum) and as the supreme axiom (if I think, then I

Which famous sportsperson appears in “The Hangover”?. What is the name of the hospital where Dr Gregory

0 współczynnikach funkcji, których część rzeczywista jest ograniczona О коэффициентах функций, вещественная часть которых ограничена.. In this note we are going

SuperK-Gd pre-SN warning system ( from M. Vagins talk at Sendai conference 6-9 March 2019 ) Hyper-Kamiokande project starting construction next year, operating 2027 other low

Finally, observe that using the axioms of T , one can replace any formula with function symbols f & by a formula of the language of ordered fields, and thus quantifier