• Nie Znaleziono Wyników

Example –mechanism with point to curve constrain

N/A
N/A
Protected

Academic year: 2021

Share "Example –mechanism with point to curve constrain"

Copied!
20
0
0

Pełen tekst

(1)

Example –mechanism with point to

curve constrain

(2)

A

B

C

0 D 1

2

3

w1= w2 = const.

e3 w1

w3

dvCB

dvC vB

vCB

vC

pv

c

b

IIAB

 AB  CD

d

ω AB v

B 1

1 B

=

= ω AB v

CB B

C

v v

v = 

CD

C 3

= v

w

(3)

A

B

C

0 D 1

2

3

w1= w2 = const.

e3 w1

w3

w1

c

a

CB

v

CB

C CB t

CB n

CB t

B n

B t

C n

C

a a a a a a

a  =    

=

=

=

= 

0 , since a v

CD , a v

2 n CB

CB 2

n C C

ε 0 since 0,

ε AB a

AB ,

a v

tB 1 1

2 n B

B

= =  = =

CB 1

C CB CB

1 C

CB

= 2 ωv  a = 2 ω  v a

CB B

C

a a

a = 

(4)

A

B

C

0 D 1

2

3

w1= w2 = const.

e3 w1

w3 t

CB C

CB n

B t

C n

C

a a a a

a  =  

b

B c

a

c

a

CB

t

d. a

CB

t

.

C

d a

pa

n

a

C

(5)

A

B

C

0 D 1

2

3

w1= w2 = const.

e3 w1

w3

a

C

t

a

C

b

a

B

c

a

CB

pa

t

a

CB n

a

C

t CB C

CB n

B t

C n

C

a a a a

a  =  

c

CD

t C 3

= a

e

(6)

w

3

w

4

v

CB

p

v

v

B

v

B

v

C

=v

CD

v

B

= v

A

+ v

BA

v

A

= 0

v

B

= v

BA

=

v

w

w

3

= v

CB

/CB

w

4

= v

CD

/CD v

C

= v

B

+ v

CB

v

C

= v

D

+ v

CD

v

D

= 0

v

C

=v

CD

d.v

CD

d.v

CB

v

CB

Example 2

(7)

Example 2

w

3

w

4

a

B

= a

BAc

a

BAc

a

CBn

a

CBn

a

CDn

a

CDn

a

C

a

CDt

a

CBt

p

a

e

4

d.a

CBt

d.a

CDt

v

BA

a

B

= a

A

+ a

BAn

+ a

BAt

+ a

BAC

a

A

= 0

a

BAt

= dv

BA

/dt=0 , bo v

BA

=v

w

=const.

a

BAn

= v

BA2

/ = 0, bo  →∞

a

BAC

= 2w

3

x v

BA

a

B

= a

BAC

a

C

= a

B

+ a

CBn

+ a

CBt

a

CBn

= w

32

CB

a

C

= a

D

+ a

CDn

+ a

CDt

a

CDn

= w

42

CD

a

D

= 0 e

4

= a

CDt

/CD

d.a

CBt

d.a

CDt

e

3

= a

CBt

/CB

e

3

(8)

Complex planar mechanism

A

C B

E

D

F

v6

1 2

4

3

5

6

Known: v

6

= v

F

EF F

E

v v

v = 

We have equation:

Direction of v

E

???

Instant center ? Trajectory ?

(9)

P

A

C B

E

D

F

v6

1 2

4

3

5

6 d.vBAII d.vPB

d.vPA

d.vEF II d.vPE d.vPF

PE E

P

EF F

E

v v

v

v v

v

=

=

) (

EF PE

F PE

EF F

P

v v v v v v

v =   =  

PF F

P

v v

v =  Common direction

(10)

P

A

C B

E

D

F

v6

1 2

4

3

5

6 d.vBAII d.vPB

d.vPA

d.vEF II d.vPE d.vPF

PB B

P

BA A

B

v v

v

v v

v

=

=

) (

BA PB

A PB

BA A

P

v v v v v v

v =   =  

PA A

P

v v

v =  Common direction

(11)

 

=

=

=

PF F

P

PA PA

A P

v v

v

v v

v v

PF F

PA

v v

v = 

P

A

C B

E

D

F

v6

1 2

4

3

5

6 d.vBA d.vPB

d.vPA

d.vEF d.vPE d.vPF

d.vBAII d.vPB d.vPA

d.vEFII d.vPE d.vPF

vF

vPF vPA=vP

pv

p f

(12)

P

A

C B

E

D

F

d.vC

v6

1 2

4

3

5

6 d.vBAII d.vPB

d.vPA

d.vEF II d.vPE d.vPF

d.vCP

 

=

=

=

CD CD

D C

CP P

C

v v

v v

v v

v

CD CP

P

v v

v  =

d.vEF II d.vPE d.vPF

vF f

d.vC

vCP vC

vPF d.vCP

pv c

p

(13)

P

A

C B

E

D

F

d.vC

v6

1 2

4

3

5

6 d.vBAII d.vPB

d.vPA

d.vEF II d.vPE d.vPF

d.vCP

d.vEF II d.vPE d.vBAII d.vPB

d.vP

A

d.vPF vF f

d.vC

vCP vC

vPF d.vCP

pv b

c

p

Δbcp

ΔBCP~

(14)

P

A

C B

E

D

F

v6

1 2

4

3

5

6

t PE t

EF d da II a

t

daPF t

PB t

BA d da II a

t

daPA

n

daBA n

daPB

n

daPE n

daEF

t PF n

PE n

EF F

P

a a a a

a =   

) (

tEF tPE

n PE n

EF F

P

t PE n

PE t

EF n

EF F

PE E

P

t EF n

EF F

EF F

E

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

=

=

=

=

=

Common direction

(15)

t PA n

PB n

BA A

P

a a a a

a =   

) (

tBA PBt

n PB n

BA A

P

t PB n

PB t

BA n

BA A

PB B

P

t BA n

BA A

BA A

B

a a

a a

a a

a a

a a

a a

a a

a a

a a

a a

=

=

=

=

=

Common direction

P

A

C B

E

D

F

v6

1 2

4

3

5

6

t PE t

EF d da II a

t

daPF t

PB t

BA d da II a

t

daPA

n

daBA n

daPB

n

daPE n

daEF

(16)

n

aPE n

aEF

t

kaPF n

aBA n

aPB

t

kaPA

p pa

; a

; a

; a

EF ; a v

;

0

nPE nBA nPB

2 n EF

EF A

F

=a = = = = =

a

t PA n

PB n

BA A

P

a a a a

a =   

t PF n

PE n

EF F

P

a a a a

a =   

P

A

C B

E

D

F

v6

1 2

4

3

5

6

t PE t

EF d da II a

t

daPF t

PB t

BA d da II a

t

daPA

n

daBA n

daPB

n

daPE n

daEF

(17)

j

k J

K

O

k

O

j

v

JK

Acceleration – equivalent mechanism Cam pair (joint)

Velocity: v

J

= v

K

+ v

JK

(18)

Cam mechanism - velocity

1

2

A 0

B C

D d.vCB

w1

(19)

1

2

A 0

B C

D d.vCB

w1

vB d.vC

CB B

C

v v

v = 

vB

vC vCB

p

v

w2

CD

C 2

= v

w

(20)

Cam mechanism – equivalent mechanism (4 bar linkage)

1

2

0 A

O1

D O2

w1

w2

Cytaty

Powiązane dokumenty

Before concluding the analysis, it may be useful to check how output and prices in the individual countries of the euro area are affected by the common monetary policy shock

[r]

[r]

Prześledzono również wpływ izolacyjności cieplnej odzieży (rys. 7) oraz tempa metabolizmu na zmiany wartości PMV i PPD. Wpływ izolacyjności cieplnej odzieży na kształtowanie

Water-saturated concrete was found to undergo thermal expansion in the temperature range between -20 and -SO°C, This expansion is clearly affected by the w/c

For each problem, find the: x and y intercepts, asymptotes, x-coordinates of the critical points, open intervals where the function is increasing and decreasing, x-coordinates of

They considered continuous self maps of complete metric spaces satisfying one of these contractive conditions and either no additional assumption or one of the following

G not only give the familiar well-known inequalities for coefficients of functions with positive real part and S*, but they also give rise to some less-known results...