• Nie Znaleziono Wyników

Search for ${W}' \rightarrow tb$ decays in the hadronic final state using $\mathit{pp}$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Share "Search for ${W}' \rightarrow tb$ decays in the hadronic final state using $\mathit{pp}$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector"

Copied!
22
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for W



tb decays in the hadronic final state using pp collisions at √

s = 13 TeV with the ATLAS detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received25January2018

Receivedinrevisedform13March2018 Accepted13March2018

Availableonline4April2018 Editor:W.-D.Schlatter

AsearchforW-bosonproductionintheWtb¯qq¯bb decay¯ channelispresentedusing36.1 fb1 of13 TeVproton–protoncollisiondatacollectedbytheATLASdetectorattheLargeHadronColliderin 2015and2016.Thesearchisinterpretedintermsofbothaleft-handedandaright-handedchiralW bosonwithinthemassrange1–5TeV.Identificationofthehadronicallydecayingtopquarkisperformed using jetsubstructuretaggingtechniques basedonashower deconstruction algorithm. Nosignificant deviationfromtheStandardModelpredictionisobservedandtheresultsareexpressedasupperlimits onthe Wtb production¯ cross-sectiontimesbranching ratioas afunctionof the W-boson mass.

TheselimitsexcludeWbosonswithright-handedcouplingswithmassesbelow3.0 TeVandWbosons withleft-handedcouplingswithmassesbelow2.9 TeV,atthe95%confidencelevel.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Severaltheories beyondthe Standard Model (SM) involve en- hancedsymmetriesthatpredictnewgauge bosons,usuallycalled Wor Zbosons.TheWbosonisthemediatorofanewcharged vector current that can be massive enough to decay into a top quark anda b-quark (as in Fig. 1). Many models such as those withextradimensions[1],strongdynamics[2–5],compositeHiggs [6], or the Little Higgs [7,8] predict new vector charged-current interactions,some withpreferential couplings toquarks orthird- generation particles [6,9–12]. Due to the large mass of the top quark,itsinteractions decouplefromtherestofthephenomenol- ogyin many theories beyond the SM. An effective Lagrangian is used to capture the relevant phenomenology of the Sequential StandardModel(SSM)[13] Wtb signal¯ [14,15],whichhasthe samecouplingstrengthtofermionsastheSMW bosonbuthigher mass.

Searchesfora W bosondecayingintotb,¯1 classifiedaseither leptonic or hadronic according to the decay products of the W bosonoriginatingfromthetopquark,wereperformedattheTeva- tron[16,17] andtheLargeHadronCollider(LHC)infinalstatesthat includeleptons[18–21] orthatarefullyhadronic[22].Thespecific searchfora W bosondecayingintotb allows¯ foraright-handed W boson(WR) in models in which the right-handedneutrino’s mass isassumed to be much higher than that of the W boson

 E-mailaddress:atlas.publications@cern.ch.

1 Forsimplicity, the notation “tb”¯ is used todenote the finalstate for both W+tb and¯ W−→ ¯tb decays.

Fig. 1. FeynmandiagramforW-bosonproductionwithdecayintotb and¯ ahadron- icallydecayingtopquark.

(mνR >mW), which the leptonic decay mode cannot access. In such a model,the branchingratio fora WR bosondecaying into tb is¯ O(10%)higherrelativetothatforaWL bosondecayinginto tb since¯ aWL bosoncanalsodecaytoaleptonandneutrino.Lim- its on a SSMleft-handed W boson (WL) decaying into alepton andaneutrinohavebeensetpreviously[23,24].Previoussearches intheall-hadronicfinal stateexclude WR bosonswithmassesup to2 TeV,setatthe95% confidencelevel(CL)using20.3fb1 ofpp collisiondataatacentre-of-massenergy(

s)of8 TeV [22].Are- centsearchbytheCMSCollaborationinthelepton+jetsfinalstate excludes WR-bosonmasses up to 3.6TeV using 35.9fb1 of pp collisiondatacollectedat

s=13 TeV [18].

Thisanalysissearchesfora W bosondecaying intotb with¯ a massin therangeof 1–5TeV,inthe invariant massspectrum of the top quark and bottom quark (mtb) reconstructed in the fully hadronicchannel.Thisincludesa WR bosonthat isnot kinemati- callyallowedtodecayintoaleptonandneutrinoanda WL boson that candecayinto quarksorleptons. Thelarge W massresults https://doi.org/10.1016/j.physletb.2018.03.036

0370-2693/©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

ina top quark and ab-quark that have hightransverse momen- tum (pT).2 The decay products of the top quark become more collimated asthe top-quark pT increases, andtheir showerspar- tiallyoverlap[25].Thishigh-pTtopology isreferred toasboosted.

Theboostedtop-quarkdecayis reconstructedasa single jet.The shower deconstruction(SD) algorithm[26,27] is employed to se- lect, or tag, jets from boosted top-quark decays. A signal would be reconstructedasalocalised excessin themtb distribution ris- ingabovethesmoothlyfallingbackgroundoriginatingmostlyfrom jetscreatedbythestronginteractiondescribedbyquantumchro- modynamics (QCD). This analysis represents an improvement on theprevious ATLAS analysisinthis channel [22] dueto a higher centre-of-mass energy, higher integrated luminosity, and better top-taggingtechniques,understanding ofsystematicuncertainties, andstatisticaltreatment.

2. ATLASdetector

The ATLAS detector [28] at the LHC covers almost the entire solid angle around the collision point. Charged particles in the pseudorapidity range |η|<2.5 are reconstructed with the inner detector (ID), which consists of several layers of semiconductor detectors (pixel and strip) and a straw-tube transition-radiation tracker,the latter covering |η|<2.0. The high-granularity silicon pixel detector provides four measurements per track; the clos- est layer to the interaction point is known as the insertable B- layer (IBL) [29]. The IBL was added in 2014 and provides high- resolution hits at small radius to improve the tracking perfor- mance. The ID isimmersed in a 2 T magneticfield provided by a superconducting solenoid. The solenoid is surrounded by elec- tromagneticandhadroniccalorimeters,anda muonspectrometer incorporatingthreelarge superconductingtoroid magnetsystems.

Thecalorimetersystemcoversthepseudorapidityrange|η|<4.9.

Electromagneticcalorimetry isperformedwithbarrelandendcap high-granularitylead/liquid-argon(LAr)electromagneticcalorime- ters,within the region |η|<3.2. There is an additional thinLAr presamplercovering|η|<1.8,tocorrectforenergylossinmate- rialupstreamofthecalorimeters.For|η|<2.5,theLArcalorime- ters are divided into three layers in depth. Hadronic calorimetry is performed with a steel/scintillator-tile calorimeter, segmented intothree barrelstructureswithin |η|<1.7,andtwo copper/LAr hadronicendcapcalorimeters,which covertheregion1.5<|η|<

3.2. The forward solid angle up to |η|=4.9 is covered by cop- per/LAr and tungsten/LAr calorimeter modules, which are opti- misedforenergymeasurementsofelectrons/photonsandhadrons, respectively.Themuonspectrometer(MS)comprisesseparatetrig- gerandhigh-precisiontrackingchambersthatmeasurethedeflec- tion ofmuons in a magnetic field generated by superconducting air-coretoroids.TheATLASdetectorusesatieredtriggersystemto selectinteresting events.Thefirstlevelisimplementedincustom electronicsandreducesthe eventratefromtheLHCcrossing fre- quencyof40MHztoadesignvalueof100kHz.Thesecondlevelis implementedinsoftwarerunningona general-purposeprocessor farmwhichprocessestheeventsandreducestherateofrecorded eventsto1kHz[30].

2 ATLASusesaright-handedcoordinatesystemwithitsoriginatthenominalin- teractionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeampipe.

Thex-axispointsfromtheIPtothecentreoftheLHCring,andthey-axispoints upwards.Cylindricalcoordinates(r,φ)areusedinthe transverseplane,φ being theazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedintermsof thepolarangleθasη= −ln tan(θ/2).Angularseparationismeasuredinunitsof

R

(η)2+ (φ)2,whereηandaretheseparationsinηand φ.Mo- mentuminthetransverseplaneisdenotedbypT.

3. Dataandsimulationsamples

This analysis uses data from proton–proton (pp) collisions at

s=13 TeV collectedwiththeATLAS detectorin2015and2016 that satisfy a numberof criteriatoensure that theATLAS detec- tor wasin goodoperatingcondition. Theamountofdata usedin thisanalysiscorrespondstoanintegratedluminosityof36.1 fb1. The average number of pp interactionsdelivered per LHC bunch crossingwas23.7.

MonteCarlo(MC)eventgeneratorswere usedtosimulatesig- nalandbackgroundevents.Signal eventsweregeneratedatlead- ingorder(LO)inQCDby MadGraph5_aMC@NLO v2.2.3[31],using a chiral W-boson model in which the coupling strength of the Wbosonto theright- andleft-handedfermionsarethesameas thoseoftheSM W bosontoleft-handedfermions.The WL boson can decay into all left-handed fermions, but the WR boson can decayonlyintoright-handedquarksastheright-handedneutrino is assumed to be more massive than the WR boson. MadGraph was used to simulatethetop-quark andW -boson decays,taking spincorrelationsintoaccount. Pythia v8.186[32] wasusedforthe modelling of the parton shower, fragmentation andthe underly- ing event.The NNPDF23LO partondistributionsfunction(PDF)set [33] and theA14setoftuned parameters[34] wereusedforthe eventgeneration.Allsimulatedsampleswererescaledtonext-to- leading-order (NLO) calculations using NLO/LO K -factors ranging from1.3to1.4,dependingonthemassandhandednessoftheW boson,calculatedwith Ztop [15].Thewidthofthe MadGraph sim- ulated W bosonissettotheNLO Ztop width calculation,O(3%) of its mass. Signal samples with gauge-boson massesbetween 1 and3 TeVwere generated in250 GeVsteps, andbetween3and 5 TeVin500 GeVsteps.

The dominantSM backgroundprocess ismulti-jet production.

Inordertoreducethedependenceonthemodellingofthesimu- lation adata-driven methodis implementedasdescribed inSec- tion 5. Correctionsin thismethod areestimated usingQCD dijet simulationproduced atLOby Pythia v8.186.Uncertaintiesinthis methodareobtainedusingsimulatedQCDdijeteventsproducedat LOby Herwig++ v2.7.1[35] and Sherpa v2.1.1[36],andatNLO by Powheg-Box v2[37,38] witheither Pythia8or Herwig+Jimmy [39]

for the parton shower, fragmentation and the underlying event simulation (referred to as Powheg+Pythia and Powheg+Herwig, respectively). Vector bosons (W/Z ) produced inassociation with jetsareincludedinthedata-drivenapproach.Theseprocessesare expected to contribute lessthan 1% of themulti-jet background.

ThisW/Z+jetspredictionischeckedusingeventssimulatedwith the Sherpa v2.2.1[36] generatorandtheCT10PDFset[40].

Top-quarkpairproductionisanimportantbackgroundwithan inclusive cross-section of σt¯t=832+4651 pb for a top-quark mass of 172.5 GeV as obtained from calculations accurate to next- to-next-to-leading order and next-to-next-to-leading logarithms (NNLO+NNLL)inQCDwith Top++2.0[41–47].Simulatedtop-quark pairprocesseswereproducedusingtheNLO Powheg-Box v2gen- erator withthe CT10PDF. The partonshower, fragmentationand theunderlyingeventwereaddedusing Pythia v6.42[48] withthe Perugia2012setoftunedparameters[49].Toincreasethenumber ofsimulatedeventsathighmass,sampleswere producedbinned int¯t mass.InterferenceandbackgroundcontributionsfromtheSM s-channelsingle-topprocessarefoundtobenegligibleandarenot consideredfurtherinthisanalysis.

Thegenerationofthesimulatedeventsamplesincludestheef- fectofmultiple pp interactionsperbunchcrossing,aswell asthe effect on the detector response due to interactions from bunch crossingsbefore orafter theone containing the hard interaction.

Forall MadGraph, Powheg, Pythia and Herwig samples,theEvt- Gen v1.2.0 program [50] was used for the bottom and charm

(3)

Geant4-basedATLAS detectorsimulation[51,52] andwererecon- structedwiththesamealgorithmsasthedataevents.

4. Eventreconstructionandshowerdeconstruction 4.1.Eventreconstruction

Thisanalysisrelies onthe reconstruction andidentificationof jetsinitiated by the top- and bottom-quark daughters ofthe W boson.Jetsare builtfromtopologicallyrelatedenergydepositions inthecalorimeterswiththeanti-kt algorithm[53] usingtheFastJet package [54].Two radiusparameters are used forjet reconstruc- tion: asmall radius (small-R) of0.4and alarge radius (large-R) of 1.0. The momenta of both the small-R and large-R jets are corrected for energylosses in passive material and for the non- compensating response of the calorimeter [55]. Small-R jets are alsocorrectedfortheaverageadditionalenergyduetopile-upin- teractions[56].Energydepositionsfrompile-upareremovedfrom large-R jetsusing the trimming algorithm [57]: the constituents ofthe large-R jet are reclusteredusing the kt jet algorithm [58, 59] with R=0.2.Constituentjetscontributinglessthan5% ofthe large-R jet’s pT are removed. The remaining energy depositions areusedtocalculatethetrimmed-jetkinematicsandsubstructure properties.In order to improve on the angular resolution of the calorimeter,themassofalarge-R jetiscomputedusingacombi- nationofcalorimeterandtrackinginformation[60].

Small-R jetsareusedtoidentifythejetscompatiblewithorig- inatingfromab-quark createdeitherdirectlyfromtheW boson orfromthetop-quarkdecay.Onlysmall-R jetswith pT>25 GeV and|η|<2.5 (in orderto be within the coverage of theID) are consideredinthisanalysis.Additional pTrequirementsareapplied toenhancethesensitivityofthesearch (seeSection5).Toreduce thenumber ofsmall-R jets originatingfrompile-up interactions, alikelihood discriminant, basedon trackandvertex information, isusedtodeterminewhethertheprimary vertex3 istheoriginof thecharged-particletracksassociatedwithajetcandidateandre- jects jets originatingfrom pile-up interactions [61]. This is done only for small-R jets with pT<60 GeV and |η|<2.4. Small-R jetswhichoriginatefromb-quarksareidentifiedusingamultivari- ateb-taggingalgorithm[62,63].Severalobservables,suchasthose basedonthelonglifetimeofb-hadronsandtheb- toc-hadronde- caytopology,areusedasalgorithminputstodiscriminatebetween b-jets,c-jetsandotherjets.Theb-taggingrequirementcorrespond- ing to an efficiency of 77% to identify b-jets with pT>20 GeV, as determined from a sample of simulated tt events,¯ is found to be optimal for the statistical significance of this search. This 77% working point (WP) provides rejection factors against light- flavour/gluon jets and c-jets of 134 and 6 respectively [63,64].

Jetsidentifiedthiswayarereferred toasb-taggedjets. Sincethe b-taggingfactorsaremeasured ina differentpT region,an uncer- taintyisassignedtotheextrapolationofthemeasurementtothe highpTregionofinterest.

Eventswithreconstructedelectrons[65] ormuons[66] areve- toed in order to ensure statistical independence of this analysis fromanalyses usingthe leptonicdecayofthe W bosonfromthe top quark [19]. Electrons and muons with transverse momenta above25 GeV andselected withcriteriasimilarto those usedin Ref. [67] areconsideredforthisveto.

3 Collisionverticesareformedfromtrackswith pT>400 MeV.Ifaneventcon- tainsmorethanonevertexcandidate,theonewiththehighest

p2Tofitsassoci- atedtracksisselectedastheprimaryvertex.

The SD algorithm can be used to identify the jets compati- ble withthe hadronicdecayof a W/Z boson, Higgsboson, ora top quark aswell asto discriminate between quark- and gluon- initiated jets. In this analysis, an SD-algorithm-based tagger (SD tagger) is used to identify jets originating from the top quark.

TheSDtaggercalculateslikelihoodsthat agivenlarge-R jetorigi- natesfromahadronictop-quarkdecayorfromahigh-momentum light quarkorgluon. Theconstituentsof thetrimmedlarge-R jet areusedtobuild exclusivesubjets[54],andthefour-momentaof these subjets serve as inputsto the SD algorithm. Thesesubjets are usedassubstitutesforindividual quarksandgluonsoriginat- ingfromthehardscatter.Alikelihoodweightiscalculatedforeach possibleshowerhistorythat canleadtotheobservedsubjetcon- figuration.Thisstep isanalogoustorunninga partonshowerMC generator in reverse, where emission and decay probabilities at each vertex, colour connections, andkinematic requirements are considered. For each shower history, the assignedweight is pro- portionaltotheprobabilitythattheassumedinitialparticlegener- atesthefinalconfiguration,takingintoaccounttheSMamplitude fortheunderlyinghard processandtheSudakov formfactorsfor the parton shower. A variable called χSD is defined as the ratio of the sum of the signal-hypothesis weights to the sum of the background-hypothesisweights.Foraset{pki}ofN observedsub- jetfour-momenta,wherei∈ [1,N],thevalueof χSD isgivenby:

χSD({pki}) =



permP({pki}|top-quark jet)



permP({pki}|gluon/light-quark jet),

where P({pki}|top-quark jet) isbuiltusingtheweightsforthehy- pothesis that a signal process leads to the observed subjet con- figuration{pki}and P({pki}|gluon/light-quark jet)isbuiltusingthe weightsforthehypothesis thatabackgroundprocessleads tothe observedsubjetconfiguration.The 

perm notation representsthe sumover all the shower histories inwhich signal processeslead to the subjet configuration. The large-R jet is tagged as a top- quark jetif χSD islargerthan agivenvalue,whichisadjusted to achievethedesiredtaggingefficiency.Thereisaninternalmecha- nismintheSDalgorithmtosuppresspile-upcontributionstothe jets,throughtheapplicationofadditionalweightsinthelikelihood ratio,whichcontaintheprobabilitythatasubsetofthesubjetsdid notoriginatefromthehardinteractionbutfrompile-up[68].

TheSDalgorithmselectseventsthatarekinematicallycompat- ible witha hadronictop-quarkdecay.The followingrequirements are made to optimise the algorithm to achieve a balance be- tween goodtop-quarkjet signalselection efficiencyandrejection of gluon/light-quarkjet backgrounds: the large-R jet hasat least threesubjets; twoormoresubjets musthaveacombinedinvari- ant mass ina 60.3–100.3 GeV windowcentred on the W -boson mass;andatleastonemoresubjetcanbeaddedtoobtainatotal massina132–212GeVwindowcentredonthetop-quarkmass.

TheSDtaggerwasoptimisedforthisanalysissothatitismore efficientfortop-quarkjetsignalselectionandgluon/light-quarkjet backgroundrejectionforpT>800 GeVcomparedtotheversionof the SD taggerfirst studied by the ATLAS Collaboration [25]. This is done bybuilding subjetsobtainedby using an exclusivekt al- gorithm [54].First, thekt algorithmwith R=1.0 is runover the large-R jet constituents and the kt reclusteringis stopped if the splitting scale [69] is larger than 15 GeV. Oncethe kt recluster- ing is stopped the reclusteredprotojets are used assubjets. The choiceofa15 GeV requirementisbasedontheexpecteddiscrim- inationbetweensignalandbackgroundevents.ThesixhighestpT

Cytaty

Powiązane dokumenty

36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics,

36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China; (b) School of

61a Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China. 61b School of

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; (b) Institute of Frontier

It is validated on both the d ata and the simulation th a t this param etric background description is valid up to 8.0 TeV, which is also the mass up to which

36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics,

36 (a) Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui, China; (b) School

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui; (b) School of Physics,