• Nie Znaleziono Wyników

Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits : a case from the Skole Nappe, Polish Outer Carpathians

N/A
N/A
Protected

Academic year: 2022

Share "Sedimentary processes and architecture of Upper Cretaceous deep-sea channel deposits : a case from the Skole Nappe, Polish Outer Carpathians"

Copied!
36
0
0

Pełen tekst

(1)

GEOLOGICACARPATHICA,FEBRUARY2018,69,1,71–88 doi:10.1515/geoca-2018-0005

SedimentaryprocessesandarchitectureofUpp erCretaceousdeep-seachanneldeposits:

acasefromtheSkoleNappe,PolishOuterCarpathians

PIOTRŁAPCIK

InstituteofGeologicalSciences,JagiellonianUniversity,Gronostajowa3a,30-063Kraków,Poland;piotr.lapcik@doctoral.uj.edu.pl (ManuscriptreceivedJuly4,2017;acceptedinrevisedformDecember12,2017)

Abstract:D e e p -

s e a c h a n n e l s a r e o n e o f t h e a r c h i t e c t o n i c e l e m e n t s , f o r m i n g t h e m a i n c o n d u i t s f o r s a n d a n d g r a v e l ma teriali n t h e t u r b i d i t e d e p o s i t i o n a l s y s t e m s . D e e p -

s e a c h a n n e l f a c i e s a r e m o s t l y r e p r e s e n t e d b y s t a c k i n g o f t h i c k -

beddedm a s s i v e s a n d s t o n e s w i t h a b u n d a n t c o a r s e - g r a i n e d m a t e r i a l , r i p p e d -

u p c l a s t s , a m a l g a m a t i o n a n d l a rges c a l e erosionalstructures.TheManasterzQuarryoftheRopiankaFormati on(UpperCretaceous,SkoleNappe,Carpathians)containsasuccessionofatleast31mofthick-beddedhigh- densityturbiditesalternatedwithclast-richsandydebrites,whichareinterpretedasaxialdepositsofadeep- seachannel.Thesectionstudiedincludes5or6storeyswithdebritebasallagdepositscoveredbyamalgamatedturb iditefills.Thethicknessofparticularstoreysvariesfrom2.5to13m.Verticalstackingofsimilarfaciesthroughthewhole thicknessofthesectionsuggestahierarchicallyhigherchannel-

fillorach annelco mplex set,withanaggradation rateh igherthanitslater almig ration.Such channelaxisfaci escannot aggradewithoutsimultaneousaggradationofleveeconfinement,whichwasdistinguishedinanassociatedsectionlocatedtotheNWf romtheManasterzQuarry.Lateraloffsetofchannelaxisfaciesintochannelmarginorchannelleveefaciesisestimatedatlesst han800m.TheManasterzQuarrysectionrepresentsmostlythefillingandamalgamationstageofchannelformation.Th edescribedchannelarchitecturalelementsoftheRopiankaFormationarelocatedwithintheso-

calledŁańcutChannelZone,whichwaspreviouslythoughttobeOligocenebutmayhavebeenpresentalreadyintheLateCretaceous.

Keywords:Carpathians,sedimentaryprocesses,architecturalelements,deep- seachannel,massivesandstone,turbidite,debrite.

Introduction

Thea r c h i t e c t u r a l e l e m e n t s c o n c e p t i s w i d e l y a c c e p t e d f o r analysisofdeep-

seadepositionalenvironments(Mutti& Normark1 9 8 7 ) . Accordingt o t h i s c o n c e p t , s e d i m e n t a r y bodiesaredist inguishedaspartsofahierarchicallyorganizeddeep-

seafanmodel.Ahighvarietyofarchitecturalelements arec o n d i t i o n e d b y m a t e r i a l d e p o s i t e d , s i z e a n d l a t i t u d i n a l positiono f d e p o s i t i o n a l s y s t e m , s e a l e v e l c h a n g e s , t e c t o n i c regimeandsedimentaryprocesses(e.g., Stow&Mayall2000;Mulder2011;Cossuetal.2015;Shanmugam20 16).Architec-

turalelementsareusuallydistinguishedinverywellexposed depositionals y s t e m s t h r o u g h a n a l y s i s o f f a c i e s a s s o c i a t i o n s (e.g.,Gardneretal.2003;Prélate tal.2009;Hub bardetal. 2014;B a y l i s s & P i c k e r i n g 20 15 a , b ; P i c k e r i ng e t a l . 2 01 5) . However,t h i s c o n c e p t w a s s o f a r n o t a p p l i e d t o n u m e r o u s formations,includingtheRopiankaF ormation(Turonian–

Paleocene)intheSkoleNappe(PolishCarpathians).Thisfor- mation,upto1.6kmthick,containsasuccessionofdeep- seadepositswithnumerousfaciesassociationssuggestingoc cur-

renceofdifferentarchitecturalelements(e.g.,Bromowicz1974;

Kotlarczyk1978,1988;Łapcikinpress),whichremainalmostu n d e t e r mined.Tectonicd e f o r m a t i o n a n d p o o r e x p o - sureoftheRopiankaFormationmakedifficultiesincorrela -tionsoffaciesandarchitecturalelementsoverlongerdistances.

Nonetheless,largeoutcropswithhighcontributionofthick- beddeds a n d s t o n e s g i v e a c h a n c e t o d i s t i n g u i s h s u c h bodiesi n s o m e p l a c e s , f o r e x a m p l e , i n t h e S ł o n n e s e c t i o n , whereŁapcik(inpress)distinguishedover1 40mthicklobecomplex.

Inthispaper,deep-seachannel-fillanditsinternalarchitec- turea r e p r e s e n t e d i n s t r u c t u r e l e s s a n d g r a d e d t h i c k -

b e d d e d sandstonesfromtheManasterzQuarry,inreferences toasso-

ciateds e c t i o n s . M o r e o v e r,d e p o s i t i o n a l p r o c e s s e s a r e i n t e r-

pretedonthebasisofsedimentarystructuresandtheinternala rchitectureofthechannel-fill.

Geologicalsetting

Thiss t u d y i s f o c u s e d o n t h e R o p i a n k a F o r m a t i o n ( a f t e r Kotlarczyk1978),alsoknownastheInoceramianBeds (Uhlig1888),whichisreferredtosand-

richdepositsinthenorthernparto f t h e S k o l e N a p p e ( a l s o k n o w n a s t h e S k y b a N a p p e ) . Thef o r m a t i o n c o m p r i s e s a s u c c e s s i o n o f t u r b i d i t y c u r r e n t , debrisf l o w, s l u m p , p e l a g i c a n d h e m i p e l a g i c d e p o s i t s o f t h e Turon ian–

Palaeoceneageuptoabout1.6kmthick(e.g.,Kotlarczyk1978,19 88).TheSkoleNappeisthemostexternalmajortectonicunitinthe

(2)

PolishCarpathians(Fig.1A). DepositsoftheSkoleNap peaccumulatedinaseparate

www.geologicacarpathica.com

(3)

LowerCretaceousUpperCretaceousPaleogeneNeogene ChwanwSsMb RopiankaFm(InoceramianBeds)VariegatedHieroglyphicShaleFmFormation MeniliteFm

A

72 ŁAPCIK

GEOLOGICACARPATHICA,2018,69,1,71–88 sub-

basin(e.g.,Kotlarczyk1988),however,someauthorsregardpart oftheSkoleBasinastheCarpathianmarginalzonewhichco rre spon dst o t heb as in sl ope (e .g., Jankow ski e t al . 2012).Sedim entationintheOuterFlyschCarpathiansstartedintheLateJuras sic.TheCarpathiansevolvedfromariftbasin(sincet h e L a t e J u r a s s i c ) t o a r e m n a n t f o r e l a n d b a s i n i n t h e Oligocene(Gol onkaetal.2006;Nemčoketal.2006;Ślączkaetal.2006,2012;Gąga łaetal.2012)andultimatelyduringtheMiocenet h e b a s i n w a s f o l d e d a n d t h r u s t e d u p o n t h e C a r-

pathiansForedeep.DuringtheTuronian–

Paleocenetimes,thesedimentsoftheSkoleBasinarethoughttohave beenderivedfromthesouthernpartoftheUpperSilesiaan dMałopolskablockst o t h e n o r t h ( K s i ą ż k i e w i cz1 9 6 2 ; B r o m o w i c z 1 9 7 4 ;

Salata&Uchman2013)andfromthesideoftheSubsilesianRi dge(WęglówkaRidge)to thesouth(Książkiewicz 196 2).Thep e t r o g r a p h i c v a r i e t y o f t h e s o u r c e a r e a w a s r e p e a t e d l y mentionedi n t h e l i t e r a t u r e ( e . g . , S a l a t a & U c h m a n 2 0 1 3 ; Salata2014;Łapciketal.2016andre ferencestherein).

FourlithostratigraphicmembersoftheRopiankaFormationwere d i s t i n g u i s h e d b a s e d o n r e p e a t e d c a r b o n a t e - s i l i c i c l a s t i c deposits(Fig.1B;Kotlarczyk1978).Eachmember(

excludingtheWolaK o r z e n i e c k a M e m b e r ) c o n t a i n s c a r b o n a t e -

r i c h successionwhichpassesintosiliciclasticdominated depositstowardsthetop.Moreover,adecreasingcontribu tionofcar-

bonatematerialfromtheproximalareatothenorthtothedis- talareatothesouthoftheSkoleBasinisobserved(Kotlarczyk

N

Rzeszów Carpathian Ma

Mioceneofthe RzeszówBay

Foredeep

study

area Poland

Carpathians

5.33

23.03

Miocene M.

L.

B

KrosnoBeds

SkoleNappe

Przemyśl 33.9

Oligocene U.

L.

U.

KliwaSs

StrwiążGlobigerinaMarlMb PopieleMb BachórzShale-

Eocene LowerMiocene

Cretaceous Paleocene 10km

Eocene M.

L.

56

Paleocene

SandstoneMb NienadowaMarlMbWi daczówG r e e n S h a l e M bT RShMb+Vsh+ChSMb

VariegatedShale BabicaClay

WolaKorzenieckaMb

NS e c t i o n 5 0

ChannelaxisfaciesW ęgierkaMarl

66

C

72.1

WęgierkaMarl LeszczynyMb

!

Manasterz-Rzeki Maastrichtian

40404050

?

Thick-beddedsandstones Thin-tomedium-

beddedflyshThin-tomedium- beddedflysh

withalternationsofbluish- whitemarlstones

83.686.3 89.8

Campanian

Santonian

Coniacian Turonian

Kropivnik Marl

HolovniaSil iceousMarl

WiarMb

CisowaMb

? 93.9

4641 100.5

16

Cenomanian DołheRadiolarianShale KuźminaSandstone

ManasterzSection

43

Manasterz

113

Albian

Aptian SpasShale

0 150300m 35

ManasterzQuarrySection

125 129.4 132.9 139.8 145

Barremian Hauterivian Valanginian Berriasian

BełwinMudstone

(4)

UPPERCRETACEOUSDEEP-SEACHANNELDEPOSITS(SKOLENAPPE,POLISHOUTERCARPATHIANS) 7 3

GEOLOGICACARPATHICA,2018,69,1,71–88 Fig.1.Geographicalandstratigraphiclocationofstudiedarea.A—

locationmapofthestudiedareaintheSkoleNappe.BasedonKotlarczyk(1988)a n d m o d i f icationsb y G a s i ń s k i & U c h m a n ( 2 0 0 9 a n d r e f e r e n c e s t h e r e i n ) ; B — l o c a t i o n o f t h e M a n a s t e r z -

R z e k i , M a n a s t e r z a n d ManasterzQuarrysectionswithsomeindicatorsoftheorientationofbedsasmeasuredinthefieldandpredicti onofspatialdistributionoffacies;C—

stratigraphiccolumnoftheSkoleNappe.BasedonKotlarczyk(1988),Rajchel(1990),Rajchel&Uchman(1998),Ślączka& Kaminski(1 998),withfurthercorrectionsbasedonfurtherdatabyGedl(1999)andKotlarczyketal.

(2007).Theinvestigatedintervalindicatedby„!”.ThetimescaleisafterGradsteinetal.(2012).TRShMb—TrójcaRedShaleMember,VSh—

VariegatedShale,ChSMb—ChmielnikStripedSandstoneMember.

(5)

1978).Someareasshowdominationofmasstransportdepo- sitstypicalofslopeareas(Burzewski1966;Bromowicz1974;Kotlar czyk1978,1988;Dżułyńskietal.1979;Gerochetal.1979

;Malata2001;Jankowskietal.2012;Łapciketal.2016).Foraminiferid assemblagespointtodepositionoftheRopiankaFormationinbathyaldept hsbelowandabovethecalcitecom-

pensationdepth(Uchmanetal.2006).ThelithostratigraphyoftheR o p i a n k a F o r m a t i o n i s s t i l l d e b a t e d ( e . g . , M a l a t a 1 9 9 6

; Jankowskietal.2012).

Methodology

Thef i e l d w o r k w a s b a s e d o n s e d i m e n t o l o g i c a l a n d f a c i e s analysisofsandydominatedthick-

beddeddeposits.Thetex-

turea n d p r i m a r y s t r u c t u r e o f t h e s e d e p o s i t s w e r e d e s c r i b e d duringdetailedprofiling.Grain-

sizeanalysiswasconducted ino r d e r t o d e t e r m i n e t h e d e p o s i t i o n a l p r o c e s s e s o f t h e thick-

beddedsandstonesandestimatethethicknessofama l- gamatedb e d s . F i f t y s a m p l e s w e r e t a k e n f o r g r a i n - s i z e a n d petrographica n a l y s i s w h i c h w a s c o n d u c t e d a s d e s c r i b e d i n Łapcik(inp r e s s).T h e s a m p l e s f o r g r a i n - s i z e a n a l y s i s w e r e collectedf r o m 4 –

5 c m t h i c k l a y e r s w i t h d i fferentd i s t a n c e intervalsde scribedfurtherinthetext. Theorientationofthelongeraxi sof103mudstoneandmarlstoneclasts,orientationofgrainsandpe bblesimbricationandorientationoftheaxisofflutecastsfromtheM Qsectionweremeasuredbymeanof ageologicalcompassino rdertodeterminedirectionofpalaeo-

transport.T h e l a s t s t a g e o f t h e s e d i m e n t o l o g i c a l a n d f a c i e s analysisofthethick-

beddedsandstoneswasdistinguishingthechannelelements.

Thesectionsstudied

ThestudieddepositsbelongtotheinternallydeformedHusó wThrustSh ee t( Wdowi ar z1949) ,whi ch is th es ec ond t hrusts h e e t f r o m t h e n o r t h e r n m a rgino f t h e C a r p a t h i a n s .Themajorityofresearchwasfocusedonsandydeposit sinthewellexposedManasterzQuarry(MQ).Additionalsediment o-

logicalstudywasconductedintwoassociatedsections.

DescriptionofthewholeManasterzsectionispresentedbelowinthestra tigraphicorder.

TheManasterz-Rzekisection

Theoldestpartofthesectionstudiedislocatedinasmall gorgeo f a n u n n a m e d s t r e a m , a t r i b u t a r y o f t h e H u s ó w k a Streama t M a n a s t e r z -

R z e k i ( F i g . 1 C ) . T h e s e c t i o n i s r e p r e -

sentedb y f i v e i s o l a t e d o u t c r o p s c o n t a i n i n g t h i n - t o t h i c k -

beddeds a n d s t o n e s , s i l t s t o n e s , m u d s t o n e s a n d m a r l

s t o n e s (Fig.2 ) . B e d s a r e d i p p i n g t o t h e S W a t a n g l e s o f 4 0 ° –

5 0 ° (Fig.1C).Thecontributionofeachfaciesclassinparti cularoutcropsispresentedinFigure3.Sandstonesarequartz-domi- nated,veryfine-tomedium-

grained,withabundantparallel, convoluteandcross- laminationsunderlinedbycarbonized

(6)

plantdetritus.Medium-andthick-

beddedsandstonesaregradedorstructurelessatthebasalpart.

Solemarksarenume-

rouswithahighcontributionofthetracefossilsOphiomorphaandTh alassinoides.Somethin-

beddedsandstonesrichinplantdetritusshowchaoticstructure ,whichprobablyresultedfromb i o t u r b a t i o n ( t h e t r a c e f o s s i l S c o l i c i a i s p r e s e n t ) . Sandstonesarealternate dwith greymudstones,which oftenincludethinlayers ofparallelandcross-

laminatedsiltstones.Thelatestlithologyisrepresentedbybl uish-

whitemarlstoneswiths a n d s t o n e a l t e r n a t i o n s , w h i c h a r e 0 . 2 –

1 c m t h i c k . Abundantbioturbationstructureswithinmarlsto nesaredomi-natedbyPlanolitesandChondrites.

TheManasterz-Rzekisectionbeginsasthin-

beddedflyschwithabundantalternationofmarlstones(Fig.2).

Contributionofmarlstonesdecreasesinthemiddlepartofthese ctionwithsimultaneoussignificantincreaseinmedium- andthick-

beddedsandstones(Fig.3).Thetopofthesectionisagainrepresented bythin-

beddedflyschwithabundantalternationofmarlstonessimilarl o o k i n g t o t h e b o t t o m p a r t o f t h e s e c t i o n . T h e t o t a l thi cknessoftheManasterz-

Rzekisectionis116mwitha2 8 m -

t h i c k m i d d l e p a r t s h o w i n g n u m e r o u s m e d i u m a n d thicksandstonebeds.TheManasterz-

RzekisectionbelongstotheCampanianWiarMember(Fig.1B;K otlarczyk1978).

TheManasterzsection

Higherpartofthesectioncropsoutingorgesofunname dtributarieso f t h e M l e c z k a R i v e r,s o u t h o f M a n a s t e r z -

R z e k i , wherebedsdiptotheWandSW(Fig.1C).Thelowerpar tofthesectionisrepresentedbythin-

beddedflyschwithalterna-

tionofmarlstonesshowingsimilarappearancetothetopand bottompartoftheManasterz-

Rzekisection(Fig.2).Tothetopofthesection,thecontribution ofmarlstonesdecreaseswith simultaneousi n c r e a s i n g o f m u d s t o n e s ( F i g . 2 ) . T h e h i g h e r partofthesection containsamedium-andthick-beddedsand-

stoneinterval.Thesesandstonesaredominatedbyfractionallygrade da nd p a r a l l e l l a m i n a t e d pa rt s w i t h ab un d a n t , c l a s t s of coal.However,someofthemedium-andthick-

beddedsand-

stonesarestructurelessattheirbase.Abovethesandyinterval,packag esoffine-

grained,structureless,muddysandstoneswithclastsofmu dstoneandmarlstonearealternatedwithuptotensofcentime tresthick,siltyandsandycalcareous,struc-

turelessmudstoneswithdispersedquartzpebbles.Thistypeofdeposi tisabundantintheexternal(northern)partoftheSkoleNappeandt heyareknownasthe WęgierkaMarl(Baculites Marl).T

hisunitisincludedintheLeszczynyMember(upperMaastrichti an–

lowerP a l a e o c e n e ).T h e M a n a s t e r z s e c t i o n i s 375mt hick(Fig.2).Tectonicdeformationsleaveuncertaintyifthethick- beddedsandstoneintervalintheManasterzsectioncorrespondstothesi milaroneintheManasterz-Rzekisection(Fig.1C).

TheManasterzQuarrysection

Thehighestpartofthesectionstudiedisexposedinasmallquarry atManasterzwherebedsareinclinedtothesouth-west

(7)

[m]

38

Site2 Manasterz-Rzekisection

Site4

[m]

97

11 6[m]

Site5

151

Manasterzsection

374

115

37 96

36 95

94 35

11 4

11 3

11 2

150

149

142

370

339

337

93

34

92

33

111

110

106

105

336

335

32 91 csv.ff

31 90

104

103

334

331

[m]16

Site1 89

Mudstone

102 176

88

15

Sandy/siltymudstoneM arlstone

61 175

Site3 Sandstone

14

13

75

[m]

73

Convolutelamination Cross-lamination 55 Parallellamination

Verythin-

beddedsiltstoneorsand stone

39

174

173

12

11

10

9

0 csv.ff 72

71

70

Site2 [m]

39 csv.

8

7

(8)

2

0 csv.ffm

160

159

158

157

152

csv.ffm

Fig.2.LithologicalcolumnsoftheRopiankaFormationattheManasterz.LogsrefertotheManasterz-RzekiandtheManasterzsections.

(9)

Frequency(%)Frequency(%)

TotalthicknessN u m b e r ofbedsTotalthicknessN u m b e r ofbedsTotalthickness 60

50 40 30 20 10 0

Numberofbeds

Marlstone Mudstone Siltstone Thin-bedded sandstone Medium- beddedsandsto ne

Thick- beddedsands

Site1 Site2 Site3 tone

60 50 40 30 20 10

0 Site4 Site5 Total

Fig.3.FaciesclassabundanceintheManasterz-Rzekisection.

atanglesof30–

40°.Thequarryis85mlongandupto12mhigh.Theoutcropcon sistsof31moffullysandstonesectionwherey e l l o w i s h - o r a n g e , g r a d e d a n d s t r u c t u r e l e s s , a m a l g a - matedsandstonesarefine-tocoarse-

grainedwithlocallyabundantd i s p e r s e d q u a r t z g r a v e l , m u d s t o n e a n d m a r l s t o n e cobblesa n d b o u l d e r s ( F i g . 4 ) . M u d s t o n e c l a s t s a r e u s u a l l y veryp o o r i n m i c r o f a u n a , h o w e v e r,s o m e c o n t a i n a b u n d a n t bryozoans.Thesandstonesarequartzarenites,whichcontain minoradmixtureofsiliceousgrains,muscovite,sericite,glau- conite,biotite,feldspar,micaschists,pyriteconcretions,gr a-

nite,gneissandcoal.Aminorcontributionofbiogenicmaterialisr e p r e s e n t e d b y a b r a d e d b i v a l v e s h e l l s , s i l i c e o u s s p o n g e spiculesandagglutinatedbenthicforaminiferte sts.Thecon-

tributionofaccessorycomponen tsneverexceedsafewp er-

centintotal.Quartzgrainsarealmostalwayswellround ed.Polymineralicg r a i n s a r e l i m i t e d t o t h e l a rgestf r a c t i o n s o f 0.25–

2mm.Thesandstonecontainsvariableamountsofcar- bonate,silicaandclaymineralscementandpassesfromhardlit hifiedtoalmostloosesand.TheMQsandstonefaciessig- nificantlyd i fferf r o m t h e t h i c k -

b e d d e d s a n d s t o n e i n t e r v a l s fromtheManasterz- RzekiandManasterzsections.AdetaileddescriptionoftheMQs ectionispresentedin“Material studied”.

Inasimilarstratigraphicposition,totheNWofthequarry,thin- t o m e d i u m-

beddeds a n d s t o n e s a l t e r n a t e d w i t h g r e y mudstonesarepre sent(Figs.1C,2).Thesedepositsareverysimilartotheseinthe lowerpartoftheManasterzsectionandtheyr e p r e s e n t a l a t e r a l f a c i e s e q u i v a l e n t o f t h e M a n a s t e r z section.

(10)

Materialstudied TheManasterzQuarryfacies

Themajorityofresearchwasfocusedonthewellexpose dMQsandydeposits.Sedimentologicalandfaciesanaly sesofthestructurelessandgradedsandstonesallowedtodistingui shtwooroptionallythreefacies,descriptionsandinterpretationso fwhicharepresentedbelow.

Facies1

ThemajorityofdepositsintheMQsectionarerepresentedb yf ine -t oco ar se-

gra in ed,gr adedo rm ac ros copi ca ll ys tr uc -

turelesssandstoneswithquartzgravelandclastsofmudstonea ndmarlstone.Theirbeddingispoorlyexpressedbecause ofabundantamalgamationandpaucityofsedimentarystruc- tures.Theamalgamationsurfacesareunevenandmarked byabruptg r a i n -

s i z e c h a n g e s ( F i g . 5 A ) , w h i c h t e n d t o d e c l i n e la terallyinthescaleofmetres.Someofthesandstonesshowcru delamination,whichisunderlinedbyparallelorientatio nofcoarsegrainsandpebblesandveryrareimbrication.Clastsar esimilartomudstonesandmarlstonesfromtheManaster zandManasterz-

Rzekisectionsandaremostlyorientedparalleltothebedding(Fig.5 B).Clastsofmudstoneareusuallyseveraltensofcentimetresl ongandafewcentimetresthick,whereas,clastsofmarlsto nearemostlyroundedtosub-

roundeda n d d o n o t e x c e e d 2 0 c m i n d i a m e t e r.M a r l s t o n e s containa b u n d a n t C h o n d r i t e s ,P l a n o l i t e s a n d s o m e

(11)

76

Ł A P CI G

E OL O GI C A C A R P AT HI C A, 20

SW

Turbidite

?

AmalgamationzonesandscoursD ebrite

NE

MudstoneandmarlstonecobblesandbouldersInv erseandnormalgrading

ThalassinoidesandOphiomorpha

Debritesbasallagdeposits#6? ?

? Debritesbasallagdeposits#5

?

MA21-8

MA11-6

Areamostlycovered

?

?

?

Statisticaldataof

?

measuredclastsorientation:

N N

Debritesbasallagdeposits#4

?

Debritesbasallagdeposits#3?

?

Debritesbasallagdeposits#2

MAN11-18

Debrisbasallagd eposits2only

n=69

Total n=103

Samplestatistics:

Meanvector1.31

Vectormagnitue(length)9.14%

012 3 4 5 m

Fig.4.InterpretationoftheManasterzQuarrysectionwithdistinguishingofthechannelelementsandstatisticaldataofmeasuredclastorientation.

(12)

UPPERCRETACEOUSDEEP-SEACHANNELDEPOSITS(SKOLENAPPE,POLISHOUTERCARPATHIANS) 7 7

GEOLOGICACARPATHICA,2018,69,1,71–88 unidentifiedb i o t u r b a t i o n s t r u c t u r e s . S e v e r a l e r

o s i o n a l i n c i-sionsu p t o 1 . 5 m d e e p a n d 2 . 5 –

6 . 5 m w i d e , w i t h m a rginsinclineda t a n g l e s f r o m 3 0 ° t o a l m o s t 9 0 ° o c c u r w i t h i n t h e massivesandstones.Theyarefill edwithsandstonewithquartzpebblesa n d s h e l l d e b r i s . Theses t r u c t u r e s a r e c o n s i d e r e d a s mega-

flutes.Someofthemarefilledexclusivelywithcoarse-

grainedm a t e r i a l , w h e r e a s o t h e r s c o n t a i n c o a r s e -

g r a i n e d depositsi n t h e l o w e r p a r t w h i c h i s c o v e r e d b y m e d i u m - t o fine-

grainedmacroscopicallystructurelesssandstone(Fig.5C).Howev er,coarse-grainedlayerscanoccurinmultiplelevelsinonem e g a - f l u t e . P a r t i c u l a r c o a r s e -

g r a i n e d l a y e r s m a y s h o w normalorinversetonormalgr ading.Mostofthemega-

flutesarepartlycoveredbyrecentdebrisortheyarepartlytruncatedby recenterosion.Therefore,theirtotalwidthwasimpossibletoest imate.Moreove r,smalle r,severalcentimetresthick sc oursareabundantwithinthemacroscopicallystructurele ssandgradedsandstone(Fig.5A).Themeasuredmeanaxi softhes c o u r s a n d g r a i n i m b r i c a t i o n i n d i c a t e N – S a n d N W – S E orientations.

Ino r d e r t o d e t e r m i n e t h e d e p o s i t i o n a l p r o c e s s o f f a c i e s 1 sandstones,twoseriesofsamplesforgrain-

sizeanalysiswerecollected(F ig.6 ).S er ie sMAN11–

16wa sco ll e ctedi n 20–

30cmintervalsfrom3.8mthickbottompartofthesection(Fig.4 ) . Th i ss a n d s t o n e i n t e r v a l r a r e l y c o n t a i n s s m a l l m ud- stonec l a s t s a n d a m a l g a m a t i o n s u r f a c e s , w h i c h d i s a p p e a r a t thedistanceof1–

3m.Clastsareorientedparalleltothebed- dingi n a d i s c r e t e h o r i z o n s . G r a i n -

s i z e a n a l y s i s s h o w e d t h a t sampledi n t e r v a l c o n t a i n s t h r e e f r a c t i o n a l l y g r a d e d a m a l g a -

matedbedswithmudcontentneverexceeding15%byweight(Fig.6).

Estimatedbedsthicknessdecreasesfrom180cmatthebo t t o m, 80 c m i n t h e m i d d l e t o 40 c m a t t h e t o p o f t h e sample dinterval(Fig.6).

Thes e c o n d s e r i e s o f s a m p l e s M A 1 1 –

6 w a s c o l l e c t e d i n 10c m i n t e r v a l s , f r o m t h e m i d d l e p a r t o f t h e s e c t i o n , w h i c h includecoarse-

grainedamalgamatedsandstone(Fig. 4).Theseriesstartsa tthebottomofanabruptcoarseningsurfaceandincludestwosuch surfaces.Theanalysisshowspresenceofthenormalgradingatth ebottomamalgamationsurfaceandtheinversetonormalgradingin theupperone(Fig.6).Thecontributionofmuddoesnotexcee d12%byweightinthewholesampleseries(Fig.6).

Interpretation:Facies1sandstonesareinterpretedas depositsofhigh-

densityturbiditycurrentsmostlyformedby layer-by- layeri n c r e m e n t a l d e p o s i t i o n ( e . g . , L o w e 1 9 8 2

; Tallingetal.2012).Rapidfalloutofgrainsfromturbulentsus- pensions u p p r e s s e d t h e f o r m a t i o n o f s e d i m e n t a r y s t r u c t u r e s (Lowe1982),however,gradingwaspreserved.Mat hematicalmodellings t u d i e s o f B a a s ( 2 0 0 4 ) s h o w e d t h a t l a c k o f Tbc

Boumaintervalsinthetopofstructurelesssandstonescannot bee x p l a i n e d b y a b r u p t d e c e l e r a t i o n o f d e n s i t y f l o w o n l y.Macroscopicallys t r u c t u r e l e s s a n d g r a d e d s a n d s t o n e b e d s a t theMQhavenosignofwaterescapestructuresand laminationint h e u p p e r p a r t , t h e y a r e w i t h i n g r a i n - s i z e l i m i t f o r r i p p l e lamination(< 

0.7mm),showwidegrain-

sizedistribution(Fig.6 ) , a n d t h e y d o n o t h a v e b i o t u r b a t i o n s t r u c t u r e s . Therefore,thelaminatedtopofstructurele ssbedswaseroded

(13)

orbedformsaretoothintoberecognizedifdurationofflow wastooshortwithinplanebedandripplestabilityfields(Baas2004).

Occurrenceofamalgamationsurfaces,clastsofmud - stoneand ma rl st on eand sc oursd ir ec tl yi nd ic at es t ro ngero -sionalforcesoftheflows.Moreover,grain- sizeanalysisshowedthatamalgamationsurfacesarenotre strictedonlytomacroscopicallya b r u p t g r a i n -

s i z e c o a r s e n i n g b u t a l s o o c c u r withint h e s t r u c t u r e l e s s p a r t . T h e r e f o r e , a m a l g a m a t i o n s u r- facesaremoreabundantthanFigure4shows.

Isolateda n d l a terallyd i s c o n t i n u o u s m e g a -

f l u t e s r e f l e c t complexinternalstructureoftheconcen trateddensityflows (sensuMulder&Alexander2001)respons iblefortheirorigin.Suchflowsarefeaturedbyabruptlateraltra nsitionfromero-

sionalthroughbypasstodepositionalconditionsnearthebot- tom.Fillingsofthemega-

flutesrecordavarietyofdepositionalconditionswhichareexpressed bylateralchangesinthetex-

turea n d p r i m a r y s t r u c t u r e o f s e d i m e n t s ( e . g . , L e s z c z y ń s k i 1989andreferencestherein).Coarse- grainedflutefillingandcoarse-

graineda m a l g a m a t i o n z o n e s a r e b a s a l l a g d e p o s i t s , whichrepresentthethickestmaterialcarriedbytra ctionneartheb o t t o m ( e . g . , D ż u ł y ń s k i & S a n d e r s 1 9 6 2 ; L o w e 1 9 8 2 ; Postmae t a l . 1 9 8 8 ; S o h n 1 9 9 7

; S t r z e b o ń s k i 2 0 1 5 ) . Verticalmultipleg r a i n - s i z e c o a r s e n i n g s u r f a c e s w i t h i n s o m e m e g a - flutesindicatedepositionfromanunsteadyfluctuatingflowormultipl efi ll in gof th ef lut eb ydi fferenteve nt s.O rig in from mu ltistagef i l l i n g f r o m i n d e p e n d e n t f l o w s i s m o r e p r o b a b l e becauseparticulareventswoulderodethetopofthepre viousfillingandleavelagdepositstounderlineamalgamat ionsur-face.M o r e o v e r,p a r t i c u l a r c o a r s e - g r a i n e d l a y e r s w i t h i n t h e mega-

flutefi ll ss hownor ma lg rad ing andi nve rs et onorm al gradingfromonecoarselayertoanother(Fig.5C).Inverselyg radedcoarse-

grainedamalgamationzonesliketheonefromtheM11–

6sampledintervalimplydepositionfromhighcon-

centratedfrictionaltractionwhereinverselygradingisformedint h e b a s a l l a y e r b y s h e a r i n g a n d k i n e m a t i c s i e v i n g ( S o h n 1997;Cartignyetal.2013).Sedimentsdepositedfromtractiona rea l s o c o n f i r m e d b y r a r e o c c u r r e n c e o f c o a r s e g r a i n s a n d imbricationofpebbles.

Oneofthefeaturesofthehigh-densityturbiditesisconcen- trationofclastsindiscretehorizonslikeinsomestructurelessan dgradedsandstonesintheMQ(Tallingetal.2012).Clasttr ansportationwithinthehigh-

densityturbiditycurrentismostlyo n t h e r h e o l o g i c a l b o u n d a r y b e t w e e n t h e t u r b u l e n t dampedbotto mpartoftheflowandthemoreturbulenttoporhighlyconcentrat ed,turbulentdamped,nearbottomlayerdrivenbyturbulence fromamoredilutedtop(e.g.,Postmaetal.1988).Mostoftheelo ngatedmudstoneclastssuggesttransportationontopofthehighly concentratedbottompartoftheh i g h -

d e n s i t y t u r b i d i t y c u r r e n t , w h i c h p r e v e n t e d t h e i r fur there r o s i o n a n d a l l o w e d t h e m t o k e e p t h e i r l o n g i t u

d i n a l shape.H o w e v e r,somea u t h o r s s u g g e s t t h a t p r e s e r v a t i o n o f mudstonec la st sa nd t h e i r p lan ar conc en t r at ion to t h e t op of bedisrathertypicalofsandydebrites(e.g.,Shan mugam2006;Strzeboński2015).Thewell-

roundedmarlstoneclas tsimplyrelativelylongtractiontra nsportation.Therefore,twoimpor-

tantlydifferentshapesofclastsoflithologieswhichareeasily

(14)

78

Ł A P CI G

E OL O GI C A C A R P AT HI C A, 20

Fig.5.Sedimentologicalfeaturesoffacies1fromtheManasterzQuarrysection.A—coarse-grainedamalgamationsurfacewithsmallscalescourswithinthestructurelesssandstoneoffacies1;B—well- roundedclastsofbluish-whitemarlstoneorientedparalleltothebeddinginadiscretehorizon;C—largescourwithinthemassivesandstoneoffacies1filledwithmultiplelevelsofcoarse- grainedlayers.Particularcoarse-grainedlayersshownormalgradingorinversetonormalgradingwhichcorrespondtomultistagefillingofthescour.

(15)

lagdeposits2

Debritesbasal Channelelementturbiditefill1 00.10.50.60.1 11.1 010

UPPERCRETACEOUSDEEP-SEACHANNELDEPOSITS(SKOLENAPPE,POLISHOUTERCARPATHIANS) 7

9

GEOLOGICACARPATHICA,2018,69,1,71–88 cm

420 400

MAN11-18 Meangrainsize(mm) Meangrainsize(φ) Grains<0.054mmb yweight(%)

380 360 340 320 300 280 260 240 220 200 180 160 140 120 100 80 60 40 20 0

1 2 3 4

18

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 1 0 20 3 0

sv.ffmcv.c

Meangrainsize(mm) Meangrainsize(φ) Grains<0.054mmb yweight(%)

cm50 MA1

40 30 20 10 0

6 5 4 3 2 1 sv.ffmcv.c

Meangrainsize(mm) Meangrainsize(φ)

0 10 20

Grains<0.054mmb yweight(%)

cm MA2

60 50 40 30 20 10 0

87 6 5 4 3 2 1

sv.ffmcv.c

2 3 4

Fig.6.Grain-sizetrendsandmudcontentinMAN11–18,MA11–6andMA21–8sampleseriesfromtheManasterzQuarrysection.

abradedsuggesttwodifferentsourcesofthematerialanddif- ferentd i s t a n c e o f t r a n s p o r t a t i o n . Th em a r l s t o n e s c l a s t s s u g -

geste r o s i o n inamoreproximalslopesettingandlongertransp ortation,whereas,elongatedmudstonesprobablyorigi- natedfromundercuttingoflocaloverbanks.

Therelativelysmallcontributionofmud(Fig.6)probabl ycorrespondstoflowstripping,whichcausedgrainsegregationint h e l o n g r u n c o n f i n e d f l o w s a n d b y p a s s o f m u d d y d i l u t e upperpartofthestratifieddensityflow(e.g.,Piper&Normark1983;Pe akalletal.2000;Posamentier& Walker2006;

(16)

McHargueetal.2011).Insuchacase,sedimentsoftheMQsh ouldbedepositedintherelativelydistalareatohaveenoughtimeforgrain segregationduringtransportation.

Facies2

TheM Q s e c t i o n c o n t a i n s a f e w l a y e r s o f v e r y f i n e - t o coarse-

grainedsandstoneswithabundantlargeclastsofgreyandre ddish-brownmudstoneandbluish-

whitemarlstones(Fig.7A).Thelayersare1–

2mthickandcanbetracedoverdistanceuptotensofmetres.Th eboundarybetweenfacies1andfacies2isusuallyreflectedbya changeingrain-

sizeandmudcontent.Nevertheless,somebedsoffacies1seemtopassin tostructurelessclast-

richsandstoneoffacies2withnosharpboundary.Angulart o s u b - r o u n d e d c l a s t s r e p r e s e n t t h e s a m e lithologya s i n t h e f a c i e s 1 . H o w e v e r,m a r l s t o n e s i n s o m e clasts,whic haremuchthickerandpoorlybioturbated,lith o-

logicallyresembletheWęgierkaMarl(e.g.,Burzewski1966;G erochetal.1979;Fig.7B).Clastsaremostlyorientedwiththe irlongeraxisparalleltothebeddingwithmaximumsizeupto150x60c m.However,thosewithsizeuptotensofcenti-

metresindiameterdominate.Someclastscontainincisedsand- andgravel-

sizegrainschaoticallydistributedwithintheclastsorfillingclasti cveins.Matrixisrepresentedbyfine-tocoarse-

grainedsandstonewithslightlyhighercontributionofmudt hani nf ac ies1,wh ic hl at e rallym aypa ss in to fin e- to medium-

grained,dark,muddysandstonewithabundantsmallmudstonecla stsandveinsandlensesofcleansandstonesimi-

lartofacies1.Chaoticdistributionofcoarsegrainswithinthematrix i s r e f l e c t e d b y t h e i r n e s t o r p a t c h y d i s t r i b u t i o n a n d lateralchangesintheirdensity(Fig.7C).Fine-

grainedmatrixcontainsThalassinoidesandOphiomorphapreser vedasendich-

nialfullreliefs.Moreover,someofthetracefossilscross- cutmarlstoneclastsandarefilledbythematrix(Fig.7D).

Grain-sizea n a l y s i s o f c l a s t -

r i c h l a y e r s i n c l u d e s s a m p l e s MAN117–

18fromthebottompartandMA21–8,whichwerecollectedin5–

10cmintervalsfromthemiddlepartofthesec- tion(Fig.5).SamplesMAN117–

18showrelativelymuddy (> 

25%of mu d c on t e n t b yw e i g h t )f i n e -

gr a i n e d s an d s t on e s . Therei s a n i m p o r t a n t d e c r e a s e i n m e a n g r a i n -

s i z e a n d m u d contentf r o m f a c i e s 1 t o f a c i e s 2 i n t h e s a m p l e s e r i e s MAN11–18.

SamplesMA2 1– 8 sh ow a l t e r n a t i o n s o f f i n e- t o m ed i u m -

grained,graded,cleansandstoneandmuddysandstone.Layersofm u d d y f i n e -

g r a i n e d s a n d s t o n e a r e d i s c o n t i n u o u s l a t e r a l l y andch angetheirthicknessfromafewtotensofcentimetres.Theyc o

r r e s p o n d t o m a t r i x w i t h v e i n s a n d l e n s e s o f c l e a n sandstonedescribedabove.A m a l g a m a t i o n surfacesare presenta t t h e b o t t o m o f t h e l o w e r s t r u c t u r e l e s s c l e a n s a n d -stoneandabovethefine-

grainedsandstoneandstandasboundariesbetweenfacies1andfa cies2.SimilarlytoMAN11–

18,m u d d y l a y e r s a r e m u c h f i n e r- grainedt h a n i n f a c i e s 1cleansandstones.

Orientationofthelongeraxesof103clastswasmeasuredindifferentc last-

richlayers(Fig.4).Mostoftheclasts,which wereaccessib leformeasurement,areconcentratedwithinthe

(17)

lowermostc l a s t -

r i c h l a y e r.These d a t a d o n o t c o r r e l a t e w i t h orientation oferosionalstructuresandgrainimbrication, whichi n d i c a t e N W-SEa n d N -

S p a l a e o t r a n s p o r t d i r e c t i o n . Collecteddatash owthatmajorityofclastsareorientedran -

domlywithoutanyspecifictrendwhichmayindicatepalaeo- flowdirection(Fig.4).

Interpretation:Fine-tocoarse-grained,clast- rich,muddystructurelesssandstonesoffacies2areinterpreteda sdebrites.Numerous,c h a o t i c a l l y o r i e n t e d h u g e c l a s t s c o u l d b e t r a n s -

portedonlybymatrixsupporteddebrisflows(e.g.,Shanmugam2006;Strzebo ński2015).Moreover,patchyandnestdistribu-

tiono f c o a r s e -

g r a i n s i m p l y p o o r c o n d i t i o n s f o r g r a i n s e g r e - gation,w h i c h i s t h e f e a t u r e t y p i c a l o f l a m i n a r f l o w.E a c h clast-

richlayerrepresentsoneormoredebrites,whichinsomecasest e n d t o a b r u p t l y p i n c h o u t l a t e r a l l y.Abruptc h a n g e i n thickn essa n d p i n c h -

o u t o f c l a s t l a y e r s o v e r a d i s t a n c e o f severalmet resagreeswiththespatialshapetypicalofdebrites(e.g.,Amy&Tall ing2006).Insomecaselaterally disconti-

nuousmu dd y t yp e of m a t r i x w i t h v e i n s a nd l e n s e s o f c l e a n sandstonemayrepresentlargeerodedmuddyboulders,whi chwerepoorlymixedduringtransportationwithsandymatrixoft hep r e v i o u s f l o w.M o r e o v e r,t h e p o o r r o u n d n e s s o f l a rgerclastsconfirmsweakinteractionsbetweencomponent sduringtransportation.Parallelorientationofclaststothebeddinga ndoccurrenceo f v e i n s f i l l e d b y s a n d -

a n d g r a v e l -

s i z e g r a i n s implymatrixinternalshearstressduringd ebrisflowsmove-

ment.TheoccurrenceofhugebouldersofmarlstonetypicaloftheWę gierkaMarlsuggestsshelforiginofsomedebritesandtherefore ,relativelylongdistanceoftransportation.However,rareo c c u r r e n c e o f t h i n , t e n s o f c e n t i m e t r e s l o n g , u n f o l d e d mudstoneclastsimplythattherewerealsoshort- livedslideswithinternalshearlowenoughtopreventc lastdeformation andf o l d i n g . S i m i l a r l y t o f a c i e s 1 , t h e y m a y d e r i v e d f r o m undercuttingo f l o c a l o v e r b a n k d e p o s i t s . T h e e r o s i o n a l potentialofso medebrisflowsisreflectedbyunevenbottomsurfacesandi ncisionofdebritesintoturbiditic sandstone offacies1 .

Particle-sizeanalysisshowsimportantchangeingrain- sizeandmudcontributionfromdepositsofturbiditycurren tsanddebrisflowsinbothMAN1andMA2samplesseries(Fig.

6).Someo f t h e d e b r i s f l o w s w e r e p r o b a b l y t r a n s f o r m e d f r o m concentratedtohyperconcentrateddensityflowsby increasingcontributionsofcohesivemudfromdisintegrati onoferodedclasts( M u l d e r & A l e x a n d e r 2 0 0 1 ) , w h i c h a g r e e s w i t h t h e abundanceofclastsandpoorbound arybetweensomebedsoffacies1and2.

Occurrenceofclastsofmarlstonecross-

cutbybioturbationstructuresfilledwithsurroundingmatrixi mpliesbioturbationafterd e p o s i t i o n o f d e b r i t e s ( F i

g . 7 C ) . T h i s i n d i c a t e s g o o d post-

depositionale n v i r o n m e n t a l o x i c c o n d i t i o n s f o r b e n t h i c life.Preferentialoccurrenceofbioturbationstructure swithinthedebritesmayresultfromhighercontributionsofs uppliednutrientsorfromperiodsofdecreasedsedimentationrat eafterdepositionofdebrites.Nevertheless,lackofbiotur- bationstructuresatthetopoffacies1bedsmayresultfromerosion.

(18)

U P P E R C R E T A C E O U S D E E P- S E A C H A N N E L D E P O SI T S(

S K O L E N

81 G

E OL O GI C A C A R P AT HI C A, 20

Fig.7.Sedimentologicalfeatureoffacies2fromtheManasterzQuarrysection.A—clast-richsandydebrite;B—ahugeboulderofbluish-whitemarlstonesimilartotheWęgierkaMarlinthesandydebriteoffacies2;C—

sandydebritewithclastofmarlstonecross-cutbybioturbationstructuresfilledwithsurroundedmatrix.Whitearrowsshowbioturbationstructures;D—clast-rich(c)sandydebritewithsharpboundarybetweencoarse- grained(c.m)andfine-grainedmatrix(f.m).

(19)

82 ŁAPCIK

GEOLOGICACARPATHICA,2018,69,1,71–88 Facies3orlargeboulder?

InthelowerpartoftheMQsection,a1.8mthicklayerofgrey tobluish-

white,calcareousmudstonewithrarealtern a-tionof< 

0.6cmthicksiltstoneispresent.Tothetopandbot-

tom,sharpboundarywithsandstoneoffacies1isobserv ed.Laterally,mudstonelayeriscontinuousoveradistanceo fatleast3m.Nevertheless,incompleteexpositiondoesnotallowd eterminationofitstruelateralsizeandcontinuity.Themud- stonei s s t r u c t u r e l e s s a n d i t s h o w s n o s i g n o f b i o t u r b a t i o n . Thesiltstoneislaminatedandrichinplantdetritus .Itshowssharpbottomboundaries.

Interpretation:G r e y,c a l c a r e o u s m u d s t o n e s a r e h e m i p e-

lagictopelagicfaciestypicalofbasinslope.Laminatedsil t-stonesa r e i n t e r p r e t e d a s d e p o s i t s o f d i l u t e l o w - d e n s i t y turbiditycurr ent sa nd corr espond to t h e TdB o u m a d iv i s i o n ,

butt h e i r o r i g i n f r o m b o t t o m c u r r e n t s c a n n o t b e t o t a l l y

excluded.U n c e r t a i n l a t e r a l c o n t i n u a t i o n a n d e x c e p t i o n a l thicknesss u g g e s t t h a t t h i s m u d s t o n e - d o m i n a t e d l a y e r m a y representa l a rgeb o u l d e r w i t h i n a d e b r i s f l o w r a t h e r t h a n acapeofthicksandsto nesfrombelow.Moreover,sometran-

sitionf ro m v er y t h i c k -

be dd e d s a nd s t o n e t ov e r y t h i c k mu d -

stonesmightbeexpected,butitisabsentinthesectionstudied.Nevertheles s,suchamudstonelayermayalsooriginatefromanabruptdecreas eofactivityinthesourcearea,whichresultedinvanishingofsanddepositi oninthestudyarea.

ManasterzQuarrysectionasachannel-fill

Deep-seachannelsareoftenthoughtasprolongationofdeep- seacanyonsorgullies,whichdistributebouldertoclay size m a terialf r o m u p p e r a n d m i d d l e s l o p e t o a b y s s a l p l a i n . Deep-

seachannelsshowmanydifferentformswithtwoendmem bersw h e r e d o m i n a t i n g p r o c e s s e s a r e e r o s i o n ( i n c i s i n g channels)oraggradation(constructivechannels)resp ectively(e.g.,Normark1970;Floodetal.1991;Hübshereta l.1997;Babonneauetal.2002).Deep-

seachannelsaredistinguishedasoneofthehierarchicalelem entswithindeep-waterdeposi-

tionalsystems.Stackingofstoreysorchannelelementsform channelc o m p l e x e s , c h a n n e l c o m p l e x s e t s a n d c h a n n e l s y s -

tems(Spragueetal.2002,2005;Abreuetal.2003).Channelsarerel ativelytemporarystructures,whichmigratelaterallybyavulsionan d l a t e r a l a c c r e t i o n . I n t h i s p ap e r t h e MQ s e c t i o n faciesa reinterpretedasdeep-seachanneldepositswithfea - turesandcharacteristicsthatarediscussedbelow.

ChannelcharacteristicsoftheManasterzQuarrysection

TheM Q s e c t i o n s h o w s t h e f o l l o w i n g f e a t u r e s t y p i c a l o f deep-seac h a nn e l f a c i e s : h i g h s a n d- t o -

mu dr a t i o , o c c u rr e n c e ofthickstructurelessandgraded sandstoneswithpaucityof sedimentarystructures,arelativelyhi ghcontributionofcoarsematerial,nu m e ro u s a m a l g a m a t i o n su r f a c e s , ab un d a n t s c ou r s andrip-

upclastsandbasallagdeposits(e.g.,Mutti&Normark1987;Shanmuga m&Moiola1988;Mayalletal.2006;McHargueetal.2011;H ubbardetal.2014).Facies

(20)

UPPERCRETACEOUSDEEP-SEACHANNELDEPOSITS(SKOLENAPPE,POLISHOUTERCARPATHIANS) 8 3

GEOLOGICACARPATHICA,2018,69,1,71–88 comparisoninthesamebasinisausefultoolfordistinguishingbetween

particularfaciesofdeep-

seachannels(McHargueetal.2011).TheMQsectionshows anextremelyhighsand-to-

mudr a t i o i n c o m p a r i s o n t o o t h e r o u t c r o p s o f t h e R o p i a n k a Formation(e.g.,Bromowicz1974;Kotlarczyk 1978).Inthe closevicinityofthestudyarea,onlyafewsmallis olatedout-

cropsw i t h f a c i ess i m i l a r t o t h e M Q s e c t i o n a r e a v a i l a b l e (Salata&Uchman2013;Łapciketal.2016).

Thismaysug-

gestthatdepositsintheMQsectionarerelatedtoachann elaxisdepositionalenvironment.

Animportantfeatureofdeep-seachannelsisthelateraltran- sitionfromchannelaxistochannelmarginandchannel- leveefacies(e.g.,Campionetal.2000;Spragueetal.2002, 2005;Gardneretal.2003;Mayalletal.2006;McHargueetal.2011;

Hubbardetal.2014).Usually,thetransitionfromchannelaxistochan nelmarginfaciesoccursatadistanceofafewhundredsofmetres(e.g.,S hanmugam&Moiola1988;Bruhn&Walker1997;Campionetal.

2000;McHargueetal.2011;Hubbardetal.2014).TheMQthic k-beddedsandstonesareestimatedto totallyp i n c h - o u t t o t h e N W a t a d i s t a n c e o f n o m o r e t h a n 800m ( F i g . 1 C ) . Theo u t c r o p s w h i c h o c c u p y s i m i l a r s t r a t i- graphicpositionstotheMQsandstonesaredominatedbythin- andm e d i u m -

b e d d e d s a n d s t o n e s a l t e r n a t e d w i t h m u d s t o n e s ands i l t s t o n e s ( F i g .2 ) . Thisf a c i esc h a ng e s ug g e s t s a l a t e r a l offsetofchannelfacies,whichpassesintocha nnelmarginorchannell e v e e f a c i e s . I n t h e c l o s e v i c i n i t y t o t h e S E , f a c i e s similartotheMQsectionareunkno wn(Guciketal.1980). Therefore,t hi ck -

beddeds ands ton es probab lyp in ch- outl at e-

rallya t a d i s t a n c e o f t e n s t o h u n d r e d s o f m e t r e s . T h e t o t a l widtho f t h e M a n a s t e r z Q u a r r y c h a n n e l s h o u l d n o t e x c e e d afewhundredsofmetres.

FormationandfillingoftheManasterzQuarrychannel Deep-

seachannelscanbefilledbyturbidites,debrites,slumpsandh emipelagicdepositswithdifferentcontributionsoftheseco mponentsbutwithagenerallydecreasingquantityofmasstra nsportdepositsdowncurrent(e.g.,Shanmugam&Moiola 1988;Dakinetal.2013;Bayliss&Pickering2015a).Channel incisionis mostlyattributed toerosionbyprevious hi gh-

densityturbiditycurrentsorthecurrentresponsiblefo rchannelfilling.However,someofthemcanbecreatedduringby passofdebrisflowswhenerosioncanreachtensofmetres(e.g., Dakinetal.2013).TheMQchannelisfilledwithmixeddepositso f h ig h-

de n s i t y t u rb i d i t y c u r r en t s a n dd e b r i s f l ow s . Numero usa m a l gamations u r f a c e s a n d a l t e r n a t i o n s o f t u r b i - ditesanddebritesimplyamultistageprocessoffillingcharac- terizedbyrepetitivetransitionsfromdepositionwithab asallagthrougherosionofthelagandtochannelfillingwithdomi- nationofstructurelessandgradedsandstones(e.g.,Cl ark&Pickering1 9 9 6 ; G a r d n e r e t a l . 2 0 0 3 ) . Thickness

o f t h e M Q channelreachesatleast31mandisinrangeofch annel-

fillthickness(e.g.,Spragueetal.2005;Mayalletal.2006;Mc Hargueetal.2011;Hubbardetal.2014).T h e lowesthierarchical ar chi te ct ur al e le me nti nch ann el se tt i ng sa re storeysorc hannelelementswiththicknessesusuallydoesnot

(21)

exceeding5m(Spragueetal.2002).Theinternalarchitectureoft h e M Q s e c t i o n a l l o w e d t o d i s t i n g u i s h s t o r e y s w i t h t w o basice l ements,w h i c h r e p e a t e d l y o c c u r w i t h i n t h e s e c t i o n . Thef i r s t b a s i c e l e m e n t i n c l u d e s d e b r i t e s o f f a c i e s 2 , w h i c h correspondtobasallagdepositsattheb ottomofaparticularstorey(e.g.,Mayalletal.2006).Occurrenc eofthesedepositsdeterminestheboundarybetweendifferentst oreyslocatedattheirbase.Facies1representsstorey-

fill,depositedaftersedi-

mentationofdebritebasallagdeposits.TheMQsectioncon- sistsoffivestorey-

fillsalternatingwiththreedebritebasallagdeposits( F i g s . 4 , 8 ) . I t i s u n c e r t a i n i f t h e c h a n n e l e l e m e n t turbiditefill5re presentstwodifferentelementsseparatedbypoorlyexposedde briteoroneverythickstorey-

fill(Figs.4,8).Thicknessofparticularstoreyvariesfrom2.5mto 8morupto1 3 m i f t h e c h a n n e l e l e m e n t 5 r e p r e s e n t s o n e c h a n n e l element(Fig.4).Thethicknessofpartic ulardebritebasallagdepositsismuchthinnerandreaches1–

2m.Thecoverofthebottompartofthesectiondoesnotallowustod istinguishthebasall a g d e p o s i t s o f t h e f i r s t s t o r e y.Alte rnativel y,d e b r i t e s mayr e p r e s e n t e v e n t d e p o s i t s , w h i c h r a n d o m l y i n t e r r u p t e d turbidites e d i m e ntationd u r i n g f o r m a t i o n o f t h e c h a n n e l -

f i l l . However,m u l t i p l e r e p e t i t i o n o f 1 ) d e p o s i t i o n o f d e b r i t e l a g deposits,2)erosionofdebritelagdepositsand3)deposition ofhigh-densityturbiditessupportsthefirstalternative.

Thick-

beddedstructurelessandgradedsandstonefaciesandtheirverticalst ackingsuggestthattheMQsectionmayrepre-

sentan a r e a n e a r t h e t h i c k e s t p a r t o f t h e ch a n n e l wh e r e t he coarsestm a t e r i a l i s s t a c k e d . M o r e o v e r,v e r t i c a l s t a c k i n g o f coupletsoffacies1andfacies2suggestsaffiliationt oalargerchannel-

fillorachannelcomplexsetwithanaggradationratehigherthanits lateralmigration.Suchchannelfaciescannot aggradew i t h o u t s i m u l t a n e o u s a g g r a d a t i o n o f l e v e e c o n f i n e- ment(McHargueetal.2011).Hence,interpretationoftheout- cropsinthesimilarstratigraphicpositiontotheNWaschannelmarginorc hannelleveeismostprobable(Figs.1C,2).

Channelformationcanbesubdividedintothreestages:

1)erosionandbypasswhenlargescaleerosionalsurfacesupt otensofmetresareformedandcappedbylagdeposits,2)chan- nelfillwhenthecoarsestmaterialisrepeatedlydepositedanderod edwithsimultaneoussedimentspilloutsidethechannel,and 3)abandonmentwhenthefinestmaterialcapsandsepa - ratest w o c h a n n e l e l e m e n t s ( e . g . , C l a r k & P i c k e r i n g 1 9 9 6 ; Gardnere t a l . 2 0 0 3 ; M a y a l l e t a l . 2 0 0 6 ; L a b o u r d e t t e e t a l . 2008;Dakinetal.2013;Bayliss&Picker ing2015a, 

b).Abundanta m a l g a m a t i o n a n d s m a l l s c a l e e r o s i o n , r e l a t i v e l y lowcontributionoflagdepositsanddominationofde positsofcollapsingf l o w s i m p l y t h a t t h e M Q d e p o s i t s r e p r e s e n t t h e channelfillstage.AccordingtoMcHargueetal.

(2011),earlyfillingandamalgamationofachannelbeginsa fterstabiliza-

tionoftheequilibriumprofilebythepreviouserosionalstage.Despit

el o w e r e n e rgyo f t h e f l o w s d u r i n g t h e f i l l i n g s t a g e , erosioni s s t i l l p r o m i n e n t , e s p e c i a l l y n e a r t h e c h a n n e l a x i s . Moreover,occurrenceofclast-

richdebritesiscommonduringtheearlyamalgamationstage(McHar gueetal.2011).Mostofthemodelsassumethatthelaststageofthechan nelformationisa b a n d o n m e n t r e c o r d e d b y s e d i m e n t a t i o n o f t h i n - b e d d e d

(22)

deposits.LackoffiningandthinningupwardtrendintheMQsecti onm a y d e r i v e f r o m p o o r e x p o s u r e w h e r e a l l d e p o s i t s representon lya sm al lp ar to fa la rgerch ann el co mpl ex se t. Alternatively,t h e p r e s e n c e o f a n e a r b y s t r o n g l y d e v e l o p e d levee,mayalsoprecludedevelopm entoffiningandthinningupwardt r e n d s ( S h a n m u g a m

& M o i o l a 1 9 8 8 ) . S u c h a l e v e e mayb e r e p r e s e n t e d b y p r e v i o u s l y m e n t i o n e d f a c i e s i n t h e similarst ratigraphicpositiontotheNWoftheMQ.Itispos-

sibletospeculatethathighlyam algamateddepositsfor mingarchitectureoftheMQchannelcorrespondprobablytoa bun-

dantavulsionandlowaggradationofsecondary(inner)over- bankonthescaleofchannelele ments(Deptucketal.200 3;Posamentier&Kolla2003;McHargueetal.2011).

LocationoftheManasterzchannelintheSkoleBasin

Abundanceofmassmovementandsedimentgravityf low depositswithextrabasinalmater ialanddistributio nofmar l-

stonef a c i e s s u gg e s t t h a t s e d i m e n t a t i o n o f t h e mo s t e x t e r n a l partoftheRopiankaFormationtookplaceonthe middleorlowerb a s i n s l o p e o r c l o s e t o t h e b a s e o f t h e s l o p e ( e . g . , Burzewski1 9 6 6 ; B r o m o w i c z 1 9 7 4 ; K o t l a r c z y k 1 9 7 8 , 1 9 8 8 ; Jankowskietal.2012;Łapcik etal.2016).AnalysisofheavymineralsfromtheRopiankaFor mationshowedthatitsdepo-

sitsderivefromanimmaturepassivemarginsetting(Salata&Uch man2013).TheMQsectionrepresentsanareaofabun- dante r o s i o n a n d a b r u p t w a n i n g f l o w s , w h i c h c o r r e s p o n d t o hydraulicjumpoftheflow.Thechannel-

lobetransitionalzoneisconsideredasasiteofabundanthydraul icjumpwithcom-

monscouringanderosionalstructures(e.g.,Mutti&Normark1987

;Wynnetal.2002,Gardneretal.2003).Howeve r,thech annel-lobetransitionalzoneusuallyincludestractionstruc- tures( o f t e n l a rges c a l e ) , w h i c h a r e a b s e n t a t t h e M Q ( e . g . , Mutti&Normark1987;Wynnetal.2002).Highcontribu tionoflargeintrabasinalrip-

upclastsintheMQsectionsuggestsstrongerosionalforcesi nthepreviousflowstage.Hence,theMQc h a n n e l i s p r o b a b l y i n c i s e d i n t o m u d s t o n e - a n d m a r l-stone- richd e p o s i t s o f t h e S k o l e B a s i n s l o p e o r s u c h c l a s t s derivedfromundercutting ofthechannellevees.Th eoccur-

renceofextrabasinal,shallowwatermaterialintheMQ dep ositssuggestsa strongrelationship with theSkoleBas in shelf.Carbonatemudandshelldebriswereredeposit edintooffshoreandafterwardsslopeareasprobablybyl oweringofthes t o r m w a v e b a s e . S u c h m a t erials u g g e s t s a r e l a t i o n s h i p withcanyonsorgullieswhichcaptureditafte rredepositionbystormeventsfrommoreproximalareas.

Previouslypostulatedsimultaneousaggradationofover- bankdepositsandchannel-

fillisstronglyrelatedtocontribu-

tionofoverspilledmudfromturbiditycurrentsandwithproxi mal-to-

distalpositionofthechannel.Theheightofleveescanreach hundredsofmetresanddecreasesdowncur-

rentw i t h d e c r e asinga m o u n t s o f t h e f i n e -

g r a i n e d c o h e s i v e materialwhichstabilizeleveebanks(Da muth&Flood1985).Thelowcontributionofmudwithindepo sitsofhigh-

densityturbidityc u r r e n t i n t h e M Q s e c t i o n s u g g e s t s s p i l l o v e r a n d bypassofmoremuddypartsoftheflow.Furt herevidencefor

(23)

Fig.8.TheManasterzQuarrysectionwithdistinguishedchannelelements.AtheManasterzQuarrywithdistinguishedchannelelements.BtopoftheManasterzQuarrywithdistinguishedchannelelements. strongb y p a s s i s t h e a l m o s t c o m p l e t e lackoforganicdetritusandcoald ebrisintheMQsection.Suchmaterialiso ftena n i m p o r t a n t c o m p o n e nto f thi ck-

beddeds a n d s t o n e s i n t h e RopiankaF o r m a t i o n ( e . g . , K o t l a r c z y k

&Ś l i w o w a 1 9 6 3 ; Ł a p c i k e t a l .2 0 1 6 ; Łapcikinpress).Itisunlikelythatthesede positsa r e r e l atedt o a n o t h e r s o u r c e areathansandstonesfromthelowerpart o f t h e s e c t ion( M a n a s t e r z - Rzeki)becauses u c h m a t e r i a l i s k n o w n f r o m evenyoungerdeposits(e.g.,Ko tlarczyk

&Śliwowa1963).Therefore,themost probablescenarioisbypassoforganic detritusandcoal,whichwasdeposited ina m o r e d i s t a l a r e a , f o r e x a m ple, i n thel o b e -

l i k e d e p o s i t i o n o f t h e S ł o n n e sect ion( Ł a p c i k i n p r e s s ) .H e n c e , t h e MQchannelshouldbesituatedinrel a-

tivelyproximalareaonthelowerslopeor nearbaseoftheslope.AccordingtoGard nere ta l.

(2003),t he MQ se ct io n showsf e a t u r e s o f t h e f i l l s t a g e o f achannelsit uatedinthelowerslopeorbaseo f t h e s l o p e . T h i s a l s o s t a n d s i n agreement w i t h t h e p r o x i m a l l o c a t i o n oft h e M Q s e c t ionw i t h i n t h e s e c o n d thrusts h e e t f r o m t h e n o r t h e r n Carpathianmargin.

Palaeotransport directions andsinuosityoftheManasterzChannel DepositsoftheRopiankaFormatio nshowd ire ct io ns oft hep al ae ot ra n sportfromNW,NandNEwithdominanceof theNWdirectioninthevicinityofthes t u d y a r e a ( K s i ą ż k i e w i c z 1 9 6 2 ; Bromowicz1974).Thepalaeotransportd ataf r o m t h e M Q i n c l u d e o n l y m e a -

surementso f s c o u r o r i e n t a t i o n a n d grainim bri ca ti on wi th in th es t ruc tur e-

lessandgradedsandstones,whichindi- catet r a n s p o r t a t i o n f r o m t h e N W.

Nevertheless,directionsoftransportin adeep-

seachannelmaybevariableandarerarelyu nidirectional.Spatialdistri-

(24)

butionandorientationoflongbeltso fthick-

beddedsandstonefaciesintheexternal partoftheRopiankaFormationisconsistentwi ththepresenteddataanda ls opoi nt to th eNW–

SE axi s (Guciketal.1980). Allthese dataare premisesf o r d e p o s i t i o n o f t h i c k-bed-

dedsandstonefaciesinthevici nityo f

(25)

thes t u d y a r e a l o n g i t u d i n a l t o t h e s l o p e o f t h e S k o l e B a s i n . Mosto f t h e s e f a c i e s s u g g e s t a s t r o n g r e l a t i o n s h i p w i t h t h e ŁańcutChannelZoneproposedbyKotlarczyk&

Leśniak(1990)fortheOligocenedeposits(seealsoSalata&Uch man2012,2013).Itseemsthatthischannelzonewasalreadyactiveduring theLateCretaceous.

Thepreviouslymentionedlateralo ffsetofthefaciesfr omthechannelaxistothechannelmarginorchannelleveefrom theMQ se ct io nt ot he Ma na st er zs ec t io na ll ow ss pe cu l at io n abouts i n u o s i t y o f t h e s t u d i e d c h a n n e l . O t h e r w i s e , a x i a l o r off-

axialchannelfacieswouldbecontinuedtotheNWintheManast erzsection.Hence,thechannelfaciesoutcroppingin the MQshouldchangetheirorientationtotheNortheWtoevad et h e Ma n a s t e r z c h a nn e l l e v e e f a c i e s . N e v e r t h e l e s s , t he MQsectiondoesnotappeartohavelateralaccretionpackagesthath a v e b e e n d e s c r i b e d i no t h e r m e a n d e r i n g c h a n n e l -

f i l l deposits( e . g . , B o u m a & C o l e m a n 1 9 8 5 ; M u t t i &

N o r m a r k 1991;Abreuetal.2003;Janockoetal.2013).Unfo rtunately,coveringofthearea,tectonicdeformationsandinclin ationofbedsdoesnotallowtrackingofthechannelfacies.

InterpetationoftheManasterz-RzekiandManasterzfacies BottomandtoppartsoftheManasterz-

RzekiandtheManasterzsection

Theb o t t o m a n d t o p p a r t s o f t h e M a n a s t e r z -

R z e k i s e c t i o n showm a n y s i m i l a r i t i e s t o t h e b o t t o m p a r t o f t h e M a n a s t e r z section(Fig.2).Thin-tomedium- beddedsandstonesandmarlstoneswithabundantparallel,cro ssandconvolutelami-

nationsprobablycorrespondtochannelleveeorinter-

channeldeposits.Thedecreasingcontributionofmarlstonesinthebot- tompartoftheManasterzsectionsuggeststhatthisintervalissituat edabov et he se co ndma rl st on e-

ri ch int er va lof th e Manasterz-

Rzekis e c t i o n ( F i g s . 1 C , 2 ) .S u c h m a r l s t o n e s a r e widel yd i s t r i b u t e d i n t h e R o p i a n k a F o r m a t i o n i n t h e w h o l e marginalp a r t o f t h e S k o l e N a p p e ( e . g . , K o t l a r c z y k 1 9 7 8 , 1988;Leszczyńskietal.1995).Themarlstonesa reconsideredasc a l c i t u r b i d i t e s w it h t h e i r s ou r c e a r e a s i t ua t e d in t h e sh e l f surroundingtheSkoleBasin.Theyweredeposited bylow-den-

sityturbiditycurrentsinthemarginalpartoftheSkoleBasin,whic hprobablycorrespondstothebasinslopeandbaseoftheslope.H o w e v e r,m a r l s t o n e c l a s t s f r o m t h e M Q d e r i v e f r o m erosi ono f m a r l s t o n e s f o r m t h e o l d e r p a r t o f t h e R o p i a n k a Formation.Afterpartlylithific at ionthey,wererippe dupbyhigh-

densityt u r b i d i t y c u r r e n t s a n d r e d e p o s i t e d i n t o a m o r e distalarea.

Thick-beddedsandstonesoccurintheManasterz-

RzekiandManasterzs e c t i o n s . S t a c k i n g o f t h i c k - b e d d e d , s t r u c t u r e l e s s andgradedsandstonesoftenwit hparallellaminatedtopalter-natingw i t h t h i n -

a n d m e d i u m -

b e d d e d l a m i n a t e d s a n d s t o n e s suggestchannelo r depositi onall o b e f a c i e s . H o w e v e r,thethicknessa n d s a n d - t o -

m u d r a t i o o f t h e s e i n t e r v a l s t o g e t h e r withsparseam algamationandscourssuggestsomedistance fromtheaxisofs uchbodiesincomparisontotheMQsection.Bothsectionsrepresentpr ogradationandaggradationofsome

(26)

sand-

richb o d y.D e c r e a s i n g c o n t r i b u t i o n o f m a r l s t o n e s w i t h simultaneousincreaseinthick-

beddedsandstones(Fig.3)mayimply:1)decreasingactivityinthec arbonatesourcearea,

2)p r o g r a d a t i o n o f a s a n d b o d y w h i c h t e m p o r a r i l y b e c a m e anobstacleforcalciturbidites,or3)increasing activityinthesiliciclasticsourcearea,sedimentsfromwhichdilut edthecar-

bonatesedimentation.Therelativeproximityofthesedepositscanbe referredtothemarginalpositionofthestudyareaintheSkoleNappe(

secondthrustsheetfromtheCarpathiansmar-

gin).Tectonicd e f o r m a t i o n s o f t h e s t u d y a r e a d o n o t a l l o w certaincorrelationbetweenthesectionsstudied.Itisnotc learwhetherthetwothick-beddedintervalsoftheManasterz- RzekiandManasterzsectionsrepresentthesamesandbodyortwodiff erentsandbodies.Themaindifferencebetweenthesethick- beddeds a n d s t o n e s i s a b u n d a n c e o f c o a l d e b r i s i n t h e Manasterzs e c t i o n . H o w e v e r,t h i s i s t o o w e a k a p r e m i s e t o excludeanyalternative.Ifthetwointervalsrepresentdiff erentbodies,theintervalwithdecreasingcontributionofmarlstonesa tthebottomoftheManasterzsectionmaycorrespondtothelate raloffsetofchannelorlobefaciesoftheManasterz-

Rzekisection,a n d t h e u p p e r p a r t o f t h e M a n a s t e r z - R z e k i s e c t i o n mayc o r r e s p o n d t o c h a n n e l a b a n d o n m e n t f a c i e s o r c h a n n e l leveefacies.Thesespecul ationsalsoimplyonlateralmigra-

tiono f s a n d y b o d i e s a t t h e d i s t a n c e o f h u n d r e d s o f m e t r e s derivedprobablyfromavulsion(Fig.1C).

TheWęgierkaMarl

TheW ę g i e r k a M a r l i s w i d e l y k n o w n f r o m t h e R o p i a n k a Formationi n t h e e x t e r n a l p a r t o f t h e S k o l e N a p p e a n d i s mostlyrepresentedbypackagesoffine- grained,muddysand-

stoneswithmudstoneandmarlstoneclasts,uptotensofcenti- metresthick,andsandycalcareousmudstoneswithdispersed quartzpebblesandclastsofmarlstone.Moreover,hugemarl- stoneolistolithsarealsoknown(Burzewski1966;Kotlarczyk1 978,1988;Gerochetal.1979).Suchdepositsmostlyrepre- sents l u m p s a n d d e b r i s f l o w s o r i g i n a t i n g i n t h e m i d d l e t o lowerslopesetting.Theirabundanceands patialdistributionsuggestt h e i r c l assificationa s m a s s t r a n s p o r t d e p o s i t s c o m -

plex,whichinfluencedthebasinfloormorphology.Masstrans portdepositsoftenoccuratthebottomofchannelsand c hannelc o m p l e x e s ( C l a r k & P i c k e r i n g 1 9 9 6 ; M a y a l l e t a l . 2006;Bayliss&Pickering2015a).Inthestudyarea,th eWęgierkaM a r l f a c i e s a r e l o c a t e d a t t h e b o t t o m o f t h e M Q channelfacies.Hence,theManasterzQuarrychannelcomple xwasformedonitsfloorwithabundantdebriteswhich couldstandasconfinementoftheinitialchannelzone.Int heLeszczynyMember,theWęgierkaMarlandthick- beddedsandstonesoftenalternate(e.g.,Burzewski1966;Bro mowicz1974;Kotlarczyk1978,1988;Gerochetal.1979)butitis notclearifmassivesandstonesoftheMQsectionaresituatedonlyatthet opoftheWęgierkaMarl,oriftheyalsoborderwith the

mlaterallyand/orarecappedbythem.Someofthedebritesint h e M Q s e c t i o n c o n t a i n h u g e b o u l d e r s o f m a r l s t o n e v e r y simila rtotheWęgierkaMarl.Thissuggeststhatmasstrans - portoftheWęgierkaMarldepositsalsofilledsomechannels

Cytaty

Powiązane dokumenty

Clasts of volcanic rocks, marls, quartz gravel, black mudstones, schists, sandstones, gneisses, limestones, volcaniclastic rocks and conglomerates are floating within

Abstract : Upper Cretaceous to lower Palaeogene carbonate and siliciclastic deposits that crop out widely in the Haymana and Polatlı districts (Ankara Province) of

The assemblage investigated can be correlated with the upper Campanian to Maastrichtian Am- phipyndcvc tylotus radiolarian Zone of Foreman (1977) based on the presence

Trace fossils and ichnofabrics in the Upper Cretaceous red deep-w ater marly deposits of the Pieniny Klippen Belt, Polish Carpathians.. M ost of the ichnofossils occur

Tubulichnium incertum and Phycosiphon incertum are frequent only in the sections poor in ichnotaxa (Inoceramian Beds, Szczawnica Formation).. These ichnotaxa

In the Nowy Sącz area Early Miocene marine deposits have been discovered in the southern part of the Raca Subunit, and at the front of the Bystrica Subunit of the Magura Nappe..

Stratigraphie log of the upper part of the Mikuszowice Cherts and the lowermost part of the Barnasiówka Radiolarian Shale Forma- tion (BRSF) at the Ostra Góra section with positions

Channel characteristics of the Manasterz Quarry section The MQ section shows the following features typical of deep-sea channel facies: high sand-to-mud ratio, occurrence