• Nie Znaleziono Wyników

A measurement facility for the determination of coil helical springs rigidity

N/A
N/A
Protected

Academic year: 2022

Share "A measurement facility for the determination of coil helical springs rigidity"

Copied!
6
0
0

Pełen tekst

(1)

ZESZYTY NAUKOW E POLITECHNIKI ŚLĄSKIEJ 2004

Seria: TRANSPORT z. 53 Nr kol. 1643

Leopold HRABOVSKY1, Michał RICHTAR1

A MEASUREMENT FACILITY FOR THE DETERMINATION OF COIL HELICAL SPRINGS RIGIDITY

Summary. This paper deals with a theoretical description o f coil helical springs rigidity and w ith experimental spring determination on model. This experiment is instrumental in theoretical expectation verification.

Experimental measurement o f spring rigidity has been performed.

STANOWISKO DO BADAŃ CHARAKTERYSTYK SZTYWNOŚCI SPRĘŻYN ŚRUBOWYCH

Streszczenie. Artykuł zawiera metodykę i opis stanowiska do badań własności sprężystych sprężyn śrubowych. Dla przykładu załączono wyniki badań sztywności wybranych wielkości sprężyn.

1. DEFORMATION OF SPRING

Deformation o f spring v is the change o f the initial height ho (fig. la). This deformation m ay be calculated using Castigliano's theorem:

Castigliano's theorem indicates, that a generalized shift in place o f elastic body is defined by a partial directional derivative o f deformation energy U [J] o f the whole body in the direction o f force F [N].

For a thin spring w ith little lead using formula (1) it follows that:

where:

Mk [Nm] - torque o f spring wire,

1 [m] — length o f spring active part =tc ■ D i [m], i [-] - num ber o f active coils,

Jp [m4] - quadratic polar moment o f spring wire cross section,

(

2

)

1 Institut Dopravy, VSB-TU Ostrava, 17.1istopadu 15, 708 33 Ostrava-Poruba, tel.: (+420) 59 699 3185, fax: (+420) 59 691 6490, leopold.hrabovsky@ vsb.cz, michal.richtar@ vsb.cz

(2)

J = [m4]

p 32 (

3

)

Fig. 1. Deformation of spring; a) scheme of spring diameters, b) rigidity diagram Rys. 1. Deformacja sprężyny; a) schemat wraz z wymiarami, b) wykres sztywności

Having used formulas (1), (3) and (2), we state the following result;

F. D . (m D. i)

2. G. J

2. G. 7t. d

~32~~

4. F2. D3. i

G. d4

[J]

(

4

)

Deformation o f spring follows from the Castigliano's theorem:

a j = d_

oF <5F

4 .F 2. D 3. i A G. d4

8. D 3. i

0 7

• F [m] (

5

)

From formula (5) it is evident, that deformation o f spring is linearly equal to force F [N] (fig. lb). Note that spring rigidity and constant o f spring are often used k [N .n f1].

Fig. 2. Measurement equipment model springs rigidity determination

Rys. 2. Model urządzenia pomiarowego do badania sztywności sprężyn śrubowych

(3)

A Measurement facility for the determination o f coil helical springs rigidity 81

Deformation v fm] is expressed by formula:

v = f [m] (6)

k

From formula (6) it follows that spring rigidity k [N .m '1] and has dimension:

k = — = F (v = 1 m) [N .m 1] (7)

v

2. MEASUREM ENT EQUIPM ENT FOR COIL SPRINGS RIGIDITY DETERMINATION The measurement stand (fig. 2) for coil helical springs rigidity determination has been built in the R&D and Testing Department, Institute o f Transport, Faculty o f Mechanical Engineering, VSB - Technical University o f Ostrava. The measurement facility consists o f the rigid frame, a measured spring, a stretching device, a tensometric sensor o f load and the PC w ith a built-in measurement adaptor.

The rigid frame is composed o f U and L welded rolled profiles (fig. 3)

F ig . 3. M o d el sp rin g s rig id ity d e te rm in a tio n

R y s. 3. U rz ą d z e n ie p o m ia ro w e d o b a d a n ia sz ty w n o śc i sp rę ży n śru b o w y c h

Adequate accuracy o f deformation v [m] (deflection) o f spring with nut M12 is realized. This nut generates thrust F [N] to the measured spring (fig. 4).

Deformation power is scanned by a tensometric sensor o f load (Hottinger Baldwin M esstechnik sensor type RSC A) fig. 4. M easurement equipment consists o f PC with a built- in measurement adaptor Advantech.

(4)

Fig. 4. Model springs rigidity determination

Rys. 4. Urządzenie pomiarowe do badania sztywności sprężyn śrubowych

3. M EASUREM ENT PROCESS

a) W e know basic parameters o f measured spring (basic height h0 [m], effective diameter D [m], diameter o f wire d [m], number o f active coils i [-]).

b) Between lower and upper thrust rings the measured spring is clamped.

c) Deformation o f spring by the nut rotation is realized.

d) Height h [m] o f the spring is measured at a suitable moment.

e) Values o f repeated measuring are tabulated. From these tabulated values spring rigidity is subsequently calculated.

4. RESULTS OF MEASUREMENT

The process o f deforming force F [N], depending on deformation o f spring with thread diameter D = 50 mm, wire cross section d = 5 mm, initial height o f spring ho = 128 mm, is described in fig. 5.

' iml

Fig. 5. The process of deforming force F [N], depending on deformation of spring with thread diameter D = 50 mm

Rys. 5. Wykres siły powodującej deformację sprężyny o średnicy drutu D = 50 mm

(5)

A Measurement facility for the determination o f coil helical springs rigidity 83

The process o f deformation force F [N], depending on deformation o f spring with thread diam eter D = 50,5 mm, wire cross section d = 9,5 mm, initial height o f spring ho = 90 mm, is described in fig. 6.

v |m) Fig. 6. The process of deformation force F [N], depending on deformation of spring with thread

diameter D = 50,5 mm

Rys. 6. Wykres siły powodującej deformację sprężyny o średnicy drum D = 50,5 mm

The curves have been obtained from repeated m easurement o f spring rigidity. A linear regression straight line has been inserted to smooth the curves (dashed line) fig. 7 and fig. 8.

v | m m)

Fig. 7. Linear regression straight line of first spring (fig. 5) Rys. 7. Liniowa funkcja regresji sprężyny wg rys. 5

(6)

F ig . 8. L in e a r re g re ss io n stra ig h t lin e o f se c o n d sp rin g (fig. 6) R ys. 8. L in io w a fu n k cja reg resji sp rę ż y n y w g rys. 6

5. CONCLUSION

Measurements carried out by utilizing the measurement facility for the determination o f coil helical spring rigidity with a sufficient level o f accuracy, describes the dependence o f deformation on deforming force. The model facility enables to verify theoretical findings, which are described in literature [2].

Literature

1. Hajek E., R eif P., Valenta F.: Prużnost a pevnost I, SNTL/ALFA 1988, 307 p.

2. Hrabovsky L.: Merici pracoviste stanoveni tuhosti vinutych valcovych prużin. VSB-TU Ostrava 2004.

Recenzent: Prof. dr hab. inż. Sylwester Markusik

Cytaty

Powiązane dokumenty

Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working.. Write your answers in the answer

The candidates’ marks in the Chemistry examination are normally distributed with a mean of 60 and a standard deviation of 12.. (a) Draw a diagram that shows

(a) If Hugh chooses Option A, calculate the total value of his allowance at the end. of the two

The following table shows the number of bicycles, x , produced daily by a factory and their total production cost, y , in US dollars

6. Key words: function spaces, modular spaces, Orlicz spaces... Modular function spaces. We may raise a question whether the theory developed through the precedings

Melting front images for different geometry of storage units but for the same process time equal to 30 min and the same constant wall temperature condition (Ts = 34 °C): at left

The direction of the resultant magnetic field vector can be determinated by the right- hand-rule: if one curl the four fingers of right hand along the direction of

rozważając relacje przekładowe, należałoby również ten drugi przekaz — tekst przełożony — ocenić jako całość, podobnie jak w od- niesieniu do komunikatu