• Nie Znaleziono Wyników

Thorium effect on the oxidation of uranium: Photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U1 − xThx)O2 (x = 0 to 1) thin films

N/A
N/A
Protected

Academic year: 2021

Share "Thorium effect on the oxidation of uranium: Photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U1 − xThx)O2 (x = 0 to 1) thin films"

Copied!
9
0
0

Pełen tekst

(1)

Thorium effect on the oxidation of uranium: Photoelectron spectroscopy (XPS/UPS) and

cyclic voltammetry (CV) investigation on (U1 − xThx)O2 (x = 0 to 1) thin films

Cakir, P.; Eloirdi, R; Huber, F.; Konings, R. J.M.; Gouder, T

DOI

10.1016/j.apsusc.2016.10.010

Publication date

2017

Document Version

Final published version

Published in

Applied Surface Science

Citation (APA)

Cakir, P., Eloirdi, R., Huber, F., Konings, R. J. M., & Gouder, T. (2017). Thorium effect on the oxidation of

uranium: Photoelectron spectroscopy (XPS/UPS) and cyclic voltammetry (CV) investigation on (U1 −

xThx)O2 (x = 0 to 1) thin films. Applied Surface Science, 393, 204-211.

https://doi.org/10.1016/j.apsusc.2016.10.010

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Applied

Surface

Science

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full

Length

Article

Thorium

effect

on

the

oxidation

of

uranium:

Photoelectron

spectroscopy

(XPS/UPS)

and

cyclic

voltammetry

(CV)

investigation

on

(U

1

x

Th

x

)O

2

(x

=

0

to

1)

thin

films

P.

Cakir

a,b,∗

,

R.

Eloirdi

a

,

F.

Huber

a

,

R.J.M.

Konings

a,b

,

T.

Gouder

a

aEuropeanCommission,JointResearchCentre,P.O.Box2340,D-76125,Karlsruhe,Germany

bDepartmentofRadiationScienceandTechnology,DelftUniversityofTechnology,Mekelweg15,2629,JBDelft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17August2016 Receivedinrevisedform 27September2016 Accepted3October2016 Availableonline4October2016 Keywords: Thinfilm Mixedoxide Electrochemistry Corrosion Actinideoxide

a

b

s

t

r

a

c

t

ThinfilmsofU1−xThxO2(x=0to1)havebeendepositedviareactiveDCsputtertechniqueand

charac-terizedbyX-ray/Ultra-violetPhotoelectronSpectroscopy(XPS/UPS),X-rayPowderDiffractometer(XRD) andCyclicVoltammetry(CV)inordertounderstandtheeffectofThoriumontheoxidationmechanism. Duringthedeposition,thecompetitionbetweenuraniumandthoriumforoxidationshowedthat tho-riumhasamuchhigheraffinityforoxygen.Depositionconditions,timeandtemperaturewerealsothe subjectofthisstudy,tolookatthehomogeneityandthestabilityofthefilms.Whilecoreleveland valencebandspectrawerenotalteredbythetimeofdeposition,temperaturewasaffectingtheoxidation stateofuraniumandthevalencebandduetothemobilityincreaseofoxygenthroughthefilm.X-ray diffractionpatterns,corelevelspectraobtainedforU1−xThxO2versusthecompositionshowedthat

lat-ticeparametersfollowtheVegard’slawandtogetherwiththebindingenergiesofU-4fandTh-4fare ingoodagreementwithliteraturedataobtainedonbulkcompounds.Tostudytheeffectofthoriumon theoxidationofU1−xThxO2films,weusedCVexperimentsatneutralpHofaNaClsolutionincontact

withair.Theresultsindicatedthatthoriumhasaneffectontheuraniumoxidationasdemonstratedby thedecreaseofthecurrentoftheoxidationpeakofuranium.XPSmeasurementsmadebeforeandafter theCV,showedarelativeenrichmentofthoriumattheextentofuraniumatthesurfacesupportingthe formationatalongertermofathoriumprotectivelayeratthesurfaceofuranium-thoriummixedoxide. ©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thorium-Uranium mixed oxides are interesting nuclear fuel materials. Compared to uranium- plutonium mixed oxide, the higherthermalstabilityandmeltingtemperatureresultsinalarger margintomelting[1].TheuseofThorium-Uraniummixedoxide resultsin theproduction ofsmallerquantitiesofTransuranium elements[2].

Duringthegeologicalstorageofusednuclearfuel,the radionu-clidesembeddedintheuraniumfuelmatrix,whichareproduced duringthereactorirradiation,canbereleasedviathedissolutionof thefuelmatrix.Uraniumhastwostableoxidationstates,(IV)and (VI),andseveralmixedvalencephases(i.e.U3O7,U4O9,U3O8).The

solubilityofuraniumincreasesseveralmagnitudesasthe oxida-tionstateincreasesfromU(IV)toU(VI)inthematrix[3].Onthe

∗ Correspondingauthorat:EuropeanCommission,JointResearchCentre,P.O.Box 2340,D-76125,Karlsruhe,Germany.

E-mailaddress:pelincakir@outlook.com(P.Cakir).

otherhand,ThO2ischemicallystable,havingoneoxidationstate

(IV),anditsdissolutionisreportedtobeextremelydifficult[4]. Sincethefirst contactof thematerialwiththeenvironment happensonthesurface,ourinterestistoobservechangesandthe evolutionoftheoxidelayerformingattheinterface.Inthiswork, thinfilmsof(U, Th)mixedoxidesformedbysputter deposition technique[5]areusedinsteadofusingbulkmaterial[6–9].The useofthinfilmstosimulatethesurfaceofbulkcompoundsresults inahighflexibilityforcompositionalchanges(O/(U+Th)orU/Th ratios).Moreover,itallowsdepositionoflayersofdifferent thick-nessontovariablesubstrates,withdifferentmicrostructurewhen changingthetemperatureandgaspressureduringthedeposition. Materialssuchas uranium− thoriumoxides,aredifficultto studybyphotoelectronspectroscopy[10],which isduetotheir semiconductorpropertiesasaresultofwhichtheflowofcurrent cannotbeachievedproperlyalongthebulksamplethickness.This aspectcanbelimitedoravoidedbytheuseofthinfilmsbecause thelowthicknessresultsinalowresistanceandthevoltagedrop canbeneglected[11,12].

http://dx.doi.org/10.1016/j.apsusc.2016.10.010

0169-4332/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(3)

Themaingoalofthisstudyistounderstandtheeffectofthe sta-bletetravalentactinideTh(IV)ontouraniumdioxideandtofollow theelectronicstructure,oxidationstateandredoxreactionsonthe surface.

Thepaperisdividedintothreesections.Thefirstpart investi-gatestherelativeoxygenaffinitybetweenuraniumandthorium, bybringingthemintocompetition.Thesecondpartexaminesthe effectofhightemperatureandlowtemperaturedepositiononthe surfacepropertiessuchasoxygendiffusionandatomic segrega-tion.Alsoin this part,we compare U1-xThxO2 (x=0 to1) thin

filmstobulkmaterialstoconfirmtheiruseasmodel,byanalysing theirelectronicstructureandlatticeparametersversustheir com-position. The third part consists of electrochemical studies on U1-xThxO2 films(X=0 to 1). Electrochemistry, especially cyclic

voltammetry(CV)ofUO2sampleshasbeenintensivelyemployed

[13–18]howevertothebestofourknowledge,therehasbeenno CVrecordonuranium-thoriummixedoxides,probablyduetothe semiconductorproperties.TheobjectiveofthecurrentCVstudies istoexaminetheoxidationofU1-xThxO2beforeandaftertheCV

usingXPS,lookingatthecompositionandtheoxidationstate.

2. Experimental

ThethinfilmsofU1−xThxO2(x=0to1)werepreparedin-situ

bydirectcurrentreactiveco-sputteringfromthoriumanduranium metaltargetsinagasmixtureofAr(6N)andO2(6N).Theoxygen

concentrationinthefilmswasadjustedbychangingtheO2partial

pressure(10−8mbar–6×10−6mbar),whiletheArpartialpressure wasmaintainedat5×10−7mbar.Thecompositionofthefilmsis controlledbychangingtherespectivetarget voltagesfor Uand Thtarget.Thethinfilmsweredepositedontosiliconwafer(111) substrates,whichwerecleanedbyAr ionsputtering (4keV) for 1min.Theplasmainthediodesourcewasmaintainedbyinjection ofelectronsof50–100eVenergy(triodesetup),allowingworking atlowArpressureinabsenceofstabilizingmagneticfields.After deposition,thethinfilmsweretransferredtotheXPS-UPSanalysis chamberwithoutexposingthemtoair.

Photoelectronspectroscopydatawererecordedusinga hemi-sphericalanalyserfromOmicron(EA125U5).Thespectrawere taken using Mg K␣ (1253.6eV) radiation with an approximate energyresolutionof1eV.UPSmeasurementsweremadeusingHeII (40.81eV)excitationradiationproducedbyahighintensity win-dowlessUVraregasdischargesource(SPECSUVS300).Thetotal resolutioninUPSwas0.1–0.05eVforthehighresolutionscans.The backgroundpressureintheanalysischamberwas2×10−10mbar. ThespectrometerwascalibratedbyusingAu-4f7/2lineofmetalto

giveavalueat83.9eVBEandCu-2p3/2lineofmetalat932.7eV

BEforXPS,andonHeIandHeIIFermi-edgesforUPS. Photoemis-sionspectraweretakenatroomtemperature.Quantificationofthe spectrawasdoneusingCasaXPSsoftware(version2.3.13Dev50).As RelativeSensitivityFactors,Scofieldcross-sectionsforMg-K␣ radi-ation[19]weretaken.Anexampleofpeaksdeconvolutionwiththe CasaXPSsoftwareisreportedinFig.1.

Fortheelectrochemicalstudy,astandard3-electrodesetupwas usedwithaworkingelectrodecomposedofU1−xThxO2 (x=0.00,

0.10,0.44,0.84,1.00)thinfilmsdepositedontogoldfoilsurface; thereferenceelectrodewasanAg/AgCl(3MKCl)electrode and aPtwireascounterelectrode.Goldfoilswerefirstcleanedwith Ethanol/1NH2SO4/H2Othen heatedtill300◦C underultra-high

vacuum(UHV).Asadhesionlayer,aninterfacecomposedofa(U,Th) metallayerwasdepositedat300◦Cbetweenthegoldfoilandthe U1-xThxO2film.AllpotentialvaluesinthispaperareversusAg/AgCl.

Themeasurementswerecarriedoutwithastationaryelectrodein anunstirredsolution.Theelectrolytewasa0.01MNaClsolution atneutralpHincontactwithair.Experimentswerecarriedout atroomtemperature(22±3◦C)inaclosedTeflonelectrochemical

Table1

Bindingenergyof4f5/2corelevelpeakforThmetal,Umetal,ThO2andUO2.

Substance 4f5/2(eV) satellite

Thmetal 342.3[20,43] –

Umetal 388.40[44] –

ThO2 346.8[20,45] 7.3

UO2 390.95[11,46] 6.7

cellwithanelectrolytevolumeof3ml.Appliedpotentialswerenot correctedforvoltagedropbecauseofthenegligibleelectrode resis-tanceofthefilmelectrodes[11].Beforethescans,theelectrodes werepreconditionedatthemostcathodicpotentialfor5minto reduceanyhigheroxidesformedduringthetransportation.The cyclovoltammetry(CV)measurementswererecordedinpotential sweepcyclesinafirstseries(15cycles)from−1.000VAg/AgClupto

+0.600VAg/AgCl,andbackto−1.000VAg/AgClandtheninasecond

series(15cycles)from−1VAg/AgClto0.8VAg/AgClatascanrateof

0.010Vs−1.UltrapurewaterfromaMilliQ-system(>18M)was used.Chemicalswereallp.a.grade(Merck,Darmstadt).

TheX-raydiffractionanalysesweremadeona conventional Phillips PW3830 powder diffractometer with a Cu X-ray tube (40kV,30mA,K␣1=0.1540560nm).Filmsofabout360nm(1Å/s) thicknessesweredepositedat100◦ConaSi(111)wafer.The pat-ternswererecordedatroomtemperatureinastepscanmodeover a2rangeof[10–100]◦,withastepsizeof0.01◦andacounttime of5sperstep.

3. Resultsanddiscussion

3.1. Relativeoxygenaffinity

Tomeasuretherelativeoxygenaffinityofthoriumanduranium, aseriesofthinfilmsweredepositedsuccessivelybyincreasingthe oxygenpartialpressurewithalowincrementandanalysingthem in-situbyXPS.TheU-4fandTh-4fcorelevelspectraenableto inves-tigatetheoxidationofuraniumandthoriumthroughtheirbinding energy(BE)peak,theirshapeandtheirsatellites.Asreference val-ues,Table1reportsthe4f5/2BEofthoriumanduraniumpresentin

themetalandinthedioxide,aswellasthecorrespondingsatellite. Fig.2reportsU-4f5/2andTh-4f5/2corelevelspectraof(U,Th)Ox

(x<2) thin films obtained successively by co-deposition under slightincrease ofoxygenpartialpressureand (U,Th)metalfilm spectraareusedasreference(redplots).Itshouldbenotedthatthe oxygenpartialpressuresusedinthisexperimentarenotuniversal values,butvaryaccordingtotheexperimentalset-up.TheBEand thepeakshapesobtainedfor(U,Th)metalareinagreementwith thosereportedinliteratureforsingleandbulkelementofuranium andthorium[20,21].

Theinitialaddingofoxygenduringdepositionaffectsfirstthe thoriumasshownbytherelativeincreaseofthed-screenedpeak whereastheuraniumpeakkeepsconstantinshapeandinbinding energy.Thequickeroxidation ofthoriumrelativetouraniumis confirmedbythefurtherandnearlycompleteoxidationofthorium (greencurves)whileforuraniumthef-screenedpeakisstillthe mainpeak.Thissimpleexperimentdemonstratesanobviousand much strongeraffinityofoxygenforthoriumthanforuranium, asshownbytheoxidationofuraniumstartingonlyoncethorium isnearlycompletelyoxidised.Thisisinagreementwiththehigher stability(lowerGibbsenergyofformation)ofTh4+relativelytoU4+.

TheshifttolowerbindingenergyofTh-4fandU-4fpeaksistaking placeduetothedecreaseofFermi-energylinkedtochargecarrier depletion[22,23]inthesample,asreportedinapreviousstudyon ThO2[20].Itisacoherentshift,occurringforallphotoemissionlines

(includingO-1s).Thethicknessoftheoxidelayerissmallenough toallowelectronstotunnelthrough.Thisavoidsthechargingupon photoemissionandstillpermitsawell-definedFermi-level[24].

(4)

Fig.1. PeaksDeconvolutionofTh-4f5/2andU-4f5/2,withpeakspositions,FWHM,peaksareaandquantificationobtainedwithCasaXPSsoftware.

Fig.2. Th-4f7/2line(left)U-4f7/2line(right)corelevelspectraforco-deposited(U,Th)filmsversustherelativeincreaseofpartialpressureofoxygen(PO2).

3.2. Influenceofdepositionconditionsandcomparisonwithbulk data

3.2.1. Influenceofdepositiontimeandtemperatureon U0.50Th0.50O2thinfilms

Inthefollowingsection,wecomparetheeffectofdeposition timeoffilmsatroomtemperatureonthecorelevelandvalence bandspectra.Theideabehindistoinvestigatethereproducibility andthehomogeneityofthefilmsurfaceasafunctionofthefilm

thickness,goingfromatomictobulkproperties.WhileXPSprobes adepthofabout100Å,XRDislookingintoasampledepthofthe orderofa␮m.Sinceweshowedthatthecompositionalongthe thicknessofthefilm(i.e.depositiontime)isconstant,weconsider thatthecompositionofthesurfaceisrepresentativeofthatofthe bulk.

AfilmcompositionofU0.50Th0.50O2 hasbeenchosenforthis

experimentsseries.Thedepositionrateisabout1Å/s.Fig.3shows thecorelevelspectraU-4fandTh-4f(A),thevalenceband(B)and

(5)

Fig.3. TheinfluenceofthedepositiontimeontheU-4fandTh-4fcorelevelspectra(A)andonHeIIvalencebandspectra(B)forU0.50Th0.50O2.

Fig.4. TheinfluenceofthedepositiontemperatureontheU-4fandTh-4fcorelevelspectra(A)andontheHeIIvalencebandspectra(B)foraU0.50Th0.50O2.

thecorrespondingO–1s(middle)ofU0.50Th0.50O2filmdeposited

during5minand25mincorrespondingto30and150nm, respec-tively.Thedepositionconditionswerekeptrigorously thesame despite a small differencefor theoxygen partialpressure. The Fig.3Ashowsthespin-orbitsplitsofuraniumandthorium4f5/2

and4f7/2.Thebindingenergiesof4f7/2 inuraniumandthorium

are380.3eVand334.3eVrespectively,correspondingtouranium (IV)andthorium(IV)oxidationstates.Thesatellitepeaksandthe peakpositionshavebeenextensivelystudiedinpreviouspapers bothonThO2[20]andUO2[11].Thepositionandtheintensityof

thesatellitepeaksarecharacteristicfortheoxidationstatesofthe materialsandarelinkedtothefinalstateoccupation.Thesatellite peakpositionsforU-Thmixedoxides(6.7eVforU-4f7/2and7.3eV forTh-4f7/2)arealsothoseexpectedforthe+IVoxidationstate[25]. Withintheuncertaintythequantificationofthespectrallines,using CasaXPSsoftware,doesnotindicateanyatomicsegregationatthe surfaceforbothdepositions,andthisisalsoemphasizedbythe

con-stantfullwidthathalfmaximum(FWHM)andbindingenergies. Thisshowsthestabilityofthedepositiontechnique.

TheHeIIvalencebandspectra(Fig.3B)aremoresensitiveto5f statescomparedtoHeI(notreportedhere)andduetotheshort rangeoftheemittedphotoelectrons,UPSismoresensitivetothe surfacethanXPS.Asthoriumdoesnothavea 5fstate,thepeak at1.3eVbelowEFis duetotheU-5f2.Thepeakbetween3and

9eVisattributedtoO-2pbandemission.WhileXPSspectradid notshowquantitativedifferences,UPSshowsdifferentO-2pband intensityandthusdifferentratioO-2p/U-5f,goingfrom5.7to7.0 for5.1×10−6and6.1×10−6mbarpartialoxygenpressure, respec-tively.

Withthesamegoalasthepreviousexperiments,wecompared theelectronicstructureofU0.50Th0.50O2filmspreparedwiththe

sametimeofdepositionatroomtemperatureandat390◦C.Fig.4A reportstheU-4fandTh-4fcorelevelstatesandtheO–1sspectra (insetFig.4),whileFig.4BshowsthecorrespondingHeIIvalence bandofU0.50Th0.50O2.Firstweobservedaclearsuperpositionofthe

(6)

Fig.5.LatticeparameterofU1-xThxO2filmsversusxobtainedinthisworkand

comparedtoliteraturedataobtainedonbulkcompounds(A).Th-4f7/2andU-4f7/2

BindingenergyinU1-xThxO2filmsobtainedinthisworkandcomparedtoliterature

obtainedonbulkcompounds(B).

Th-4fcorelevelpeaksforbothtemperatures,whileasmall differ-enceappearsfortheintensityoftheU-4fpeaksandfortheshapeof theirsatellites.Thisshowsthattemperaturedoesnothaveaneffect onthethoriumstatesoncethisiscompletelyoxidised,whereasit influencestheuraniumstatesduetothediffusionoftheoxygenin thefilm,leadingtofurtheroxidationofU.Thisisalsoshowninthe magnifiedsatelliteintensities(insetFig.4A)andbytheslightshift towardshigherBEobservedininsetO–1sfigure.Thecomposition ofthefilmdepositedat390◦CcouldbequantifiedasU0.51Th0.49O2

whichiswithintheuncertaintyofthetechniquesimilartothe com-positionofthefilmdepositedatroomtemperature.InFig.4B,the HeIIvalencespectrashowamaineffectofthetemperatureonthe O-2pbandwhoseintensityandFWHMdecrease,whilethe5f2peak

shiftsslightlytohigherBE.Thediffusionoftheoxygenfromthetop surfacetotheinnerofthefilmcanexplainthiseffect.

3.2.2. Electronicstructureandlatticeparameterversus compositionofU1-xThxO2filmsandbulkmaterials

Tovalidatetheuseofthinfilmsasmodel,weproceededwiththe depositionofaseriesofU1−xThxO2(x=0to1)filmsmonitoringthe

U-4fandTh-4fbindingenergiesin-situandalsothelattice param-eterversusthecompositioninex-situbyXRD.Thecorresponding datareportedinFig.5Aarecomparedtothedataobtainedonbulk samples[25–29].Thelatticeparametersobservedforourthinfilms areclosetotheonesreportedonbulksample,followingVegard’s lawexpectedforthissolidsolution.Theinterceptofthelinearfit ofourworkandofAnthonysamyetal.[25]studyforUO2are5.448

and5.465Å,respectively.Thesmallerlatticeparameterfoundfor ourfilmcanbeexplainedbythepresenceofthestressinthefilms andwiththesmallcrystallitesizeasshownbythebroadeningof theXRDpeaks[30].Anotherparameterwhichmayinfluencethe evolutionofthelatticeparameteristheoxygencontentwhich com-paredtobulkcompoundsmightbeslightlydifferentfromourfilms producedin-situ.However,XPSresultsshowedthatthefilmsare stoichiometric.

Fig.5BshowstheBEofU-4f7/2andtheTh-4f7/2inU1−xThxO2

(x=0to1)versusthecompositionsandcompareswiththedata obtainedon bulk samples [25,31]. Vael et al. [32] pointed out thatthebindingenergyofU-4f7/2forU(IV)rangesfrom379.9to

380.9eV.Ourresultsstayinthereportedrangewhichshowsthat UandThmixedoxidearestoichiometric.Bindingenergiesof Th-4f7/2arealsostableina0.6eVrangeandinagoodagreementwith

Fig.6. CyclicvoltammetryonU1-xThxO2(x=0,0.10,0.44,0.84,1)filmsforthefırst

twocycles.

dataobtainedbyAllenetal.[31]butdifferentby1eVrelativelyto theonereportedbyAnthonysamyetal.[25].

Tosummarize,U1−xThxO2(x=0to1)mixedoxidesfilmsfollow

Vegard’slawandthebindingenergiesareingoodrelationwiththe onesobtainedforbulkmaterials.Itisapparentfromtheseresults thatourthinfilmscanbeusedasmodelforactinideoxidebulk samples,despitethemicrostructurewhichcanbedifferent(stress, preferentialorientation,...).

3.3. Electrochemicalstudies

Manystudieshavebeenreportedonchemical,physical proper-tiesandleachingexperimentsof(U,Th)mixedoxides[6,9,33,34]. Sunderetal.[9]showedthattheoxidationprocesstakingplace atthesurfaceof(U,Th)mixedoxidesamplesaresimilartopure UO2.However,comparedtoUO2theleachingexperimentsshowed

thatthedecreaseoftheuraniumdissolutionrateandthishasbeen linkedtotheloweruraniumcontentpresentinmixedoxideandin contactwithsolution.Thisstatementhasbeensupportedby Heis-bourgetal.[6,33]whostudiedthekineticsofdissolutionof(U,Th) mixedoxidesboththorium-anduranium-richsamples.Also,XPS analysesofsamplesobtainedafterleachingexperiment demon-strateasurface enrichedin thorium,formingaprotective layer disablingfurtherdissolutionoftheuranium[6].Demkowiczetal. [34]alsoreportedthattheuraniumdissolutionrateinfresh sam-plesof(U,Th)O2 was10to40timeslowerthanforconventional

UO2fuel.

Thuscompared topureUO2,thereisa clearindicationfor a

lowerdissolutionrateofuraniumin(U,Th)mixedoxide,however theoxidationandreductionprocessisnotclearyet.Sunderetal. [9]pointedoutthatduetothehighelectricalresistivity,working withelectrochemicaltechniquesonsuchasystemasbulk mate-rialwasnotpossible.Toovercomethisdifficulty,thinfilmscanbe agoodalternativeasdemonstratedbyMiserqueetal.[11],who reportedcyclicvoltammetryonUO2thinfilms.BycomparingCV

measurementsonUO2thinfilm(1␮m)andbulkUO2(1mm),itwas

confirmedthatthefilmsmadebyDCsputteringtechniquehave muchlowerresistancethanthebulkelectrodesandtheIRdropfor cyclicvoltammetryisnegligible.

Fig.6showsthefirsttwocyclesofU1−xThxO2 (x=0.10,0.44,

0.84,1.00)electrodesscannedbetween−1Vto0.6V(vs.Ag/AgCl) in0.01MNaCl.Thefirstcyclesareindicatedwithsolidlines,the secondonesareindicatedwithdashedlines.Romannumberson thegraphsindicatethepeakpositionsofthesuggestedreactions basedonliterature[17,35],Duringthefirstcycle,theUO2electrode

(7)

win-Fig.7. CyclicvoltammetryforU1-xThxO2(x=0,0.10,0.44,0.84,1)filmsfromthe3rduptothe15thcycleintherangeof−1Vto0.6V(A).CyclicvoltammetryforU1-xThxO2

(x=0,0.10,0.44,0.84,1)filmsforhigherpotentialwindowupto0.8V(vs.Ag/AgCl)andgoldsubstratecycles(yellowlines)(B).(Forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

dowitisthermodynamicallyimpossibletooxidisehomogeneous UO2andthepreviousstudiesattributedthecurrentchangetothe

differentenergysitesorinhomogeneitysuchasgrainboundaries andhyperstoichiometry(e.gUO2+x)onthesurfaceoftheelectrode

[17,35].ThefirstcyclefortheUO2,U0.90Th0.10O2,U0.56Th0.44O2and

U0.16Th0.84O2electrodesdoesnotshowanysignificantpeaks,

how-ever,thesecondcyclesofUO2andU0.90Th0.10O2electrodesshowa

slightcurrentincrease.Ontheotherhand,atlowercontentof ura-nium(i.e.U0.56Th0.44O2andU0.16Th0.84O2 electrodes)wedonot

observetheincreaseofthecurrent,whichcanbeexplainedbya loweroxidationonthesurfaceinthefirstcycles.

InregionII,theoxidationofUO2toUO2+xstartsandinthe

sub-sequentregionIII,UO2+xincreasestoUO2.33byO2−incorporation

intothelattice.Athigherpotentials,theoxidationprocessmight leadeithertoitsdissolutionasUO22+orrecrystallizationasUO2.5

andUO2.66 (duetotheadsorbedUO22+).However,inneutralto

slightlyalkalineelectrolytes,UO22+insolutionmightre-precipitate

ontheelectrodeeitherasschoepite(UO3·H2O)orasmetaschoepite

(UO3·2H2O)[17,35].

InregionIII,afastincreaseofthecurrentisobservedforboth UO2andU0.90Th0.10O2electrodesindicatingtheonsetof

dissolu-tion,whichisnot tosuchextentthecase forU0.56Th0.44O2 and

U0.16Th0.84O2 films. Thisprocesswasstudiedbymonitoringthe

masslossfromtheUO2electrodeinsolutionsofpH=5topH=8

usingEQCMbySeibertetal.[12].

Region IV and V are thereduction peaks of oxidised layers observed on cathodic potentials. These peaks are usually cou-pledwiththeanodicoxidationpeaks.Thepotentialsofthepeaks arerelatedtothethicknessoftheoxidelayerformedduringthe anodicscansatthesurface[36].Inneutralelectrolytes,regionIV is observedand attributed toreduction of UO3·nH2O toUO2+x.

UO3·nH2O phases are insulators and thought to precipitate as

porouslayeranddonotinterferewiththereductionofthe under-lyingoxides [37,38]. RegionV is associated tothereduction of underlyingoxidessuchasUO2.33/UO2+xorUO2.5,UO2.67 created

inregionIII,asstatedabove[35].StartingfromregionIVandgoing toregionV,UO2andU0.90Th0.10O2electrodesshowhighercathodic

currentsindicatingthereductionofU(VI)toU(IV).Thisisnotthe case for U0.56Th0.44O2 and U0.16Th0.84O2. Thisbehaviouris also

reflectedinregionVwhileUO2 andU90Th10O2 electrodesshow

reductiontostoichiometricUO2,theothertwoelectrodesdoesnot

indicateanycompellingcurrentactivity.Thelowcurrentobserved atthispotentialwindowontheU0.56Th0.44O2 and U0.16Th0.84O2

electrodescanbeattributedtothelowercontentofuraniumin

con-tactwiththesolution.Alsothesubstitutionofuraniumbythorium inUO2latticeleadstothealterationoftheelectricproperties(from

semi-conductorUO2toinsulatorThO2)ofmixedoxidesamples.It

decreasestheelectricalconductivityandthusthedissolutionrate ofuraniumasreportedinliterature[9,39].

Fig.7Arepresentsthecyclesfrom3rdtill15thCVintherange

of−1Vto0.6VAgCl/Ag.InFig.7A,inregionV,wedoobservethat

thecathodiccurrentincreaseswiththeuraniumcontent.While U0.90Th0.10O2and,toalesserextent,U0.56Th0.44O2behaveina

simi-larwayaspureUO2,showingashiftingtohighercathodicpotential

alongthesuccessivecycle,U0.16Th0.84O2remainsconstantcurrent

inthis region.Theshiftingtolowerpotentialseemstoindicate theformationofathickeroxidelayerincreasingalongthe succes-sivecycles(indicatedwiththearrows).Uncompletedreductionin domainVleadstoanincreaseofoxidationonregionIofthecurrent gettinghigherandhigherineachcycle.Thesamephenomenonis notobservedforU0.56Th0.44O2andU0.16Th0.84O2electrodesdueto

theloweramountofuranium.InregionIIandIII,whereoxidation ofUO2 andUO2+x istakingplace,thecurrentincreaseswiththe

contentoftheuraniumpresentintheelectrodes.

Whenthe scans continued upto 0.8VAg/AgCl for another 15

cycles,differenceswereobservedasshowninFig.7B.Lookingat thepeaksinregionVandregionI,wedoobserveanoppositetrend comparedtoFig.7A.Thebroaderscanwindowtohigheranodic potentialleadsashiftingtolowercathodicpotentialofregionV andtoadecreaseofcurrentalongthecyclesinregionsVandI. Thismightbeduetofactthathigherdissolutionratesareachieved athigheranodicpotentials.Thisdecreaseinintensityofpeaksin regionVandImayberelatedtothedecreaseofthethicknessof thehyperstoichiometricoxidelayers(regionV),thusleadingtoless differentenergysitesorgrainboundariesonthesurface(regionI). Thereasonwhythisishappeninginthisbiggerpotentialwindow isnottotallyclear.

Goldusedassubstrateandconsideredasnoblemetaldoesnot interferestronglyintheworkingpotentialwindowchoseninthis study,asshowninFig.7Binyellowlines.Inthepotentialwindows upto0.6V(notreportedhere)ithasnoeffectasdemonstrated bythelowcurrentvalue,butwhenmeasuredupto0.8Vapeak markedasX onthecathodicpotentials isobserved.Thismight beattributedtotheelectrolytereduction.Thefilmshaveacertain porosityenablingthecontactofthesolutionwithgoldsubstrate. TheintensitypeakXincreasealongthesuccessivecyclesandcan berelatedtotheoxidelayergettingmoreandmoreporouswhile thegoldsurfaceincreasestogetherwithitsrelatedcurrent.

(8)

Table2

CompositionandU-4f5/2,Th-4f5/2andO–1soffilmsbeforeandafter30cyclesofCVin[NaCl]=0.01M.

Sample BeforeCV AfterCV

Composition BindingEnergy,eV Composition BindingEnergy,eV

U-4f5/2 Th-4f5/2 O-1s U-4f5/2 Th-4f5/2 O-1s

1 U0.67Th0.33O2 380.5 334.0 529.8 U0.57Th0.43O2+x 381.3 334.1 529.7/531.2

2 U0.56Th0.44O2 380.5 333.9 529.8 U0.40Th0.60O2+x 381 333.9 529.8/531.2

3 U0.16Th0.84O2 380.5 333.9 529.8 U0.14Th0.86O2+x 380.9 333.8 529.7/531.3

Fig.8. U-4fandTh-4fofU0.67Th0.33oxidefilmbeforeandafter15cycles,insetgraph

representsthecorrespondingO–1sspectra.

ThecurrentcountsfortheU0.56Th0.44O2andU0.16Th0.84O2

elec-trodes throughout their consecutive CVs have about the same values,whichcanbeexplainedbytheloweramountofuranium atthesurface.TheU0.16Th0.84O2electrodeisratherbehavingasthe

goldsubstrateitself.Ithasahighercurrentthangoldsubstratedue tothesmallamountofuraniumonthesurface.Nonethelessthe currentactivityshouldberelatedtotheelectrolyteinterference becauseThoriumisnotexpectedtoshowanyoxidationonthese potentialwindow[40].

Fig.8comparestheU-4fandTh-4fspectraofU0.67Th0.33O2film

obtainedbeforeandafterCVasanexamplethegeneral observa-tions.FirsttheU-4fpeaksshifttohigherbindingenergyindicating furtheroxidationasUO2+x,unliketheTh-4fpeaksthatkeepa

con-stantbindingenergybecausenofurtheroxidationthanTh(IV)can takeplace.We alsoobservedthechangeintheintensitypeaks. WhenthetwospectrabeforeandaftertheCVexperimentare nor-malizedtoTh-4f,theU-4fintensitypeaksdecreasedaftertheCV cycles,indicatingaloweruraniumcontentatthesurfacecompared totheinitial,asdepositedfilmcomposition.AlsotheshiftofU-4f tohigherbindingenergyafterCVexperimentindicatesahigher oxidationstateforuraniumatthesurface.Thequantificationusing CasaXPSshowsthatthecompositionchangesfromU0.67Th0.33O2

toU0.57Th0.43O2+x.IntheinsetofFig.8weobservethebroadening

ofthepeakO–1swhichcanbedeconvolutedintwocomponents, atlowBEandoneathigherBE,correspondingtoO2−andtoOH− respectively[33,41].TheO–1sshiftismorepronouncedonthefilms thatcontainhigheramountofuraniumonthecomposition.

TosummarizetheCVexperiment onthemixed oxidefilms, Table2reportsthecompositionsandtheBEofU-4f5/2,Th-4f5/2and O–1scorelevelpeaksforthedifferentsamplesbeforeandafterCV cycles.Theresultsshowastrongdecreaseofuraniumcontent rela-tivetothorium,decreasingbyabout30at%(sample2)comparedto theinitialcomposition.Thepreferentialdissolutionofuraniumat thesurfaceenablestoexplainthisresultleadingtoanenrichment ofthoriumatthesurfacewhichalongoxidationanddissolutionof U(VI)providesaprotectionlayerinhibitingthefurtheroxidation oftheuraniumpresentdeeperinthefilm.Thethoriumeffecthas

beendiscussedinliterature[6,9,33]reportingitsroletopassivate thesurface,limitingfurtheroxidationofuraniumanddecreasing thedissolutionrateofuranium.Ourresultsenabletoconfirmthis processtakingplaceatthesurfaceofthesampleincontactwitha neutralsolution.

4. Conclusionandsummary

ThinfilmsofU1−xThxO2(x=0to1)mixedoxideswere

investi-gatedbyXPS/UPS,XRDandCVtoestablishthepossibleinfluence ofthoriumontheoxidation/dissolutionprocess.

WefirstinvestigatedtherelativeoxygenaffinityofThandUand oxidationofuraniumstartedonlyoncethoriumwascompletely oxidized.Thisobservationisconsistentwiththehigherstability ofThO2 (fG0 (298K):−1170kJmol−1)comparedtoUO2 (fG0

(298K):−1031kJmol−1[42]).

Basedoncorelevelandvalencebandspectra,homogeneityof thefilmscouldbeshowedalongthedeposition.Alsodeposition temperature(from25◦Ctoabout400◦C)hadnoinfluenceon tho-riumoxidationstatewhileuraniumundergoesfurtheroxidation, seenbyashiftoftheU-4fsatelliteandtheU-5f2 peak,andbya

changeoftheO-2p/U-5f2intensityratio.

Todeterminethesuitabilityofthinfilmsasmodelsystemfor nuclearfuelwecomparedthelatticeparametersandtheU-4fand Th-4fcorelevelbindingenergyoffilmstobulkcompounds,fora seriesofcompositionsofU1−xThxO2(x=0to1).Thelattice

param-etersfollowedtheVegard´ıslaw,withaslightdeviationattributed tostresspresentinthefilms.AlsothebindingenergiesofU-4fand Th-4fcorelevelswereinagreementwiththosereportedonbulk compounds.

Cyclicvoltammetrywasusedtofollowthesurfaceredox reac-tionsfordifferentcompositions.Inthepotentialwindowof[−1 to0.6]V(vsAg/AgCl),oxidativedissolutionofuraniuminneutral pHsolutionsuggeststheformationofa layerofhigheroxideat thesurface.Shiftofthepeakstothehighernegativepotentialsare observedinthecathodicregionVatabout−0.9V(vsAg/AgCl), aswell asin current intensityincrease in theanodic regionat about−0.5V(vsAg/AgCl)inregionI,indicatingformationofthicker layershyperstoichiometricoxidesoneachcycleperformed.The intensity and the positionof the peaks showed a proportional relationwiththethoriumcontentinUO2 matrix.However,ona

largerpotentialwindow[-1to0.8]V (vsAg/AgCl),an opposite behaviourisobserved,suchaslowerintensityandadverse direc-tionshiftsoneachcycles.Thischangeinbehaviourshowedthat thesuccessivecyclesresultinthinnerlayersof hyperstoichiomet-ricoxidesonthesurface.Ontheotherhand,inthehigherpotential windowweobservedhighercurrentcountsforbothanodicand cathodicpotentialsforfilmswithhigherthoriumcontent(going fromU0.56Th0.44O2andU0.16Th0.84O2).Thiscanbeexplainedbythe

factthatahigherthoriumconcentrationrequireshigherpotentials tooxidiseuranium.

TheXPSspectraobtainedonsamples,beforeandafterCV exper-iments,indicatedclearlyenrichmentinthoriumatthesurfaceand ahigheroxidationstateofuranium.Theresultsalsoindicatedthat ahigherinitialuraniumcontentonthesurfaceleadstoahigher

(9)

shiftofU-4fbindingenergies,suggestingahigheroxidationstate ofuranium.Thiswassupportedbytheshapeofthecorresponding O–1sspectrumshowinghighercontributionofoxygenfromOH− groups.

Acknowledgments

WethankD.WegenandA.Seibertforfruitfuldiscussionsand alsotoS.StumpfandZ.BaofortheXRDmeasurements.P.Cakir acknowledgestheEuropeanCommissionandJointResearch Cen-tre.

References

[1]Y.Lu,Y.Yang,P.Zhang,Thermodynamicpropertiesandstructuralstabilityof thoriumdioxide,J.Phys.Condens.Matter24(2012)225801,http://dx.doi. org/10.1088/0953-8984/24/22/225801.

[2]J.S.Herring,P.E.MacDonald,K.D.Weaver,C.Kullberg,Lowcost,proliferation resistant,uranium-thoriumdioxidefuelsforlightwaterreactors,Nucl.Eng. Des.203(2001)65–85,http://dx.doi.org/10.1016/s0029-5493(00)00297-1. [3]I.Grenthe,J.Fuger,R.J.M.Konings,R.J.Lemire,A.G.Muller,C.Nguyen-Trung

Cregu,etal.Chemicalthermodynamicsofuranium,NorthHolland Amsterdam(1992).

[4]D.Langmuir,J.S.Herman,TheMobilityofThoriuminNaturalWatersatlow Temperatures,Geochim.Cosmochim.Acta44(1980)1753–1766.

[5]A.Seibert,S.Stumpf,T.Gouder,D.Schild,M.A.Denecke,Actinidethinfilmsas surfacemodels,in:Actin.NanoparticleRes.,SpringerBerlinHeidelberg, Berlin,Heidelberg,2011,pp.275–313, http://dx.doi.org/10.1007/978-3-642-11432-810.

[6]G.Heisbourg,S.Hubert,N.Dacheux,J.Ritt,Thekineticsofdissolutionof Th1-xUxO2solidsolutionsinnitricmedia,J.Nucl.Mater.321(2003) 141–151,http://dx.doi.org/10.1016/S0022-3115(03)00213-7. [7]E.Zimmer,E.Merz,Dissolutionofthorium-uraniummixedoxidesin

concentratednitricacid,J.Nucl.Mater.124(1984)64–67,http://dx.doi.org/ 10.1016/0022-3115(84)90010-2.

[8]R.Rao,R.K.Bhagat,N.P.Salke,A.Kumar,Ramanspectroscopicinvestigationof thoriumdioxide-uraniumdioxide(ThO2-UO2)fuelmaterials,Appl.Spectrosc. 68(2014)44–48,http://dx.doi.org/10.1366/13-07172.

[9]S.Sunder,N.H.Miller,XPSandXRDstudiesof(Th,U)O2fuelcorrosionin water,J.Nucl.Mater.279(2000)118–126, http://dx.doi.org/10.1016/S0022-3115(99)00242-1.

[10]C.A.Colmenares,Theoxidationofthoriumuranium,andplutonium,Prog. SolidStateChem.9(1975)139–239.

[11]F.Miserque,T.Gouder,D.H.Wegen,P.D.W.Bottomley,UseofUO2filmsfor electrochemicalstudies,J.Nucl.Mater.298(2001)280–290.

[12]A.Seibert,D.H.Wegen,T.Gouder,J.Römer,T.Wiss,J.-P.Glatz,Theuseofthe electrochemicalquartzcrystalmicrobalance(EQCM)incorrosionstudiesof UO2thinfilmmodels,J.Nucl.Mater.419(2011)112–121,http://dx.doi.org/ 10.1016/j.jnucmat.2011.06.032.

[13]D.W.Shoesmith,Fuelcorrosionprocessesunderwastedisposalconditions,J. Nucl.Mater.282(2000)1–31,

http://dx.doi.org/10.1016/S0022-3115(00)00392-5.

[14]L.Wu,Z.Qin,D.W.Shoesmith,Animprovedmodelforthecorrosionofused nuclearfuelinsideafailedwastecontainerunderpermanentdisposal conditions,Corros.Sci.84(2014)85–95,http://dx.doi.org/10.1016/j.corsci. 2014.03.019.

[15]S.Sunder,N.H.Miller,D.W.Shoesmith,Corrosionofuraniumdioxidein hydrogenperoxidesolutions,Corros.Sci.46(2004)1095–1111,http://dx.doi. org/10.1016/j.corsci.2003.09.005.

[16]S.Sunder,D.W.Shoesmith,R.J.Lemire,M.G.Bailey,G.j.Wallace,Theeffectof pHonthecorrosionofnuclearfuel(UO2)inoxygenatedsolutions,Corros.Sci. 32(1991)373–386.

[17]S.Sunder,D.W.Shoesmith,M.G.Bailey,F.W.Stanchell,N.S.McIntyre,Anodic oxidationofUO2PartI.ElectrochemicalandX-Rayphotoelectron spectroscopicstudiesinneutralsolutions,J.Electroanal.Chem.130(1981) 163–179.

[18]D.W.Shoesmith,S.Sunder,Thepredictionofnuclearfuel(UO2)underwaste disposalconditions,J.Nucl.Mater.190(1992)20–35.

[19]N.Fairley,CASAXPSManual2.3.15IntroductiontoXPSandAES,(2009) 1–177.

[20]P.Cakir,R.Eloirdi,F.Huber,R.J.M.Konings,T.Gouder,AnXPSandUPSstudy ontheelectronicstructureofThOx(x≤2)thinfilms,J.Phys.Chem.C118 (2014)24497–24503.

[21]J.J.Pireaux,J.Riga,E.Thibaut,C.Tenret-Noel,Shake-upsatellitesintheX-ray photoelectronspectraofuraniumoxidesandfluorides.Abandstructure schemeforuraniumdioxides,UO2,Chem.Phys.22(1977)113–120.

[22]A.Cros,ChargingeffectsinX-rayphotoelectron,J.ElectronSpectrosc.Relat. Phenom.59(1992)1–14.

[23]J.Cazaux,Mechanismsofcharginginelectronspectroscopy,J.Electron Spectrosc.Relat.Phenom.105(1999)155–185,http://dx.doi.org/10.1016/ S0368-2048(99)00068-7.

[24]G.Fanjoux,H.FornanderBillault,B.Lescop,a.LeNadan,Evolutionofthe magnesiumsurfaceduringoxidationstudiedbyMetastableImpactElectron Spectroscopy,J.ElectronSpectrosc.Relat.Phenom.119(2001)57–67,http:// dx.doi.org/10.1016/S0368-2048(01)00237-7.

[25]S.Anthonysamy,G.Panneerselvam,S.Bera,S.V.Narasimhan,P.R.Vasudeva Rao,StudiesonthermalexpansionandXPSofurania-thoriasolidsolutions,J. Nucl.Mater.281(2000)15–21,

http://dx.doi.org/10.1016/s0022-3115(00)00185-9.

[26]L.C.Shuller,R.C.Ewing,U.Becker,ThermodynamicpropertiesofThxU1-xO2 (0<x<1)basedonquantum-mechanicalcalculationsandMonte-Carlo simulations,J.Nucl.Mater.412(2011)13–21,http://dx.doi.org/10.1016/j. jnucmat.2011.01.017.

[27]W.Trzebiatowski,P.W.Selwood,Magneticsusceptibilitiesofurania-thoria solidsolutions,J.Am.Chem.Soc.72(1950)4504–4506,http://dx.doi.org/10. 1021/ja01166a046.

[28]W.A.Lambertson,M.H.Mueller,F.H.Gunzel,Uraniumoxidephase equilibriumsystems:IV,UO2-ThO2,J.Am.Ceram.Soc.36(1953)397–399,

http://dx.doi.org/10.1111/j.1151-2916.1953.tb12827.x.

[29]S.Hubert,J.Purans,G.Heisbourg,P.Moisy,N.Dacheux,Localstructureof actinidedioxidesolidsolutionsTh(1-x)U(x)O2andTh(1-x)Pu(x)O2,Inorg. Chem.45(2006)3887–3894,http://dx.doi.org/10.1021/ic050888y. [30]M.M.Strehle,B.J.Heuser,M.S.Elbakhshwan,X.Han,D.J.Gennardo,H.K.

Pappas,etal.,Characterizationofsinglecrystaluranium-oxidethinfilms grownviareactive-gasmagnetronsputteringonyttria-stabilizedzirconiaand sapphire,ThinSolidFilms520(2012)5616–5626,http://dx.doi.org/10.1016/j. tsf.2012.04.022.

[31]G.C.Allen,P.M.Tucker,J.W.Tyler,Electronicstructureofsomebinary uraniumandthoriumoxidesandhalides,Philos.Mag.PartB48(1983)63–75,

http://dx.doi.org/10.1080/13642818308226432. [32]B.W.Veal,D.J.Lam,H.Diamond,H.R.Hoekstra,X-ray

photoelectron-spectroscopystudyofoxidesofthetransuraniumelements Np,PuAm,Cm,Bk,andCf,Phys.Rev.B15(1977)2929–2942.

[33]G.Heisbourg,S.Hubert,N.Dacheux,J.Purans,Kineticandthermodynamic studiesofthedissolutionofthoria-uraniasolidsolutions,J.Nucl.Mater.335 (2004)5–13,http://dx.doi.org/10.1016/j.jnucmat.2004.05.017.

[34]P.A.Demkowicz,J.L.Jerden,J.C.Cunnane,N.Shibuya,R.Baney,J.Tulenko, Aqueousdissolutionofurania/thorianuclearfuel,Nucl.Technol.147(2004) 157–170.

[35]D.W.Shoesmith,S.Sunder,W.H.Hocking,ElectrochemistryofUO2nuclear fuel,in:J.Lipkowski,N.P.Ross(Eds.),Electrochem.Nov.Mater.,VCH,New York,1994,pp.297–337.

[36]B.G.Santos,J.J.Noël,D.W.Shoesmith,TheeffectofpHontheanodic dissolutionofSIMFUEL(UO2),J.Electroanal.Chem.586(2006)1–11,http:// dx.doi.org/10.1016/j.jelechem.2005.09.021.

[37]B.Santos,H.Nesbitt,J.Noël,D.Shoesmith,X-rayphotoelectronspectroscopy studyofanodicallyoxidizedSIMFUELsurfaces,Electrochim.Acta49(2004) 1863–1873,http://dx.doi.org/10.1016/j.electacta.2003.12.016.

[38]S.Sunder,L.K.Strandlund,D.W.Shoesmith,Anodicoxidationanddissolution ofCANDUfuel(UO2)inslightlyalkalinesodiumperchloratesolutions, Electrochim.Acta43(1998)2359–2372, http://dx.doi.org/10.1016/S0013-4686(97)10174-8.

[39]D.E.Grandstaff,Akineticstudyofthedissolutionofuraninite,Econ.Geol.71 (1976)1493–1506,http://dx.doi.org/10.2113/gsecongeo.71.8.1493. [40]B.Kanellakopulus,Generalpropertiesofthoriumatomandthoriumions,in:

R.J.Meyer(Ed.),GmelinHandb.Inorg.Chem.Thorium,8thed., Springer-Verlag,Berlin,Heidelberg,NewYork,Tokyo,1989,pp.1–17.

[41]J.-C.Dupin,D.Gonbeau,P.Vinatier,A.Levasseur,SystematicXPSstudiesof metaloxides,hydroxidesandperoxides,Phys.Chem.Chem.Phys.2(2000) 1319–1324,http://dx.doi.org/10.1039/a908800h.

[42]R.Agarwal,S.C.Parida,Phasediagramsandthermodynamicpropertiesof thoria,thoria–urania,andthoria–plutonia,in:D.Das,S.R.Bharadwaj(Eds.), Thoria-BasedNucl.Fuels,GreenEnergyTechnol.,Springer-Verlag,London, 2013,pp.71–105,http://dx.doi.org/10.1007/978-1-4471-5589-83. [43]J.C.Fuggle,M.Campagna,Z.Zolnierek,R.Lässer,A.Platau,Observationofa

relationshipbetweencore-levellineshapesinphotoelectronspectroscopy andthelocalizationofscreeningorbitals,Phys.Rev.Lett.45(1980) 1597–1600,http://dx.doi.org/10.1103/PhysRevLett.45.1597.

[44]J.C.Fuggle,A.F.Burr,L.M.Watson,D.J.Fabian,W.Lang,X-rayphotoelectron studiesofthoriumanduranium,J.Phys.FMet.Phys.4(1974)335.

[45]M.O.Krause,R.G.Haire,O.Keski-Rahkonen,J.R.Peterson,Photoelectron spectrometryoftheactinidesfromActoEs,J.ElectronSpectrosc.Relat. Phenom.47(1988)215–226, http://dx.doi.org/10.1016/0368-2048(88)85013-8.

[46]G.C.Allen,J.A.Crofts,M.T.Curtis,P.M.Tucker,D.Chadwick,J.P.Hampson, X-Rayphotoelectronspectroscopyofsomeuraniumoxidephases,J.Chem. Soc.DaltonTrans.129(1974)6–130(1).

Cytaty

Powiązane dokumenty

Tor nr 2 - na całej długości toru zachwaszczenie, liczne rozwarstwienia, pęknięcia i inne mechaniczne uszkodzenia pojedynczych podkładów nawierzchni kolejowej, około 30%

Gryzonie nie mogą też przewidzieć jak ciężka będzie zima, chowają więc tyle pokarmu ile tylko im się uda.. Roznoszą nasiona po całym lesie, chowając je w magazynach po kilka

W  natu- ralnym przebiegu choroby ryzyko wystąpienia epi- zodu maniakalnego bezpośrednio po epizodzie de- presyjnym jest oceniane na 4-8%, monoterapia leki- em

W wyniku przeprowadzonych badań i wcześniejszych odkryć stwierdzono obecność co najmniej dwóch osad przybrzeżnych, położonych na przeciwległych brzegach

Previous studies have reported the nonlinear behavior of the human proprioceptive system, showing harmonic and intermodulation responses to the mechanical multisine

W artkule zaprezentowano nowe podejście do rewitalizacji na terenie województwa mazowieckiego oraz warunki i możliwości wsparcia projektów rewitalizacyjnych w ramach