• Nie Znaleziono Wyników

Middle Miocene zeolite-bearing turbidites, Abrămuţ Basin (Pannonian Basin), NW Romania

N/A
N/A
Protected

Academic year: 2022

Share "Middle Miocene zeolite-bearing turbidites, Abrămuţ Basin (Pannonian Basin), NW Romania"

Copied!
8
0
0

Pełen tekst

(1)

Middle Mio cene ze o lite-bear ing turbidites, Abrãmuþ Ba sin (Pannonian Ba sin), NW Ro ma nia

Ana-Voica BOJAR, Vic tor BARBU and Hans-Pe ter BOJAR

Bojar A.-V., Barbu V. and Bojar H.-P. (2012) – Mid dle Mio cene ze o lite-bear ing turbidites, Abrãmuþ Ba sin (Pannonian Ba sin), NW Ro - ma nia. Geol. Quart., 56 (2): 261–268, doi: 10.7306/gq.1020

De tailed lithostratigraphic data from a bore hole in the Abrãmuþ Ba sin, lo cated in the north west ern part of Ro ma nia, has re vealed the pres - ence of turbiditic de pos its con tain ing sev eral lay ers with tuff/tuffaceous ma te ri als in the Lower Badenian. The age of these de pos its is de ter mined by the pres ence of the foraminifera Praeorbulina glomerosa and Orbulina suturalis. De tailed quan ti ta tive and qual i ta tive X-ray dif frac tion data (XRD) on 10 dif fer ent tuff lay ers sit u ated at depths be tween 2450 and 2640 m show a min er al og i cal as so ci a tion com pris ing analcime, quartz, vol ca nic glass, smectite, mica, cal cite, K-feld spar, glass and mi nor quan tity of chlorite and al bite. The pres - ence of analcime sug gests that the al bite isograd for the in ter val stud ied has been never reached and the max i mum tem per a tures have been lower than c. 125°C since the Early Badenian.

Ana-Voica Bojar, Salzburg Uni ver sity, De part ment of Ge ol ogy, Hellbrunnerstrasse 34, A-5020 Salzburg, Aus tria, e-mail:

ana-voica.bojar@sbg.ac.at; Vic tor Barbu, Ex plo ra tion Di vi sion, OMV-Petrom S.A., 22 Coralilor Street, Bu cha rest 013329, Ro ma nia, e-mail: vic tor.barbu@petrom.com; Ana-Voica Bojar and Hans-Pe ter Bojar, De part ment of Min er al ogy, Studienzentrum Naturkunde, Universalmuseum Joanneum, Weinzöttlstrasse 16, A-8045 Graz, Aus tria, e-mail: hans-pe ter.bojar@mu seum-joanneum.at (re ceived:

July 16, 2011, ac cepted: Jan u ary 25, 2012; first pub lished on line: May 08, 2012).

Key words: Early Badenian, foraminifera, bore hole, tuffs, ze o lite fa cies, XRD, Abr²muþ Ba sin.

INTRODUCTION

Pre vi ous min er al og i cal stud ies from the north west ern Transylvania Ba sin (Seghedi et al., 2000) or Coºtui–Maramureº Ba sin (Damian et al., 2007 and ref er ence therein) have shown that the zeolites found in tuffs of Badenian age con sist mainly of clinoptilolite (40–90%) with mi nor amounts of mordenite or phillipsite. These tuffs have a sim i lar strati graphic po si tion to other vol ca nic tuffs from the Transylvania Ba sin (Dej Tuff, Ciupagea et al., 1970), the Maramureº Ba sin (e.g., Cochemé et al., 2003), the Gutâi Mts.

(Szakács and Seghedi, 1996; Kovács et al., 1997; Kovács and Fülop, 2003), the Apuseni Mts. (Seghedi et al., 2004), the Beregovo and north ern Trans-Tisza re gions (Pécskay et al., 2006), the Slãnic Tuff in the fore land of the East ern Carpathians (M²runþeanu, 1999), and the Styrian Ba sin (Bojar et al., 2004; Han dler et al., 2006).

The Abr²muþ Ba sin is sit u ated in north west ern Ro ma nia and cor re sponds with the Derecske Ba sin from the Hun gar ian sec tor of the Pannonian Ba sin (Fig.1). In the bore holes, sev eral

lev els of tuffs were re corded. In or der to com pare them with the pre vi ously known oc cur rences, mi cro-fau nal and min er al og i - cal (qual i ta tive and quan ti ta tive) in ves ti ga tions were per formed for the bore hole in ter val ana lysed.

GEOLOGICAL SETTING

The lithostratigraphy of the Abr²muþ Ba sin is based on subsurface geo log i cal data, rep re sented by geo phys i cal logs, cores and cut tings (Fig. 2). The old est de pos its drilled are polymictic con glom er ates, prob a bly of late Karpatian age.

These de pos its are in ter preted to rep re sent the on set of the ex - ten sion in the north east ern part of the Pannonian Ba sin (Tulucan, 1999; Boroºi, 2004; Tiliþ et al., 2007; R²b²gia, 2010). The Lower Badenian is rep re sented by sand stones and marls with in ter ca la tions of tuff and tuffaceous sand stone in the up per most part of the suc ces sion. The Early Badenian age is in - di cated by a foraminifera as sem blage with Praeorbulina glomerosa and Orbulina suturalis (Boroºi, 2004; Barbu et al., 2008). The Mid dle Badenian, char ac ter ized by the Globigerina

(2)

decoraperta–Globigerina druryi foraminifera as sem blage, has not been rec og nized in the Abr²muþ bore holes. The Up per Badenian con sists of siliciclastic de pos its (sand stones, marls/shales with a few tuffaceous sand stone in ter ca la tions) with Bulimina–Bolivina and Velapertina micropalaeonto - logical as so ci a tions. Lo cally, on the ba sin mar gins the siliciclastic de pos its are re placed by fossiliferous lime stones, char ac ter ised by the Lithothamnium–Borelis and Amphistegina as so ci a tion. There are sim i lar cal car e ous fa cies out crops east of the Abrãmuþ Ba sin in the north east ern sec tion of the Plopiº Moun tains (e.g., Plopiº and Tuºa lo cal i ties).

The Sarmatian s.s. (sensu Rögl, 1998; Suess, 1866) com - prises marls and cal car e ous sand stones. The Lower Sarmatian s.s. de pos its con tain a micro fauna with the foraminfera Anomalinoides badenensis, Elphidium reginum and

Varidentella reussi, and the Up per Sarmatian s.s. con tains the foraminifera Porosononion aragviensis and Elphidium antoninum and the mysid statolith Paramysis mihaii (Boroºi, 2004).

The rare, poor fau nal as sem blages made it dif fi cult to iden - tify the Lower Pannonian. We pre sume that the Lower Pannonian only ex ists in the deep est (west ern) part of the Abramuþ Ba sin. The Up per Pannonian is formed by shales and marls and in cludes a typ i cal fauna with Congeria banatica and Cyprideis sublitoralis. The Pontian is de vel oped in a sim i lar lithofacies, but com prises Congeria digitifera, Congeria partschi, Paradacna abichi, Bacunella dorsoarcuata and Pontoniella acuminate (Boroºi, 2004).

The Plio cene (Dacian–Romanian) con sists of grav els, sands and shales interbedded with coals. The Plio cene age is

Fig. 1A – geo graphic lo ca tion of the study area; B – re gional dis tri bu tion of the Badenian tuffs (af ter Pecskay et al., 2006)

(3)

con firmed by the pres ence of Melanopsis decolata, Valvata subcarinata, Limnocardium de co rum, Candona lactea and Candona sp. (Boroºi, 2004)

The aim of this pa per is to dis cuss the or i gin, tim ing of de po si - tion and char ac ter is tics of the Lower Badenian tuffs and tuffaceous sand stone in ter ca la tions in the deep part of the Abr²muþ Ba sin on the ba sis of cut ting sam ples from one bore hole (Fig. 3).

MATERIAL AND METHODS

MICROPALAEONTOLOGICAL DETERMINATIONS

The micropalaeontological anal y sis was per formed on four cut ting sam ples col lected from one Abr²muþ bore hole. The first three micropalaeontological sam ples are from cut tings of the 1st, 2nd, 6th tuff lay ers which were also used for min er al og i cal de ter mi na tions. The fourth micropalaeontological sam ple is po si tioned be low the 7th tuff cut ting sam ple (Fig. 3). The micropalaeontological sam ples were pre pared us ing H2O2. The microfossil taxa of each sam ple were iden ti fied in the 125–600 mm frac tions.

MINERALOGICAL DETERMINATIONS

Qual i ta tive and quan ti ta tive min er al og i cal anal y sis was per formed on 10 cut ting sam ples col lected from one bore hole.

X-ray dif frac tion pat terns were mea sured on a Bruker AXS D8 diffractometer equipped with a one-di men sional strip-de tec tor (lynx-eye) us ing a Cu-ka ra di a tion (40 kV, 40 mA, sam ple ro - ta tion). Quan ti fi ca tion was per formed as de scribed by Eberl (2003) with syn thetic Al2O3 as in ter nal stan dard. Pure min er als and glass were used as in ter nal ref er ence spec tra. One gram of sam ple was mixed with 0.25 g Al2O3, milled with eth a nol in a McCrone micronizing mill, dried at 60°C in a com part ment drier, and loaded in acrylic glass (PMMA) sam ple hold ers for pow der-XRD mea sure ments. The mea sur ing con di tions were:

step-size 0.02°, 2 sec/step (equiv a lent to 304 sec/steps with a con ven tional point-de tec tor). Cal cu la tions were done with Rockjock 11 soft ware (Eberl, 2003).

RESULTS

BIOSTRATIGRAPHY

For the bore hole in ter val stud ied (2450 to 2580 m; Fig. 3), micropalaeontological anal y sis of the sam ples in di cate the pres - ence of Praeorbulina glomerosa circularis, Orbulina suturalis, Globigerina bulloides, Globigerina praebulloides, Globigerina angustiumbilicata, Globigerina falconensis, Globigerina bolli, Globigerinoides trilobus, Globoquadrina dehiscens, Orbulina bilobata, Cibicidoides pseudoungerianus, Pullenia bulloides, Heterolepa dutemplei, Melonis pompilioides and Sphaeroidina bulloides. The co-oc cur rence of the biomarkers Praeorbulina glomerosa circularis and Orbulina suturalis in di cates an Early Badenian age (Up per Lagenid Zone; Rögl et al., 2002, 2008) and cor re sponds to the Mid dle Langhian M6 Zone of Berggren et al.

(1995). In ab so lute ages, this co-oc cur rence spans a short time in - ter val be tween 15.1 Ma (First Oc cur rence – FO O. suturalis) and 14.8 Ma (Last Oc cur rence – LO Praeorbulina glomerosa; comp.

Berggren et al., 1995, Rögl et al., 2002; Kováè et al., 2004).

DEPOSITIONAL ENVIRONMENT

In the Abrãmuþ area, for the in ter val stud ied, which rep re sents the up per most Lower Badenian, geo phys i cal logs, cores and cut -

Fig. 2. Gen eral stra tig ra phy of the Abrãmuþ Ba sin

(4)

ting in for ma tion were used to de ter mine the li thol ogy. In a pre vi - ous study, Boroºi (2004) in ter preted the marls, tuffs, tuffaceous sand stones and sand stones as turbidite de pos its (Fig. 3).

Spe cies of the ben thic foraminifera ge nus Cibicides can be used to es ti mate the depositional palaeodepths. Re cent and Mio cene fau nas with Cibicides dutemplei, C. ungerianus and C. pseudoungerianus are found at shal lower wa ter depths (0–500 m) than are those with C. kullenbergi, C. pachyderma, C. wuellerstorfi, C. bradyi, C. robertsonianus and C. italicus (around 1000 m depth; e.g., Hohenegger, 2005; van Hinsbergen et al., 2005 and ref er ences inside).

In the pres ent case, the ben thic foraminiferal as sem blages are dom i nated by Orbulina suturalis and Praeorbulina glomerosa and con tain the palaeodepth mark ers Cibicides pseudoungerianus (100–500 m), and Uvigerina spp.

(200–1000 m; van Hinsbergen et al., 2005). The co-oc cur rence of these palaeodepth mark ers spe cies and the pres ence of

deeper-dwell ing plank tonic foraminiferal taxa such as Globigerina bulloides (>50 m;

upwelling zone) in di cate a palaeowater depth be tween 200 and 500 m.

MINERALOGY OF THE TUFF LAYERS

XRD data show that the min er al og i cal com po - si tion of the tuff lay ers con sists of quartz, analcime (NaxAlxSi3 – xO6 [(3 – x)/2] H2O) , vol ca nic glass, glass and mi nor amounts of smectite, cal cite mica, K-feld spar, al bite and chlorite (Ta ble 1 and Fig. 4).

DISCUSSION

Zeolites oc cur when tem per a tures and fluid pres sures are be low 250°C and 2 kbar re spec - tively (Liou, 1971; Cho et al., 1987, Cho, 1991).

The burial-depth zonation of zeolites has been de scribed by Coombs et al. (1959). The type of ze o lite formed, mainly de pends on the tem per a - ture, the type of fluid and the com po si tion of the source rock. Among the larg est vol umes of zeolites are formed in sed i men tary rocks de pos - ited along con ver gent con ti nen tal mar gins and as so ci ated with vol ca nic arcs (Utada, 2001). A clas si cal ze o lite suite formed dur ing burial meta mor phism of volcaniclastic rocks was de - scribed by Ijima and Ogihara (1995), who es ti - mated the bound ary be tween un al tered glass (zone I) to al kali-clinoptilolite/mordenite (zone II) at 44°C; the next bound ary to analcime, heulandite (zone III) was placed at 84°C, fol - lowed at 123°C by the bound ary to al bite (zone IV; Fig. 5). The tem per a ture bound ary be tween the ze o lite zones may be dif fer ent when sa line al ka line flu ids are pres ent in the sec tion (Ijima, 2001). In this case, the tem per a ture val ues are lower – be tween 21 to 34°C at the bound ary be - tween zone I and II, and be tween 37 to 51°C at the bound ary be tween zones II and III. Neuhoff et al. (2004) plot ted compositional and ther mo dy namic data for analcime with thermo-bar o met ric isograds. The au thors dis cuss the sta bil ity of analcime with var i ous chem i cal com po si tions in the sys tem analcime–quartz–al bite–H2O. Their ex per i men tal data agree well with ev i dence from bore holes in Ja pan, as de - scribed for ex am ple by Ijima (2001). Both data sources dem on - strate that Liou (1971) over es ti mated the up per tem per a ture of sta bil ity for analcime.

In the Abr²muþ Ba sin sec tion, the mean geo ther mal gra di - ent is 4.5°C/100 m (Fig. 5). The geo ther mal gra di ent was cal cu - lated us ing the fol low ing for mula:

GT = [Tofor ma tion – Tosur face/d] ´ 100

where: Tofor ma tion – tem per a ture mea sured in bore hole, Tosur face – av er age tem per a ture at sur face, d – depth where tem per a ture for ma tion was mea - sured in metres.

Fig. 3. De tailed lithostratigraphy and Gamma Ray log of the stud ied bore hole in ter val

(5)

Min eral

Sam ple name

H2450 H2500 H2510 H2520 H2530 H2546 H2570 H2600 H2640

weight [%]

quartz 29 33 33 32 36 36 32 31 33

al bite 1 1 1 1 1 2 1 1 1

K-feld spar 3 5 9 6 8 10 4 7 5

cal cite 7 1 <1 2 2 2 1 <1 1

analcime 1 35 33 36 27 18 38 38 36

glass 33 18 18 17 21 24 18 16 18

smectite 15 2 2 3 3 4 3 2 4

mica 10 5 4 3 2 4 2 5 2

chlorite 1 <1 <1 <1 <1 <1 <1 <1 <1

T a b l e 1 Qual i ta tive and quan ti ta tive min er al og i cal com po si tion of sam ples

Fig. 4A – XRD spec tra of the tuff sam ple sit u ated at 2520 m depth, min eral ab bre vi a tions ac cord ing to Kretz (1983), co run dum was used as in ter nal stan dard; B, C – tuff thin sec tions (crossed light) with glass (ex tinc tion with cross lights), feld spar and quartz

(6)

The tem per a ture was mea sured in the bore hole for the depth in ter val be tween 2500 to 2720 m, and var ies from 120 to 134°C, re spec tively. The av er age sur face tem per a ture is 10oC.

The ther mal gra di ent is re flected by a high heat flow value of 90 mW/m2 (Demetrescu, 1978, 1982; Tari et al., 1999; Lenkey et al., 2002; Ádám et al., 2003; Fig. 6).

The flu ids have a neu tral to slightly al ka line pH, with sa lini - ties vary ing be tween 9–21 g/l, and con tain Na+, Ca2+, Cl and CO32- (cour tesy OMV-Petrom). Ma jor com po nents of the tuffs are quartz, analcime and glass. In the sec tion pre sented in this study, the only ze o lite de tected by XRD is analcime. The clay min eral con tent is mi nor and low pro por tions of mus co vite and chlorite are also pres ent. The min er al og i cal as so ci a tion de ter - mined, which con tains only a mi nor amount of al bite, im plies that, in the pres ent case at a max i mum depth of 2640 m, the max i mum tem per a ture has never ex ceeded c. 125°C since Mio - cene times, which is the up per tem per a ture bound ary be tween analcime and al bite, in the ab sence of flu ids af ter Ijima and Ogihara (1995; Fig. 5). Based on both the pre vi ously known data con cern ing the sta bil ity zone of analcime in sim i lar de pos - its and the data ac quired for this bore hole, the Abr²muþ sec tion did not reach the analcime–al bite tran si tion.

CONCLUSIONS

The in ter val stud ied be longs to the up per most Lower Badenian (Up per Lagenid Zone), was de pos ited in the up per

Fig. 5. Sta bil ity in ter val of zeolites for: A – burial diagenesis (af ter Ijima and Ohigara, 1995); B – burial diagenesis and sa line al ka line

pore-fluid diagenesis (Ijima, 2001)

Fig. 6. Pannonian Ba sin heat flow map (Ádám et al., 2003)

(7)

bathyal zone and con tains sev eral in ter ca la tions of volcanoclastic ma te rial. Min er al og i cal quan ti ta tive and qual i ta - tive in ves ti ga tions show the pres ence of analcime with only mi - nor amounts of al bite. The re sults strongly sug gest that, for the in ter val in ves ti gated, tem per a tures never ex ceeded c. 125° and the al bite isograd was never reached.

Ac knowl edge ments. We are grate ful to the OMV Petrom S.A. oil com pany for per mit ting the Abrãmuþ bore hole

lithostratigraphical and geo phys i cal data to be used in this study. A.-V. Bojar ac knowl edges fi nan cial sup port from the Österreichische Forschungsgemeinschaft, MOEL pro ject for 2010. We would like to thank to F. Ottner, Uni ver sity of Nat u - ral Re sources and Life Sci ences, Vi enna and an anon y mous re - viewer for con struc tive crit i cism. S. Oszczepalski, Pol ish Geo - log i cal In sti tute – Na tional Re search In sti tute, Warszawa is thanked for care fully ed i to rial han dling of the manu script.

REFERENCES

ÁDÁM L., EDÕCS K. and ELÍASSON E. T. (2003) – Geo ther mal Power Pro ject 2003–2004, En ergy Frame work Programme – ALTENER II.

Eu ro pean Geo ther mal Con fer ence, Szeged, Hun gary.

BARBU V., TULUCAN A. and BOROªI V. (2008) – Micropaleontological ev i dence of Mid dle Mio cene tuffs de po si tion in the north-east ern part of Pannonian ba sin, Abrãmuþ sub-ba sin (Ro ma - nia). Geoph. Res. Ab stracts, 10, EGU2008-A-05021, SRef-ID:

1607-7962/gra/EGU2008-A-05021.

BERGGREN W. A., KENT D. V., SWISHER C. C. and AUBRY M.-P. A.

(1995) – Re vised Ce no zoic geo chron ol ogy and chronostratigraphy.

SEPM, Spec. Publ., 54: 129–212.

BOJAR A.-V., HIDEN H., FENNINGER A. and NEUBAUER F. (2004) – Mid dle Mio cene sea sonal tem per a ture changes in the Styrian Ba sin, Aus tria, as re corded by the iso to pic com po si tion of Pectinid and Brachi o pod shells. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203 (1–2): 95–105.

BOROªI V. (2004) – Neo gene carbonatic microfacies from the Pannonian De pres sion (in Ro ma nian). Ph.D. the sis, Bu cha rest Uni ver sity.

CHO M. (1991) – Ze o lite to prehnite-pumpellyite fa cies meta mor phism in the Toa Baja drillhole, Puerto Rico. Geoph. Res. Lett., 18 (3):

525–528.

CHO M., LIOU J. G. and MARUYAMA S. (1987) – An ex per i men tal in - ves ti ga tion of heulandite-laumontite equi lib rium at 1000 to 200 bar P fluid. Contrib. Miner. Petrol., 97: 43–50.

CIUPAGEA D., PÃUCÃ M. and ICHIM T. (1970) – Ge ol ogy of the Transylvanian De pres sion (in Ro ma nian). Acad. R.S.R, Bu cha rest.

COCHEMÉ J.-J., LEGGO P. J., DAMIAN G. A., FÜLOP A., LEDÉSERT B. and GRAUBY O. (2003) – The min er al ogy and dis tri bu tion of zeolitic tuffs in the Maramureº ba sin, Ro ma nia. Clays and Clay Miner., 51 (6): 599–608.

COOMBS D. S., ELLIS A. J., FYFE W. S. and TAYLOR A. M. (1959) – The ze o lite fa cies, with com ments on the in ter pre ta tion of hy dro ther - mal syn the ses. Geochim. Cosmochim. Acta, 17: 53–107.

DAMIAN G., DAMIAN F., MACOVEI G., CONSTANTINA C. and IEPURE G. (2007) – Zeolitic Tuffs from Coºtiui zone – Maramureº Ba sin. Carpath. J. Earth En vi ron. Sc., 2 (1): 59–74.

DEMETRESCU C. (1978) – On the geo ther mal re gime of some tec tonic units in Ro ma nia. Pure Appl. Geoph., 117: 124–134.

DEMETRESCU C. (1982) – Ther mal struc ture of the crust and up per man - tle of Ro ma nia. Tectonophysics, 90 (1–2): 123–135.

EBERL D. D. (2003) – User´s guide to Rockjock – a pro gram for de ter min - ing quan ti ta tive min er al ogy from pow der X-ray dif frac tion data. U.S.

Geol. Surv., Open-File Re port, 03-78.

HANDLER R., EBNER F., NEUBAUER F., BOJAR A.-V. and HERMANN S. (2006) – 40/39Ar dat ing of Mio cene tuffs from the Styrian part of the Pannonian ba sin: an at tempt to re fine ba sin stra tig - ra phy. Geol. Carpath., 57 (6): 483–494.

HOHENEGGER J. (2005) – Es ti ma tion of en vi ron men tal paleogradient val ues based on pres ence/ab sence data: a case study us ing ben thic foraminifera for paleodepth es ti ma tion. Palaeogeogr. Palaeoclimatol.

Palaeoecol., 217: 115–13.

IJIMA A. (2001) – Zeolites in pe tro leum and nat u ral gas reservoires. Rev.

Miner. Geochem., 45: 347–402.

IJIMA A. and OGIHARA S. (1995) – Zeolites in pe tro leum and nat u ral gas res er voirs in Ja pan: a re view. In: Nat u ral Zeolites ’93 (eds. D. W. Ming and F. A. Mumpton). Int. Comm. Nat u ral Zeolites, Brockport, New York.

KOVÁCS M. and FÜLOP A. (2003) – Neo gene vol ca nism in Gutâi Mts.

(East ern Carpathians): a re view. Stud. Univ. Babeº-Bolyai, Geol., 48 (1): 3–16.

KOVÁCS M., EDELSTEIN O., GABOR M., BONHOMME M. and PÉCSKAY Z. (1997) – Neo gene magmatism and metallogeny in Oaº-Gutâi-Þibleº Mts.: a new ap proach based on ra dio met ric datings.

Rom. J. Miner. De pos its, 78: 35–45.

KOVÁÈ M., BARÁTH I., HARZHAUSER M., HLAVATÝ I. and HUDÁÈKOVÁ N. (2004) – Mio cene depositional sys tems and se - quence stra tig ra phy of the Vi enna Ba sin. Cour. Forsch.-Inst.

Senckenberg, 246: 187–212.

KRETZ R. (1983) – Sym bols of rock-form ing min er als. Am. Miner., 68:

277–279.

LENKEY L., DÖVÉNYI P., HORVÁTH F. and CLOETINGH S. A. P. L.

(2002) – Geothermics of the Pannonian ba sin and its bear ing on the Neotectonics. EGU Stephan Müller Spec. Publ. Ser., 3: 29–40.

LIOU L. (1971) – Analcime equi lib ria. Lithos, 4: 389–402.

MÃRUNÞEANU M. (1999) – Litho- and biostratigraphy (cal car e ous nannoplankton) of the Mio cene de pos its from the Outer Moldavides.

Geol. Carpath., 50 (4): 313–324.

NEUHOFF P. S., HOVIS G. L., BALASSONE G. and STEBBINS J. F.

(2004) – Ther mo dy namic prop er ties of analcime solid so lu tion. Am. J.

Sc., 304: 21–26.

PÉCSKAY Z. LEXA J., SZAKÁCS A., SEGHEDI I., BALOGH K., KONEÈNY V., ZELENKA T., KOVÁCS M., PÓKS T., FÜLÖP A., MÁRTON, E., PANAIOTU C. and CVETKOVIÆ V. (2006) – Geo - chron ol ogy of Neo gene magmatism in the Carpathian arc and intra-Carpathian area. Geol. Carpath., 57 (6): 511–530.

RÃBÃGIA A. (2010) – Se quence stra tig ra phy in the north-east ern part of Pannonian ba sin (Ro ma nian part) and es tab lished of the tectono-strati - graphic evo lu tion (in Ro ma nian). Ph.D. the sis, Uni ver sity of Bu cha - rest.

RÖGL F. (1998) – Palaeogeographic con sid er ations for Med i ter ra nean and Paratethys sea ways (Oligocene to Mio cene). Ann. Naturhist. Mus.

Wien, 99A: 279–310.

RÖGL F., SPEZZAFERRI S. and CORIC S. (2002) – Micropaleontology and biostratigraphy of the Karpatian-Badenian tran si tion (Early-Mid - dle Mio cene bound ary) in Aus tria (Cen tral Paratethys). Cour.

Forsch.-Inst. Senckenberg, 237: 47–67.

RÖGL F., CORIC S., HARZHAUSER M., JIMÉNEZ-MORENO G., KROH A., SCHULTZ O., WESSELY G. and ZORN I. (2008) – The Mid dle Mio cene Badenian stratotype at Baden-Sooss (Lower Aus tria).

Geol. Carpath., 59: 367–374.

SEGHEDI I., DOWNES H., SZAKÁCS A., MASON P. R. D., THIRLWALL M. F., ROªU E., PÉCSKAY Z., MÁRTON E. and PANAIOTU C. (2004) – Neo gene-Qua ter nary magmatism and

(8)

geodynamics in the Carpathian-Pannonian re gion: a syn the sis. Lithos, 72 (3–4): 117–146.

SEGHEDI I., SZAKÁCS A., VANGHELIE I. and COSTEA C. (2000) – Ze o lite for ma tion in the lower Mio cene tuffs, North West ern Transylvania, Ro ma nia. Ro ma nian J. Miner., 80: 11–20.

SUESS E. (1866) – Untersuchungen über den Charakter der österreichischen Tertiärablagerungen. II. Über die Bedeutung der sogenannten ”brackischen Stufe” oder der ”Cerithienschichten”.

Sitzungsberichte der k.k. Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, 54: 1–40.

SZAKÁCS A. and SEGHEDI I. (1996) – Volcaniclastic se quences around andesitic strato-vol ca noes, East Carpathians, Ro ma nia. Ro ma nian J.

Petrol., 77 (Suppl. 1): 1–55.

TARI G., DÖVÉNYI P., DUNKL I., HORVÁTH F., LENKEY L., ªTEFÃNESCU M., SZAFIÁN P. and TÓTH T. (1999) – Lithospheric struc ture of the Pannonian ba sin de rived from seis mic, grav ity and geo ther mal data. Geol. Soc., Lon don, Spec. Publ., 156: 215–250.

TILIÞ M., BARBU V., COMÃNESCU A. and TULUCAN A. D. (2007) – The re la tion ship be tween ba sin open ing, post-rift sub si dence, in ver - sion and sea-level vari a tions in com plex back arc set tings: Mio - cene-Qua ter nary struc tures in the tran si tion area be tween the Pannonian ba sin and the Apuseni Moun tains. Geoph. Res. Ab stracts, 9: 10121, SRef-ID: 1607-7962/gra/EGU2007-A-10121.

TULUCAN A. D. (1999) – Struc tural styles for hy dro car bon ac cu mu la tion in Ro ma nian part of Pannonian ba sin (in Ro ma nian). Ph.D. the sis, Uni ver sity of Bu cha rest.

UTADA M. (2001) – Zeolites in burial diagenesis and low-grade meta mor - phic rocks. Rev. Miner. Geochem., 45: 277–304.

Van HINSBERGEN D. J. J., KOUWENHOVEN T. J. and van der ZWAAN G. J. (2005) – Paleobathymetry in the backstripping pro ce dure: cor rec - tion for ox y gen a tion ef fects on depth es ti mates. Palaeogeogr.

Palaeoclimatol. Palaeoecol., 221: 245–265.

Cytaty

Powiązane dokumenty

Organic communities and facies development of the Korytnica Basin (Middle Miocene; Holy Cross Mountains, Central Poland).. Additional data on the organic communities and

In or der to in ves ti gate whether the main di rec tion of trans port of FDS in the north ern Blatné de pres sion was to wards the SE and crossed over the gen tle base ment up lift

On the el e vated pla - teaux of the north ern part of the area, mostly north of the Carpathian orogenic front, the evaporites are cur rently rep re - sented by

Com par i son of foraminiferal as sem blages from Anadoly with the Kudryntsi (see Gedl and Peryt, 2011) and Shchyrets (see Peryt et al., 2014) sec tions shows that the Anadoly

Gonera M (2013) Globorotaliid in ter vals of the sub-evaporite Badenian (Mid dle Mio cene) in the Up per Silesia Ba sin (Cen tral Paratethys, Po land). decoraperta Zone alias

How ever, since the sand stone com po si tion is also very sim i lar be tween the Up per Pannonian and Lower Pontian sand stones in the Kloštar Field, the in flu ence of

The Orbulina suturalis Zone in cludes the lower part of the stud ied sec tion of the M³yny (Busko) PIG 1 bore hole com pris ing the in ter val con tained be tween sam ples 41 to

The lower bound ary of the Wielician substage lies at change from the Mid dle Mio cene Cli mate Op ti mum to the Mid dle Mio cene Cli mate Tran si tion, at the point where a nor - mal