• Nie Znaleziono Wyników

The influence of wind and temperature gradients on outdoor sound propagation: Development and evaluation of a calculation method based on wavefield extrapolation

N/A
N/A
Protected

Academic year: 2021

Share "The influence of wind and temperature gradients on outdoor sound propagation: Development and evaluation of a calculation method based on wavefield extrapolation"

Copied!
130
0
0

Pełen tekst

(1)

The influence of wind and

temperature gradients

on

outdoor soundpropagation.

(2)
(3)

WIND AND TEMPERATURE GRADIENTS

ON OUTDOOR SOUND PROPAGATION

BIBLIOTHEEK T U Delft P 1736 5354

(4)
(5)

T H E INFLUENCE O F

WIND A N D T E M P E R A T U R E GRADIENTS

ON OUTDOOR SOUND PROPAGATION

Development and evaluation of a calculation method

based on wavefield extrapolation

PROEFSCHRIFT ter verkrijging van

de graad van doctor in de

technische wetenschappen

aan de Technische Hogeschool Delft,

op gezag van rector magnificus,

prof.ir. B.P.Th. Veltman

voor en commissie aangewezen

door het college van decanen

te verdedigen op

dinsdag 3 mei 1983

te 14.00 uur door

BALTHASAR ADRIANUS DE J O N G

natuurkundig ingenieur

geboren te Gouda

(6)

Dit p r o e f s c h r i f t is g o e d g e k e u r d d o o r de p r o m o t o r prof.dr.ir. A . J . B e r k h o u t

(7)

PREFACE

The s t u d y d e s c r i b e d i n t h i s t h e s i s was made p o s s i b l e by t h e c o o p e r a t i o n o f t h r e e i n s t i t u t e s . The f i n a n c i a l s u p p o r t was g i v e n by t h e department o f N o i s e Abatement o f t h e f o r m e r D u t c h M i n i s t e r y o f P u b l i c H e a l t h and E n v i r o n m e n t a l P r o t e c t i o n (now b e i n g p a r t o f t h e M i n i s t e r y o f H o u s i n g , P h y s i c a l P l a n n i n g and E n v i r o n m e n t ) .

The a c t u a l work was c a r r i e d o u t a t t h e group o f a c o u s t i c s o f t h e d e p a r t m e n t o f A p p l i e d P h y s i c s , D e l f t U n i v e r s i t y o f T e c h n o l o g y . D u r i n g t h e s t u d y c l o s e c o n t a c t was k e p t w i t h t h e I n s t i t u e o f A p p l i e d P h y s i c s (TPD-TNO/TH), p a r t i c u l a r l y w i t h r e s p e c t t o t h e p r a c t i c a l a s p e c t s o f t h e p r o b l e m .

Thanks a r e due t o many p e o p l e w o r k i n g a t t h e above m e n t i o n e d i n s t i t u t e s , p e o p l e who have h e l p e d me w i t h good s u g g e s t i o n s and w i t h c l a r i f y i n g d i s c u s s i o n s . I am g r e a t l y i n d e b t e d t o P r o f . i r . D.W. v a n W u l f f t e n P a l t h e . H i s t h e o r e t i c a l knowledge was i n d i s p e n s a b l e i n f i n d i n g t h e c o r r e c t s o l u t i o n t o t h e p r o b l e m . H i s d e a t h i n A u g u s t 1981 meant a g r e a t l o s s t o me. O n l y a f t e r h i s d e a t h t h e f u l l i m p o r t a n c e o f t h i s s u g g e s t i o n s c o n c e r n i n g t h e t h e o r e t i c a l p a r t s o f t h i s s t u d y became o b v i o u s t o me.

F i n a l l y , I would l i k e t o thank P e t e r K o e r s , who has made a p a r t o f t h e p l o t s , P e t e r Mesdag, who h e l p e d me w i t h my E n g l i s h and G e r d a Boone, who has done t h e p e r f e c t t y p e w r i t i n g .

(8)

VI

CONTENTS

SUMMARY IX

1 INTRODUCTION 1 1,1 THE PURPOSE OF THIS WORK 1

1 .2 THE OUTLINE OF THIS THESIS 2 1.3 THE MODELLING OF SOUND PROPAGATION OUTDOORS 2

1.3.1 The d i s t a n c e a t t e n u a t i o n 3 1.3.2 A homogeneous ground and a homogeneous atmosphere 4

1.3.3 D e c o m p o s i t i o n by a i d o f t h e d i s c r e t e F o u r i e r t r a n s f o r m . . 6

1.3.4 I n t r o d u c t i o n o f an inhomogeneous ground s u r f a c e 8

1.3.5 The m e t e o r o l o g i c a l f a c t o r s 9 1.3.6 The ground e f f e c t w i t h w i n d and t e m p e r a t u r e g r a d i e n t s . . . 13

1.4 A BRIEF DESCRIPTION OF THE EXTRAPOLATION MODEL 14

2 THE WAVE EQUATION IN AN INHOMOGENEOUS MOVING MEDIUM 19

2.1 THE BASIC EQUATIONS 19 2.2 THE HELMHOLTZ EQUATION FOR A LAYERED STEADY WIND PROFILE . . 20

3 THE EXTRAPOLATION METHOD 25 3.1 INTRODUCTION TO FINITE DIFFERENCE TECHNIQUES 25

3.2 DERIVATIVES I N TERMS OF SPATIAL CONVOLUTION 30 3.3 EXTRAPOLATION I N THE SPATIAL FREQUENCY DOMAIN 32

3.4 FLOATING TIME REFERENCE 37 3.5 EXTRAPOLATION I N SPACE DOMAIN 41

4 EXTRAPOLATION METHOD IN THE Z-DIRECTION 47

4.1 INTRODUCTION 47 4.2 A UNIFORM WIND AND TEMPERATURE PROFILE 49

4.3 THE W.K.B.J.-SOLUTION 50 4.4 EXTRAPOLATION THROUGH A STRATIFIED MEDIUM 55

5 THE COMPUTATION MODEL 59

5.1 INTRODUCTION 59 5.2 CALCULATION OF THE SOUND FIELD ABOVE A HARD GROUND 60

5.3 INTRODUCTION OF AN ABSORBING GROUND 65 5.4 THE COMPUTATION OF THE W.K.B.J. METHOD 71

(9)

6 RESULTS AND DISCUSSION 73

6.1 INTRODUCTION 73 6.2 RESULTS AS ISOBAR PLOTS 75

6.3 SOUND LEVELS AS A FUNCTION OF FREQUENCY 82

6.3.1 G e n e r a l remarks 82 6.3.2 S e n s i t i v i t y t o t h e wind p r o f i l e 84 6.3.3 R e s u l t s w i t h a h a r d ground 89 6.3.4 R e s u l t s w i t h an a b s o r b i n g ground 89 6.3.5 A c o m p a r i s o n w i t h measurements 92 6.4 FINAL CONCLUSIONS 98 6.4.1 G e n e r a l remarks on t h e w i n d e f f e c t 98 6.4.2 E v a l u a t i o n o f t h e e x t r a p o l a t i o n model 98 APPENDIX 101 REFERENCES 105 SAMENVATTING 107

(10)
(11)

SUMMARY

I n t h i s t h e s i s w a v e f i e l d e x t r a p o l a t i o n t e c h n i q u e s a r e a p p l i e d t o t h e p r o b l e m o f o u t d o o r sound p r o p a g a t i o n . P a r t i c u l a r l y , t h e i n f l u e n c e o f w i n d and t e m p e r a t u r e g r a d i e n t s on t h e sound p r o p a g a t i o n a r e c o n s i d e r e d . An e x t r a p o l a t i o n model i s p r o p o s e d t o c o n s t r u c t t h e wave f i e l d o f a sound s o u r c e i n a moving, inhomogeneous medium and above an a b s o r b i n g ground s u r f a c e .

I n t h e d e r i v a t i o n o f t h e model some a p p r o x i m a t i o n s have been made. The inhomogeneous p a r a m e t e r s o f t h e medium (wind and t e m p e r a t u r e ) a r e c o n s i d e r e d t o be i n d e p e n d e n t o f t i m e , o r i n o t h e r w o r d s , t u r b u l e n c e i s n o t t a k e n i n t o a c c o u n t . S e c o n d l y we c o n f i n e o u r s e l v e s t o s i t u a t i o n s where w i n d and t e m p e r a t u r e depend on one c o o r d i n a t e o n l y ( s t r a t i f i e d medium).

I n c a s e s w i t h o u t w i n d and t e m p e r a t u r e g r a d i e n t s ( a homogeneous medium), t h e new model has been e v a l u a t e d w i t h w e l l e s t a b l i s h e d a n a l y t i c a l s o l u t i o n s . The i n f l u e n c e o f w i n d on t h e sound p r o p a g a t i o n has been c a l c u l a t e d f o r a number o f i n t e r e s t i n g s i t u a t i o n s . The r e s u l t s a r e compared w i t h some o f t h e few measurements, w h i c h c o u l d be found i n l i t e r a t u r e . I n s p i t e o f t h e e f f e c t o f t u r b u l e n c e s , w h i c h were l i k e l y t o be p r e s e n t d u r i n g t h e measurements, a good q u a l i t a t i v e agreement has been f o u n d . Some e x t e n s i o n s o f t h e new model a r e shown, such as t h e i n t r o d u c t i o n o f an inhomogeneous ground s u r f a c e ( h a r d - a b s o r b i n g t r a n s i t i o n ) and t h e e f f e c t o f a n o i s e s c r e e n . B o t h s i t u a t i o n s a r e c o n s i d e r e d w i t h and w i t h o u t a w i n d g r a d i e n t .

(12)
(13)

CHAPTER 1

INTRODUCTION

1.1 THE PURPOSE OF THIS WORK

I n a r e a s w i t h a h i g h p o p u l a t i o n d e n s i t y , n o i s e c o n t r o l i s an i m p o r t a n t p a r t o f e n v i r o n m e n t a l p r o t e c t i o n . I n 1981 p a r t s o f t h e D u t c h N o i s e Abatement A c t became e f f e c t i v e . To a b a t e n o i s e p o l l u t i o n t h i s l a w s e t s l i m i t s f o r " l o n g term L - l e v e l s " and p r e s c r i b e s s t a n d a r d methods f o r measurements and

eq c a l c u l a t i o n s . W i t h t h e i n t r o d u c t i o n o f t h i s l a w i t became n e c e s s a r y t o d e s i g n c a l c u l a t i o n methods, t o p r e d i c t n o i s e l e v e l s f o r f u t u r e s i t u a t i o n s and t o p r e d i c t t h e e f f e c t i v i t y o f n o i s e c o n t r o l measures i n e x i s t i n g s i t u a t i o n s . I n t h e c a l c u l a t i o n schemes t o p r e d i c t o u t d o o r sound p r o p a g a t i o n t h e i n f l u e n c e o f m e t e o r o l o g i c a l c o n d i t i o n s ( e . g . w i n d and t e m p e r a t u r e g r a d i e n t s ) i s v e r y i m p o r t a n t . I n most common c a l c u l a t i o n methods r a y - t r a c i n g t e c h n i q u e s a r e u s e d . These t e c h n i q u e s however, l e a d t o e r r o r s f o r g r e a t e r s o u r c e - r e c e i v e r d i s t a n c e s [ 1 ] . A l s o t h e c a l c u l a t i o n o f t h e i n f l u e n c e o f an a b s o r b i n g ground g i v e r i s e t o d i f f i c u l t i e s i n c o m b i n a t i o n w i t h r a y - t r a c i n g t e c h n i q u e s . These d i f f i c u l t i e s have n o t y e t been s o l v e d i n a p h y s i c a l l y p r o p e r way. O t h e r p r e d i c t i o n schemes c a l c u l a t e t h e i n f l u e n c e o f w i n d and t e m p e r a t u r e by a i d o f r u l e s d e r i v e d from measurements. The s t a n d a r d method, as p r o p o s e d i n t h e D u t c h a c t , makes u s e o f a c o m b i n a t i o n o f b o t h r a y - t r a c i n g t e c h n i q u e s and r u l e s f r o m measurements.

The work, d e s c r i b e d i n t h i s t h e s i s , was s u p p o r t e d by a g r a n t from t h e f o r m e r D u t c h M i n i s t e r y o f P u b l i c H e a l t h and E n v i r o n m e n t a l P r o t e c t i o n . The a i m was t o

(14)

2

d e v e l o p a p h y s i c a l l y a c c e p t a b l e method f o r c a l c u l a t i o n of the i n f l u e n c e o f w i n d and t e m p e r a t u r e g r a d i e n t s i n t h e p r e s e n c e o f an a b s o r b i n g g r o u n d . From

t h e r e s u l t s c o n c l u s i o n s c a n be drawn c o n c e r n i n g the a c c u r a c y o f e x i s t i n g s t a n d a r d methods. I n p a r t s the e x i s t i n g methods can be extended o r c o r r e c t e d , but t h a t l i e s beyond the scope o f t h i s s t u d y .

1.2 THE OUTLINE OF THIS THESIS

A f t e r the i n t r o d u c t i o n g i v e n i n t h i s c h a p t e r , the wave e q u a t i o n w h i c h i n c l u d e s w i n d and t e m p e r a t u r e e f f e c t s i s d e r i v e d i n c h a p t e r 2 . The t h e o r e t i c a l a s p e c t s , w h i c h form the b a s i s o f the e x t r a p o l a t i o n model, a r e d i s c u s s e d i n the c h a p t e r s 3 and 4. C h a p t e r 5 g i v e s the c o m p u t a t i o n a l a s p e c t s o f the model. I n c h a p t e r 6 t h e r e s u l t s a r e g i v e n and d i s c u s s e d , f o l l o w e d by the f i n a l c o n c l u s i o n s .

The e x t r a p o l a t i o n model i s t h e o r e t i c a l l y based on g e o p h y s i c a l e x t r a p o l a t i o n t e c h n i q u e s and on m a t h e m a t i c a l t e c h n i q u e s such as s p a t i a l F o u r i e r t r a n s f o r m s and t h e W.K.B.J.-method. F o r p e o p l e w o r k i n g on the p r a c t i c a l a s p e c t s o f n o i s e abatement, t h i s t h e o r e t i c a l p a r t may be hard t o d i g e s t . To h e l p the r e a d e r , who i s m a i n l y i n t e r e s t e d i n the r e s u l t s , a b r i e f d e s c r i p t i o n o f the model i s g i v e n i n t h i s c h a p t e r . T h i s knowledge w i l l be s u f f i c i e n t t o i n t e r p r e t the r e s u l t s i n c h a p t e r 6.

1.3 THE MODELLING OF SOUND PROPAGATION OUTDOORS

To p r e d i c t the p r o p a g a t i o n o f t r a f f i c and i n d u s t r i a l n o i s e i t i s n e c e s s a r y t o s i m p l i f y complex r e a l i s t i c s i t u a t i o n s i n t o b a s i c s i t u a t i o n s w h i c h c a n be m o d e l l e d . T h i s s i m p l i f i c a t i o n must be done i n such a way t h a t sound l e v e l s c a n be c a l c u l a t e d w i t h s u f f i c i e n t a c c u r a c y . I n t h i s t h e s i s a m o d e l l e d s i t u a t i o n f o r sound p r o p a g a t i o n o u t d o o r s , s c h e m a t i c a l l y shown i n f i g u r e 1, w i l l be used a s the b a s i c s i t u a t i o n i n w h i c h p r e d i c t i o n o f sound l e v e l s i s r e q u i r e d .

WIND P R O F I L E

S O U R C E

z GROUND S U R F A C E t

(15)

Here we w i l l assume one p o i n t s o u r c e above a ground s u r f a c e . E x t e n d e d s o u r c e s c a n a l w a y s be b u i l t up o f a number o f p o i n t s o u r c e s . The ground s u r f a c e i s n o t n e c e s s a r i l y homogeneous, but w i l l be assumed t o c o n s i s t o f a few homogeneous p a r t s . The open a i r i s a p p r o x i m a t e d by a medium, where wind and t e m p e r a t u r e o n l y depend on the a l t i t u d e ( a s t r a t i f i e d m o d e l ) . The sound l e v e l a t t h e microphone p o s i t i o n depends on t h e d i s t a n c e between s o u r c e and r e c e i v e r , t h e p r o p e r t i e s o f t h e ground s u r f a c e and t h e m e t e o r o l o g i c a l c o n d i t i o n s . The c a l c u l a t i o n model i n t r o d u c e d i n t h i s t h e s i s i s d e v e l o p e d t o d e r i v e a good p r e d i c t i o n o f t h e i n f l u e n c e w h i c h w i n d and t e m p e r a t u r e g r a d i e n t s have on t h e p r o p a g a t i o n o f sound. However, t h e i n t e r a c t i o n o f t h e a t t e n u a t i o n f a c t o r s makes i t n e c e s s a r y t o s t a r t w i t h a b r i e f i n t r o d u c t i o n o f t h e e n t i r e p r o p a g a t i o n problem.

1.3.1 The distance attenuation

The sound p r e s s u r e i s a t e m p o r a l l y harmbnic v a r i a b l e , w h i c h can be w r i t t e n as

p ( x , y , z , t ) = R e { | p | e J( U t +^ , ( 1 . 1 ) where a) = t h e c i r c u l a r f r e q u e n c y . I n t h e f o l l o w i n g we w i l l use t h e complex a m p l i t u d e n o t a t i o n , i n w h i c h t h e t i m e dependent term e x p ( j t o t ) i s o m i t t e d P ( x , y , z , o j ) = | P | eJ* . ( 1 . 2 )

Note t h a t t h i s n o t a t i o n i s i n t h e f r e q u e n c y domain and t h a t w i t h t h e o m i s s i o n o f exp(+jo)t) we have c h o s e n f o r t h e t e c h n i c a l n o t a t i o n where j = \ / - l .

I n a s t a t i o n a r y homogeneous medium t h e sound p r o p a g a t i o n has t o s a t i s f y t h e wave e q u a t i o n + f-L + k2P = 0, (1.3) 32P A 92P j . 92P A v2 where and 9 x2 9 y2 9 z2

k = o)/c = the wave number

c = t h e sound v e l o c i t y i n t h e medium.

W i t h a p o i n t s o u r c e i n ( x ,y ,z ) t h i s e q u a t i o n l e a d s t o t h e s o l u t i o n

r o o o

(16)

4 P(x,y,z,oj) = (1.4) w i t h r2 = ( x - xo)2 + ( y - yQ)2 + ( z - % )2. and = t h e p r e s s u r e a m p l i t u d e f o r k r = l . T h i s r e s u l t i s known a s t h e 1 / r - l a w .

1.3.2 A homogeneous ground and a homogeneous atmosphere

I n o r d e r t o s t u d y o u t d o o r sound p r o p a g a t i o n t h e ground e f f e c t must be i n t r o d u c e d . The l a s t t e n y e a r s a l o t o f r e s e a r c h has been done on t h i s s u b j e c t . The a n a l y t i c a l s o l u t i o n f o r a homogeneous g r o u n d , w h i c h i s used v e r y o f t e n , was i n t r o d u c e d by I n g a r d i n 1956 [ 2 ] . H i s d e r i v a t i o n s t a r t s w i t h t h e w e l l known e q u a t i o n f o r t h e p l a n e wave r e f l e c t i o n c o e f f i c i e n t , d e f i n e d as Pr( 9 j . ) = Rp( 61) P1( Q1) , ( 1 * 5 ) where P, = t h e i n c i d e n t p l a n e wave, P = t h e r e f l e c t e d p l a n e wave, r and R ( 8 , ) = t h e p l a n e wave r e f l e c t i o n c o e f f i c i e n t . P 1 I f we assume t h e ground s u r f a c e a t z=0, t h e n f o r z>0 we w i l l d e f i n e the a n g l e o f t h e i n c i d e n t p l a n e wave w i t h t h e z - a x i s , the d e n s i t y o f medium 1,

the sound v e l o c i t y i n medium 1.

F o r z<0 t h e s e v a r i a b l e s a r e d e f i n e d by

the a n g l e o f t h e t r a n s m i t t e d p l a n e wave w i t h t h e z - a x i s , the d e n s i t y o f medium 2,

a complex number, w h i c h c o n t a i n s t h e sound speed and t h e i n e l a s t i c a b s o r p t i o n i n medium 2.

(17)

W i t h t h i s d e f i n i t i o n the p l a n e wave r e f l e c t i o n c o e f f i c i e n t can be r e w r i t t e n as

p c cos6 -p c cos6

R = J L ' ' *2. . ( 1 . 6 )

F o r most p r a c t i c a l ground s u r f a c e s the p r o p a g a t i o n i n the x and the y d i r e c t i o n can be n e g l e c t e d f o r z<0. Or i n o t h e r words t h e ground s u r f a c e i s c a l l e d " l o c a l l y r e a c t i n g " f o r cos92 1» ( 1 - 7 ) W i t h t h i s c o n d i t i o n the p l a n e wave r e f l e c t i o n c o e f f i c i e n t i s g i v e n by c o s e -6 w i t h g = p^c-^/p2C2 • t h e n o r m a l i z e d ground a d m i t t a n c e . To c a l c u l a t e the r e f l e c t i o n o f s p h e r i c a l waves t h e i n c i d e n t f i e l d i s decomposed i n t o i t s p l a v e wave components. A f t e r a p p l y i n g e q u a t i o n ( 1 . 5 ) , t h e r e s u l t has t o be i n t e g r a t e d t o d e r i v e the r e f l e c t e d f i e l d . I n g a r d has shown t h a t the sound p r e s s u r e can be w r i t t e n i n the f o r m ( u s i n g h i s n o t a t i o n i =-j )

i k r ^ i k r ^ P = P ^ — + Q ( 6 , r2, el) ^ — , (1.9) rl 2 w i t h where and Q = R + {1 - R } F ( B , r2, 91) , (1.10) r^ = t h e d i s t a n c e f r o m s o u r c e t o r e c e i v e r , r2 = t h e d i s t a n c e f r o m " m i r r o r - s o u r c e " t o r e c e i v e r F = a f u n c t i o n w h i c h i n t e g r a t e s o v e r a l l a n g l e s o f i n c i d e n c e .

I n e q u a t i o n (1.9) the f i r s t p a r t i s t h e i n c i d e n t sound f i e l d and t h e second p a r t i s the r e f l e c t e d sound f i e l d . The s o l u t i o n i s w r i t t e n i n s u c h a way t h a t t h e second p a r t d e f i n e s a m i r r o r s o u r c e , i n w h i c h r ^ e q u a l s t h e d i s t a n c e f r o m " s o u r c e " t o r e c e i v e r . Q can be seen as a complex s p h e r i c a l r e f l e c t i o n

(18)

6

c o e f f i c i e n t . F may be d e r i v e d by i n t e g r a t i o n o v e r a l l a n g l e s 9^ o f t h e i n c i d e n t p l a n e waves. I n g a r d makes use o f a " W e i l - t r a n s f o r m a t i o n " w h i c h i s l a t e r c o r r e c t e d by Thomasson [ 3 ] . More r e c e n t l y A t t e n b o r o u g h [4] has r e w r i t t e n t h e s o l u t i o n i n a c o m p u t a t i o n a l l y more e f f i c i e n t f o r m r - a2 F ( a ) = 1 + ii/ïïa e e r f c ( - i a ) , (1.11) where a2 = i k r2{ l + BcosOj^ - -J\ - B2 s i n B ^ , Re(a)>0, (1-12) and e r f c i s the e r r o r f u n c t i o n g i v e n by 2 C - t2 e r f c ( z ) = — — J e d t . vAt J z

F o r a homogeneous ground s u r f a c e and a homogeneous atmosphere, the e x t r a -p o l a t i o n model, -p r e s e n t e d i n t h i s t h e s i s , w i l l be checked w i t h above g i v e n s o l u t i o n .

1.3.3 Decomposition by a i d of the d i s c r e t e Fourier transform

I n the e x t r a p o l a t i o n model w h i c h i s i n t r o d u c e d i n t h i s t h e s i s we use the same a p p r o a c h as i n t r o d u c e d by I n g a r d . O n l y now we decompose the i n c i d e n t sound f i e l d i n t o i t s p l a n e wave components by a i d of the d i s c r e t e F o u r i e r t r a n s f o r m ( s e e s e c t i o n 3.2 and the a p p e n d i x ) . A d o u b l e F o u r i e r t r a n s f o r m o f x and y i s d e f i n e d as - j ( k nAx+k mAy) P ( kx, k ,z,u)) = X 2 > ( x , y , z , w ) e y (1.13) n m w h i c h w i l l be w r i t t e n as P(x,y,z,a)) „ P ^ . k y . z . u i ) , (1.14)

where the s i g n » d e n o t e s a F o u r i e r t r a n s f o r m a t i o n . T h i s t r a n s f o r m decomposes t h e sound f i e l d i n t o p l a n e wave components t r a v e l l i n g t h r o u g h the p l a n e z=0. The complex numbers o f t h e kx, k ^ - p l a n e d e f i n e phase and a m p l i t u d e o f a p l a n e

wave component. The d i r e c t i o n o f t h e p l a n e waves a r e r e l a t e d t o the v e c t o r s o f t h e s e complex numbers. The ground a b s o r p t i o n i s now d e f i n e d by t h e wave e q u a t i o n f o r the homogeneous c a s e and the boundary c o n d i t i o n s on t h e s u r f a c e , where P and v a r e c o n t i n u o u s . W i t h g i v e n d e n s i t i e s and wave numbers o f t h e

— z

(19)

f i e l d Pr and a t r a n s m i t t e d f i e l d Pf c » t h e s e boundary c o n d i t i o n s l e a d t o t h e r e l a t i o n s P 1+P r = P tr (1.15) and , D P . , 3P , 3P P j 3z p 3z P2 3z U s i n g e q u a t i o n ( 1 . 3 ) t h e d e r i v a t i v e o f P w i t h r e s p e c t t o z c a n be e x p r e s s e d as a f u n c t i o n o f t h e d e r i v a t i v e s o f P w i t h r e s p e c t t o x and y. S y m b o l i c a l l y , dz * 1 3 x2 3 y2 A f t e r F o u r i e r t r a n s f o r m a t i o n o f x t o k and o f y t o k , and s u b s t i t u t i o n o f x y' p r o p e r t i e s ( s e e s e c t i o n 3.2) « - k2r and l l F - o - l ^ P , ( 1 . 1 8 ) 3 x2 X 3 y2 Y we f i n d f o r z=0 Pt + Pr = Pt r ( 1 - 1 9 ) and V k2- k2- k2 A r k 2 -k 2 A ^ - k ' - k2 - — y 1 1 y ? . - 2 " y ^r. d . 2 0 ) P , 1 P , r p2 E l i m i n a t i o n o f P from e q u a t i o n s (1.19) and (1.20) g i v e s Pr = Rp Pj_ f o r z=0, (1.21) with P, V k2- k2- k2 - PV k2- k2- k2 Rp = 2 ; ' X 7 ' , 2 X 7 . (1.22) p„ V k2- k2- k2 + p , V k2- k2- k2 2 1 x y 1 2 x y E v e r y p l a n e wave, w h i c h i s i n c i d e n t on t h e p l a n e z=0 ( a t an a n g l e 6, t o z - a x i s ) , i s d e f i n e d by a s e t o f kx, k ^ - v a l u e s . The a n g l e o f i n c i d e n c e ( f o r z>0) and t h e a n g l e o f t r a n s m i s s i o n ( f o r z<0) a r e g i v e n by t h e V k2- k2- k2 V k2- k2- k2 c o s e , = x y and c o s e , = x y ( 1 - 2 3 ) kl k2

(20)

8

w i t h

k^ = o)/c^ and k2 = u>/c2. (1-24)

S u b s t i t u t i o n o f r e l a t i o n s (1.23) and (1.24) i n t o e q u a t i o n (1.22) shows t h a t t h e f o r m u l a t i o n s i n e q u a t i o n s (1.21) and (1.22) a r e e q u i v a l e n t t o t h a t i n e q u a t i o n s (1.5) and ( 1 . 6 ) . F o r a l o c a l l y r e a c t i n g ground s u r f a c e the u n e q u a l i t y kx+ky K < k2 (1,25) h o l d s . F o r t h i s c a s e the p l a n e wave r e f l e c t i o n c o e f f i c i e n t i s g i v e n by e q u a t i o n ( 1 . 8 ) .

1.3.4 Introduction of an inhomogeneous ground surface

The e x t r a p o l a t i o n model can e a s i l y be e x t e n d e d f o r an inhomogeneous g r o u n d , p r o v i d e d t h a t t h i s ground can be d e v i d e d i n t o p a r t s ( x ,x . ) , w i t h a

n n+1

c o n s t a n t a d m i t t a n c e Bn- T h i s e x t e n s i o n i s of g r e a t i m p o r t a n c e f o r t h e

i n d u s t r i a l and t r a f f i c n o i s e p r e d i c t i o n , because v e r y o f t e n a s p h a l t - g r a s s t r a n s i t i o n s ( h a r d - s o f t t r a n s i t i o n s ) o c c u r between s o u r c e and r e c e i v e r .

F o r the two d i m e n s i o n a l c a s e the p l a n e wave r e f l e c t i o n c o e f f i c i e n t f o r a homogeneous grond s u r f a c e i s d e f i n e d i n the s p a t i a l f r e q u e n c y domain by

Pr( kx, z , t o ) = Rp( kx) P ^ k ^ z . w ) , (1.26) where ( s e e e q u a t i o n s ( 1 . 8 ) , (1.23) and ( 1 . 2 4 ) ) VI " (k /k )2 - B R „ a O X , (1-27) w i t h P X y/l - ( kx/ k , )2 + ^ 1C1 ^ 2C2 = t*l e aorma^ze^ gr°>in<i a d m i t t a n c e .

We suppose t h a t t h e inhomogeneous ground s u r f a c e can be s p l i t i n t o a number o f "homogeneous" p a r t s ( x ^ x ^ , ( x2 >x3) , e t c . , w i t h a d m i t t a n c e s ¡3^, 32 >

e t c . Because t h e a d m i t t a n c e i s a f u n c t i o n o f x, we s t a r t out t h e d e r i v a t i o n i n t h e space domain. I n t h i s domain e q u a t i o n (1.26) i s g i v e n by a c o n v o l u t i o n

(21)

Pr( x , z , u ) ) = rp( x ) * P1( x , z ,t 0) , (1-28)

w i t h

r ( x ) « R (k ). P P x

We make the a s s u m p t i o n t h a t we can use t h e p l a n e wave r e f l e c t i o n c o e f f i c i e n t R (k , R )> a s d e f i n e d i n the homogeneous c a s e , f o r e v e r y p a r t ( x ,x ).

p x n n n+1 Here 8 i-s t n e a d m i t t a n c e of t h e c o n s i d e r e d p a r t . Thus i n the space domain,

n

c o r r e s p o n d i n g w i t h the above m e n t i o n e d d i v i s i o n , we decompose e q u a t i o n (1.28) i n t o Pr = r ( x , 61) * { P1f ( x1, x2) } + r ( x , 82) * { Pif ( x2, x3) } + ... (1.29) i n w h i c h f ( x , x . . ) i s the b o x c a r - f u n c t i o n d e f i n e d by n n+1 f ( a , b ) = 0 f o r x<a and x>b, f ( a , b ) = 1 f o r a<x<b, and f ( a , b ) = 1/2 f o r x=a and x=b.

E q u a t i o n (1.29) can be w r i t t e n i n the s p a t i a l f r e q u e n c y domain

?r = Rp(kx,Bl){?i * F ( x1, x2) } +

+ Rp( kx, B2) { P i * F ( x2, x3) } + ... (1.30)

So, e v e r y t i m e we m u l t i p l y the p r e s s u r e w i t h the p l a n e wave r e f l e c t i o n c o e f f i c i e n t R (k ) i n t

P x i n t h e inhomogeneous c a s e .

c o e f f i c i e n t R (k ) i n the homogeneous c a s e , we have t o a p p l y e q u a t i o n (1.30) P x 1.3.5 The meteorological f a c t o r s The m e t e o r o l o g i c a l c o n d i t i o n s a r e o f g r e a t i m p o r t a n c e f o r t h e o u t d o o r sound p r o p a g a t i o n . The most i m p o r t a n t f a c t o r s a r e : - h u m i d i t y - t e m p e r a t u r e g r a d i e n t - w i n d d i r e c t i o n and g r a d i e n t - t u r b u l e n c e . Now we w i l l c o n s i d e r t h o s e f a c t o r s i n more d e t a i l .

(22)

10

H u m i d i t y o n l y has i n f l u e n c e on the sound p r o p a g a t i o n as f a r as a t m o s p h e r i c a b s o r p t i o n i s c o n c e r n e d . I n the l i t e r a t u r e [5] the mechanism of sound a b s o r p t i o n by a i r i s f u l l y d e s c r i b e d as a f u n c t i o n o f the h u m i d i t y and the t e m p e r a t u r e . F o r e v e r y f r e q u e n c y the a t t e n u a t i o n due t o a t m o s p h e r i c a l a b s o r p t i o n can e a s i l y be t a k e n i n t o a c c o u n t as a c o r r e c t i o n on the d i s t a n c e a t t e n u a t i o n . I n t h i s s t u d y , however, h u m i d i t y i s n o t c o n s i d e r e d .

The sound v e l o c i t y v a r i e s w i t h t h e t e m p e r a t u r e a c c o r d i n g t o the e q u a t i o n

I n o u t d o o r a p p l i c a t i o n s the n u m e r i c a l v a l u e s a r e K=1.4 and PQ/pQ=287 T, so

t h e sound v e l o c i t y i s o n l y a f u n c t i o n o f the a b s o l u t e t e m p e r a t u r e

A u n i f o r m change i n t e m p e r a t u r e l e a d s t o a change i n v e l o c i t y and thus t o a change i n the s p a t i a l phase of the sound f i e l d .

S i m i l a r l y , a u n i f o r m w i n d p r o f i l e a l s o g i v e s r i s e t o a change i n s p a t i a l p h a s e . T h i s e f f e c t can be s e e n as an a p p a r e n t change o f t h e sound v e l o c i t y . So, w i t h a g i v e n u n i f o r m w i n d and t e m p e r a t u r e p r o f i l e the a p p a r e n t sound v e l o c i t y i s g i v e n by ( s e e s e c t i o n 3.3) c = K V V P o -(1.31) (1.32) w i t h (1.33) w = the u n i f o r m w i n d v e c t o r ,

a = the a n g l e between w i n d d i r e c t i o n and sound p r o p a g a t i o n , and

c = v e l o c i t y of sound f o r jw|cosa=0 and T=273°K.

A u n i f o r m wind and t e m p e r a t u r e p r o f i l e have n e g l i g i b l e i n f l u e n c e on t h e p r o p a g a t i o n l o s s , p r o v i d e d t h e d i s t a n c e a t t e n u a t i o n ( 1 / r - l a w ) c a n be a p p r o x i m a t e d by

(23)

I n r e a l i s t i c s i t u a t i o n s v a l u e s o f w and T a r e f u n c t i o n s o f t h e s p a t i a l c o o r d i n a t e s ( i n a s t r a t i f i e d medium o n l y o f t h e z - c o o r d i n a t e ) . These w i n d and t e m p e r a t u r e g r a d i e n t s g i v e r i s e t o i n h o m o g e n e i t i e s w h i c h have an i n f l u e n c e on t h e p r o p a g a t i o n l o s s . I n terms o f r a y s i n h o m o g e n e i t i e s g i v e c u r v e d sound p a t h s and i f a sound wave h i t s t h e ground s u r f a c e t h i s c u r v a t u r e a l s o l e a d s t o a change i n t h e phase d i f f e r e n c e s between t h e i n c i d e n t and t h e r e f l e c t e d f i e l d . T h i s i s why t h e t o t a l sound p r e s s u r e c a n change s i g n i f i c a n t l y and i n p r a c t i c e v e r y b i g d i f f e r e n c e s between w i n d y and n e u t r a l c o n d i t i o n s c a n be found.

I n o u r model t h e atmosphere i s s i m p l i f i e d by a s t r a t i f i e d medium. T h i s i s n e c e s s a r y t o d e r i v e a manageable wave e q u a t i o n ( s e e c h a p t e r 2 ) . As i n p u t t h e sampled v a l u e s o f t h e w i n d and t e m p e r a t u r e p r o f i l e s have t o be known as a f u n c t i o n o f a l t i t u d e . I n many c a s e s t h e s e g r a d i e n t s c a n n o t be measured d i r e c t l y a t t h e p l a c e where t h e sound t r a n s m i s s i o n must be c a l c u l a t e d . I n t h a t c a s e t h e w i n d and t e m p e r a t u r e p r o f i l e s have t o be p r e d i c t e d by a i d o f s t a t i s t i c a l v a l u e s known from comparable w e a t h e r c o n d i t i o n s . Here we w i l l c o n f i n e o u r s e l v e s t o a few r e p r e s e n t a t i v e examples g i v e n by M o e r k e r k e n [6] ( s e e f i g u r e 2) and a b r i e f q u a l i t a t i v e d e s c r i p t i o n .

The t e m p e r a t u r e p r o f i l e :

The m e t e o r o l o g i c a l c o n d i t o n s w h i c h d e f i n e t h e t e m p e r a t u r e g r a d i e n t a r e t h e w i n d v e l o c i t y , t h e t u r b u l e n c e , t h e amount o f c l o u d s and t h e time o f t h e day. The l a t t e r f a c t o r i s i l l u s t r a t e d i n f i g u r e 2. I n c o m p l e t e l y n e u t r a l w e a t h e r c o n d i t i o n ( i . e . no h e a t t r a n s p o r t t h r o u g h t h e a t m o s p h e r e ) t h e t e m p e r a t u r e d e c r e a s e s w i t h h e i g h t a t t h e r a t e o f 0.7°C/100 m.

The wind p r o f i l e :

The w i n d v e l o c i t y and t h e r o u g h n e s s o f t h e ground s u r f a c e a r e t h e main v a r i a b l e s w h i c h d e f i n e t h e w i n d p r o f i l e . I n t h e l o w e r 100 m o f t h e atmosphere

t h e w i n d p r o f i l e c a n be m o d e l l e d a p p r o x i m a t e l y by a power p r o f i l e

( 1 . 3 5 )

(24)

12

m/s

F i g u r e 2: Some examples o f w i n d and t e m p e r a t u r e g r a d i e n t s .

a. The t e m p e r a t u r e p r o f i l e s d u r i n g a c l e a r summer day measured i n Rye.

b. Three d i f f e r e n t w i n d p r o f i l e s measured i n V l a a r d i n g e n (mean v a l u e s o v e r one h o u r ) w i t h u n s t a b l e weather c o n d i t i o n s ( 1 ) , n e u t r a l w e a t h e r c o n d i t o n s ( 2 ) and s t a b l e weather c o n d i t i o n s ( 3 ) . A l s o a m o d e l l e d w i n d p r o f i l e i s g i v e n ( 4 ) , c a l c u l a t e d w i t h w(z)=3.0(z/10)°*2m/s.

W ^ Q = the mean wind v e l o c i t y a t 10 m h e i g h t ,

and

p = t h e exponent w h i c h depends on t h e roughness o f t h e s u r f a c e .

I n t h e l i t e r a t u r e [6] a l s o a l o g a r i t h m i c f u n c t i o n i s s u g g e s t e d t o model t h e w i n d p r o f i l e f o r t h e l o w e r a l t i t u d e s e s p e c i a l l y . F o r c o m p u t a t i o n a l r e a s o n we

have c h o s e n f o r a power p r o f i l e e v e r y w h e r e . I n o u r examples ( s e e c h a p t e r 6 ) we m a i n l y use a wind p r o f i l e where p=0.2 and a c o n s t a n t t e m p e r a t u r e .

The t u r b u l e n c e i s a f a c t o r w h i c h i s v e r y d i f f i c u l t t o implement i n a c a l c u l a t i o n model a t t h e moment. The p r e s e n t e d e x t r a p o l a t i o n model i s based on a wave e q u a t i o n , w h i c h o n l y h o l d s f o r weak t u r b u l e n c e ( s e e e q u a t i o n ( 2 . 1 1 ) ) . I n r e a l i s t i c s i t u a t i o n s t h i s c o n d i t i o n i s o f t e n n o t met. F l u c t u a t i o n s o f t h e p r o p a g a t i o n l o s s due t o t u r b u l e n c e a r e i n t h e range o f +5 dB f o r s t a b l e w e a t h e r c o n d i t i o n s ( c l o u d y , l i t t l e w i n d ) and +15 dB f o r u n s t a b l e w e a t h e r c o n d i t i o n s (sunny, s t r o n g w i n d ) . I n t r a f f i c and i n d u s t r i a l n o i s e c o n t r o l , however, n o i s e l e v e l s a r e d e f i n e d by L l e v e l s a l m o s t e v e r y w h e r e . These L v a l u e s a r e d e r i v e d by time eq eq

(25)

a v e r a g i n g o f t h e sound p r e s s u r e . The v a l u e s o f w1 Q and p i n e q u a t i o n (1.35)

a r e a l s o mean v a l u e s o v e r a s u i t a b l e p e r i o d . I t i s o u r h y p o t h e s i s t h a t t h e a v e r a g i n g o f w^ Q > P a n <* tne sound l e v e l a r e s t r o n g l y i n t e r r e l a t e d , b u t a

c o r r e c t i o n o f W ^ Q or p may be necessary t o f i t outdoor measurements. These p r o b l e m s , however, l i e beyond t h e scope o f t h i s s t u d y .

1.3.6 The ground e f f e c t with wind and temperature gradients

I n c a s e o f an inhomogeneous medium t h e wave f i e l d i s n o t s p h e r i c a l anymore and t h u s t h e s o l u t i o n g i v e n by I n g a r d c a n n o t be u s e d . I n t h e e x t r a p o l a t i o n model we a r e s t i l l a b l e t o decompose t h e sound f i e l d a t z=0 i n t o i t s p l a n e wave components by a i d o f d i s c r e t e F o u r i e r t r a n s f o r m a t i o n . A r e l a t i o n s h i p between t h e u p g o i n g sound f i e l d P , t h e downgoing f i e l d P , and t h e

up down t r a n s m i t t e d f i e l d Pt r> can De found from t h e boundary c o n d i t i o n s ( s e e a l s o

e q u a t i o n s (1.15) and ( 1 . 1 6 ) )

Pu p( x , y , z , a j ) + Pd o w n( x , y , z , a j ) - Pt r( x , y , z , u ) ) ( 1 . 3 6 )

and

Pj 3 z p 3 z p2 3 z

N o t e t h a t f o r z>0 we s p l i t up t h e sound f i e l d i n t o an u p g o i n g and a downgoing p a r t , i n s t e a d o f an i n c i d e n t p a r t P^, w h i c h i s d e f i n e d a s t h e f i e l d w i t h o u t a ground s u r f a c e and a p a r t o f t h e sound f i e l d due t o t h e ground s u r f a c e P . I n a homogeneous medium t h e r e i s no d i f f e r e n c e between t h o s e d e f i n i t i o n s , b u t when t h e medium i s inhomogeneous, r e f l e c t i o n o f t h e sound f i e l d i n t h e medium i t s e l f c a n o c c u r ( s e e c h a p t e r 4 ) . I n t h i s c a s e Pr c o n s i s t s o f b o t h an up- and

a downgoing f i e l d and t h u s t h e g i v e n d e f i n i t i o n s a r e n o t e q u a l anymore. A n a l o g o u s t o t h e homogeneous c a s e t h e d e r i v a t i v e o f P and P, w i t h

up down r e s p e c t t o z c a n be e x p r e s s e d i n t h e d e r i v a t i v e s t o x and y by a i d o f t h e wave e q u a t i o n . F o r a l a y e r e d medium we pose t h a t i n t h e f i r s t l a y e r t h e wind w i l l be a l m o s t z e r o (m(O)RO). F o r s m a l l z we w i l l a p p r o x i m a t e t h e wave e q u a t i o n by t h e H e l m h o l t z e q u a t i o n f o r a homogeneous medium ( s e e e q u a t i o n ( 1 . 1 7 ) ) w i t h

k^kXO)

(26)

14 By a i d o f t h e F o u r i e r t r a n s f o r m w i t h r e s p e c t t o x and y, t h e boundary c o n d i t i o n s a r e g i v e n by P = R' P, f o r z=0, (1-39) up p down ' R ; = ^ — ' 2 x y • (i.4o) p2v / k2( 0 ) - k2- k2 + P . v / k ^ - k2 N o t e t h a t t h i s e x p r e s s i o n o f R' i s e q u i v a l e n t t o R i n e q u a t i o n ( 1 . 2 2 ) . P P

1.4 A BRIEF DESCRIPTION OF THE EXTRAPOLATION MODEL

The model p r e s e n t e d i n t h i s t h e s i s i s based on a s t e p by s t e p e x t r a p o l a t i o n o f t h e sound f i e l d . I f e f f e c t s o f w i n d and temperature g r a d i e n t s a r e i n t r o d u c e d i n s m a l l s t e p s , t h i s method i s n e a r l y e x a c t . I n o t h e r words, w i t h a c o r r e c t c h o i c e o f t h e s t e p s i z e t h e e r r o r s c a n be k e p t below e v e r y d e s i r e d l e v e l . O t h e r advantages o f t h i s model a r e t h a t t h e a b s o r b i n g boundary c o n d i t i o n s a t

t h e ground s u r f a c e c a n be h a n d l e d i n a p h y s i c a l l y c o r r e c t manner and t h a t t h e model i s s t i l l v a l i d f o r g r e a t e r s o u r c e - r e c e i v e r d i s t a n c e s , w h i l e c a l c u l a t i o n models based on r a y t r a c i n g have r a y s f o r m i n g c a u s t i c s .

I n t h e t h e o r e t i c a l c h a p t e r s o f t h i s t h e s i s t h e e x t r a p o l a t i o n method i s d e s c r i b e d f o r t h e t h r e e d i m e n s i o n a l c a s e . F o r s i m p l i c i t y ' s sake t h e c o m p u t a t i o n a l work i s c o n f i n e d t o t h e c a s e o f two d i m e n s i o n s , v i z . an x d i r e c t i o n p a r a l l e l t o t h e ground s u r f a c e and a l t i t u d e i n z d i r e c t i o n . A f t e r -wards t h e r e s u l t s c a n be t r a n s f o r m e d t o a t h r e e d i m e n s i o n a l sound p r o p a g a t i o n ( s e e c h a p t e r 5 ) . B u t b a s i c a l l y i t r e m a i n s a model i n w h i c h i n h o m o g e n e i t i e s o f t h e medium o n l y c a n be i n t r o d u c e d i n a p l a n e w h i c h c o n t a i n s s o u r c e and r e c e i v e r . S i d e w i n d c o n d i t i o n s t h u s have t o be t r a n s l a t e d i n up o r downwind c o n d i t i o n s w i t h wx= | w | c o s a , a s i n t r o d u c e d i n e q u a t i o n ( 1 . 3 3 ) . We pose t h a t t h i s s i m p l i f i c a t i o n i s a l l o w e d , a l t h o u g h t h i s w i l l n o t be p r o v e n i n t h i s s t u d y . The e x t r a p o l a t i o n p r o c e d u r e s t a r t s w i t h t h e c a l c u l a t i o n o f t h e t o t a l sound p r e s s u r e above a h a r d g r o u n d . I n t h i s c a s e w i n d and t e m p e r a t u r e a s w e l l a s t h e s o u r c e c a n be m i r r o r e d i n t o t h i s h a r d s u r f a c e , so a f t e r e x t r a p o l a t i o n t h e t o t a l f i e l d i s found ( s e e f i g u r e 3 ) . I t i s f o r c o m p u t a t i o n a l r e a s o n s t h a t we s t a r t i n t h i s way ( s e e c h a p t e r 5 ) . The e x t r a p o l a t i o n i s c a r r i e d o u t r e c u r s i v e l y i n s t e p s Ax s t a r t i n g w i t h t h e f u n c t i o n P ( x . , z ) . So we assume t h a t

(27)

WIND P R O F I L E ; SOURCEo z=0-MIRROR S O U R C E

J

2 13 »EXTRAPOLATION Ax P ( x „ z ) f%2,Z) P( XJ #Z ) P(X„,Z)

F i g u r e 3 : The e x t r a p o l a t i o n o f the t o t a l sound f i e l d above a hard ground s u r f a c e .

t h e ( h a r m o n i c ) sound p r e s s u r e P ( x , z ) i s known i n t h e p l a n e x=x^. The sound p r e s s u r e i n t h e p l a n e x=x1+Ax f o l l o w s from t h e T a y l o r s e r i e s :

P ( x + A x , z ) = P ( x . z ) + + M L l ! l + ... (1.41)

I.' 3x 21 3 x2

The d e r i v a t i v e s o f P w i t h r e s p e c t t o x a r e unknown. They may be d e r i v e d f r o m t h e d a t a P ( xn, z ) u s i n g t h e wave e q u a t i o n . We i n t r o d u c e two r e s t r i c t i o n s :

- t h e medium i s a p p r o x i m a t e l y s t a t i o n a r y ( l o w t u r b u l e n c e ) ; - t h e medium i s l a y e r e d (wind and t e m p e r a t u r e depend on z o n l y ) .

A f t e r some a p p r o x i m a t i o n s ( s e e c h a p t e r 2) t h e wave e q u a t i o n c a n now be r e w r i t t e n as

^-=- + — - 2 j k ( z ) m ( z ) | ^ + k2( z ) { l - m2( z ) }P = 0, ( 1 . 4 2 )

3 x2 3 y2 dx

where

k ( z ) = to/c(z) = t h e wave number,

m(z) = w ( z ) / c ( z ) = t h e Mach number, c ( z ) = t h e sound v e l o c i t y ( w h i c h depends on t h e t e m p e r a t u r e ) , and w(z) = t h e wind v e l o c i t y i n t h e x - d i r e c t i o n . One e x t r a p o l a t i o n s t e p c a n t h u s From t h e p r e s s u r e P ( xn >z ) i n t h e r e s p e c t t o z a r e c a l c u l a t e d . By a i d be c a r r i e d o u t by t h e f o l l o w i n g p r o c e d u r e : p l a n e x=x t h e d e r i v a t i v e s o f P ( x ,z) w i t h n n o f t h e wave e q u a t i o n , t h e d e r i v a t i v e s w i t h

(28)

16 r e s p e c t t o x a r e found n e x t . F i n a l l y t h e T a y l o r s e r i e s g i v e t h e r e l a t i o n , f r o m w h i c h t h e p r e s s u r e p(x n+ Ax) i n t h e p l a n e x=x +Ax i s c a l c u l a t e d . Or i n t h e f o r m o f a diagram: P ( x ,z)+ -s—j , e t c n dz 3 z2 3P 32P •5—, , e t c . wave e q u a t i o n T a y l o r s e r i e s * P ( x +Ax,z) I n g e n e r a l t h i s e x t r a p o l a t i o n p r o c e d u r e c a n be w i r t t e n w i t h t h e a i d o f an e x t r a p o l a t i o n m a t r i x W, d e f i n e d by P ( xn+ A x , z ) = ^ ( xn+ A x , xn) P ( xn, z ) . (1.43) I n c h a p t e r 3 t h i s m a t r i x i s d e r i v e d and d i s c u s s e d f o r s e v e r a l c o n d i t i o n s (no g r a d i e n t s , s m a l l g r a d i e n t s and l a r g e g r a d i e n t s ) .

The sound f i e l d above a h a r d ground b e i n g known, t h e n e x t s t e p i s t h e i n t r o d u c t i o n o f an a b s o r b i n g g r o u n d . To t h i s p u r p o s e we decompose t h e sound f i e l d i n t o i t s p l a n e wave components. We d e f i n e

i>^(k ,z,u>) = t h e p r e s s u r e o f t h e i n c i d e n t p l a n e wave ( e v e r y k v a l u e d e f i n e s a p l a n e wave component)

and

^ ( k^ j Z . o j ) = the p r e s s u r e of the r e f l e c t e d plane wave.

The t o t a l sound p r e s s u r e i s d e f i n e d a s Pt( kx, z , u ) - ^ ( k ^ z . U ) ) + Pr( kx, z , u ) . (1.44) The boundary c o n d i t i o n s f o r an a b s o r b i n g s u r f a c e a t z=0 a r e g i v e n by P = R P. ( 1 . 4 5 ) up p down w i t h R = t h e p l a n e wave r e f l e c t i o n c o e f f i c i e n t a s d e f i n e d i n e q u a t i o n P ( 1 . 4 0 ) .

(29)

W I N D P R O F I L E

plone f

w o v e G R O U N D S U R F A C E

///////////// / 7 / 7 //////;//; > ;

///////////// / 7 / / /; .

F i g u r e 4: The " r e f l e c t i o n " o f a p l a n e wave component due t o t h e i n h o m o g e n e i t y o f t h e medium.

Under z e r o o r up wind c o n d i t i o n s and w i t h z e r o o r n o r m a l t e m p e r a t u r e g r a d i e n t s , t h e downgoing sound f i e l d a t z=0 i s t h e i n c i d e n t f i e l d and t h e u p g o i n g sound f i e l d i s t h e r e f l e c t e d f i e l d . So f o r t h e i n t r o d u c t i o n o f t h e boundary c o n d i t i o n s we f i n d f o r zW

^down =? i and % * V t1-46)

F o r down w i n d and i n v e r s e t e m p e r a t u r e g r a d i e n t s some p l a n e wave components a r e " r e f l e c t e d " back t o t h e ground s u r f a c e by t h e medium. F o r s u c h a p l a n e wave component t h e s i t u a t i o n i s d e l i n e a t e d i n f i g u r e 4. The e x p l a n a t i o n o f t h i s e f f e c t i s d i s c u s s e d i n more d e t a i l i n c h a p t e r 4. F o r t h e boundary c o n d i t i o n s t h i s means t h a t t h e downgoing sound f i e l d has t o be r e p l a c e d by

^ d o w n ^ x '2'0^ = P i (k x>z. w ) + B ( kx, u ) ) Pr( kx, z , w ) . ( 1 . 4 7 )

The u p g o i n g sound f i e l d i s now g i v e n by

?u p( kx >z>u ) = A ( kx, u ) Pr( kx, z , a j ) . ( 1 . 4 8 ) F o r g i v e n w i n d and t e m p e r a t u r e g r a d i e n t s t h e ( c o m p l e x ) A and B v a l u e s c a n be c a l c u l a t e d f r o m t h e wave e q u a t i o n ( 1 . 4 2 ) by a i d o f t h e W.K.B.J.-method ( s e e c h a p t e r 4 ) . W i t h t h i s boundary c o n d i t i o n and e q u a t i o n ( 1 . 4 4 ) we a r e a b l e t o d e r i v e P.- V..,,J bv d e f i n i n g R =1 a t z=0 and P . by d e f i n i n g R + \ a t z=0 f r o m r , n a r a p r , s o r t p t h e t o t a l sound p r e s s u r e P.. , ,, w h i c h we had c a l c u l a t e d i n t h e f i r s t t , h a r d p l a c e . A t z=0 P , , and P , a r e known; f o r a l l z>0 t h e r e f l e c t e d r . h a r d r , s o f t f i e l d f o r b o t h c a s e s c a n be c a l c u l a t e d by e x t r a p o l a t i o n i n t h e z - d i r e c t i o n . The e x t r a p o l a t i o n m a t r i x i s d e f i n e d by

(30)

18

P ( x , zn+ A z , u ) = ^ ( zn+ A z , zn) P ( x , zn, o j ) (1.49)

and can be d e r i v e d by a i d o f t h e W.K.B.J.-method, o r , when no " r e f l e c t i o n s " o c c u r i n t h e medium, w i t h t h e a i d o f t h e same p r o c e d u r e as t h e e x t r a p o l a t i o n i n x - d i r e c t i o n ( s e e c h a p t e r 4 and 5 ) . The t o t a l p r e s s u r e f o r t h e s o f t c a s e , P , , can be c a l c u l a t e d from t h e t o t a l p r e s s u r e above a h a r d ground w i t h

t , s o f t t h e e q u a t i o n Pt , s o f t = Pt , h a r d ~ Pr , h a r d + Pr , s o f f (1-50) More t h e o r e t i c a l d e t a i l s o f t h e e x t r a p o l a t i o n model a r e g i v e n i n c h a p t e r s 3 and 4, and t h e c o m p u t a t i o n a l a s p e c t s a r e g i v e n i n c h a p t e r 5. R e s u l t s o f t h e model a r e g i v e n and d i s c u s s e d i n c h a p t e r 6. i

(31)

CHAPTER 2

THE WAVE EQUATION

IN AN INHOMOGENEOUS MOVING MEDIUM

2.1 THE BASIC EQUATIONS

F o r a good d e s c r i p t i o n o f t h e p r o p a g a t i o n o f sound i n an atmosphere w i t h w i n d and t e m p e r a t u r e g r a d i e n t s , we have t o c o n s i d e r t h e b a s i c r e l a t i o n s between t h e p a r t i c l e v e l o c i t y (_v), t h e p r e s s u r e ( Pt) , t h e d e n s i t y } and t h e t e m p e r a t u r e ( T ) . These r e l a t i o n s a r e g i v e n e.g. by G.K. B a t c h e l o r [ 7 ] , v i z . t h e e q u a t i o n o f m o t i o n , t h e c o n t i n u i t y o f mass, t h e e q u a t i o n o f s t a t e and t h e c o n t i n u i t y o f h e a t . I n o u r c a s e i t i s p o s s i b l e t o make some s i m p l i f i c a t i o n s . We do n o t need t h e e q u a t i o n s t o d e s c r i b e t h e w i n d i t s e l f , so e x t e r n a l f o r c e s w h i c h a r e r e s p o n s i b l e f o r t h e w i n d a r e n o t t a k e n i n t o a c c o u n t . The atmosphere c a n be seen as an i d e a l gas w i t h no v i s c o s i t y w h i l e t h e c o m p r e s s i o n due t o t h e sound f i e l d c a n be c o n s i d e r e d as an a d i a b a t i c p r o c e s s . I n t h i s c a s e t h e e q u a t i o n o f s t a t e i s g i v e n by ~K PtPt = c o n s t a n t , ( 2 . 1 ) where K = t h e r a t i o between t h e p r i n c i p a l s p e c i f i c h e a t s : c and c . p v

The r e l a t i v e p e r t u r b a t i o n o f t h e i n i t i a l s t a t e i s v e r y s m a l l when t h e sound p r o p a g a t i o n i s l i n e a r ( t h e sound p r e s s u r e l e v e l i s under c a . 100 d B ) . We i n t r o d u c e :

pt( t o t a l -) = pQ( r e f e r e n c e -) + p ( a c o u s t i c d e n s i t y )

(32)

20

and we impose t h a t

dp

_ ° « 4 a . ( 2 . 2 ) d t d t

Here we assume t h a t the change o f t h e t e m p e r a t u r e g r a d i e n t i n t i m e does n o t p l a y a dominant r o l e . I n a l l p r a c t i c a l s i t u a t i o n s t h e s t a b i l i t y o f t h e atmosphere i s such t h a t u n e q u a l i t y (2.2) h o l d s . F o r l i n e a r a c o u s t i c s we f i n d

|p| « Po a n d

IPI

k< PO » ( 2- 3)

so a d i f f e r e n t i a l r e l a t i o n s h i p between p and p c a n be d e r i v e d from e q u a t i o n (2.1)

P

dp = K — — dp = c2d p ( 2 . 4 )

Po

w i t h c=c(T) i s t h e speed o f sound i n t h e atmosphere ( i n a i r K=1,4 and P /n =RT/M= 287 T ) . I t i s a l s o a c c e p t a b l e t o assume t h a t t h e sound f i e l d h a s

o Ko

no i n f l u e n c e on the w i n d . Because the energy per u n i t volume o f a sound f i e l d (= p /P ss3.10~6J/m f o r a sound p r e s s u r e l e v e l o f 100 dB) i s v e r y s m a l l

e f f . o

compared t o the energy o f the w i n d f i e l d (= ^p [w|« 5 J/m f o r 3 m/s).

W i t h t h e p r e v i o u s c o n s i d e r a t i o n s we a r r i v e a t t h e f o l l o w i n g two b a s i c e q u a t i o n s t o d e t e r m i n a t e t h e sound f i e l d 1 dp + V.v = 0 ( c o n s e r v a t i o n o f mass) ( 2 . 5 ) and w i t h 2 dt dv ~VP ° pn (equation of motion), ( 2 . 6 ) o dt J L = 3 + v.V • dt 3 t

-2.2 THE HELMHOLTZ EQUATION FOR A LAYERED STEADY WIND PROFILE

The p a r t i c l e v e l o c i t y c a n be d i v i d e d i n two p a r t s : The w i n d v e l o c i t y and t h e a c o u s t i c a l v e l o c i t y vi, w i t h _v = ^ + u .

Assuming l i n e a r a c o u s t i c s , u n e q u a l i t y (2.3) h o l d s and a l s o

2

(33)

C o n s e q u e n t l y we a r e a b l e t o n e g l e c t t h e terms w i t h u2, ( u . V)u and (_u.V)p. Now e q u a t i o n s ( 2 . 5 ) and ( 2 . 6 ) c a n be r e w r i t t e n as and _ L | E + J _ (w.v)p + p0V.(u+w) = 0 c2 8t c2 )(u+w) (2.8) VP + p0 ~ ~ + p0{(u+w>V}(u+w) = 0. ( 2 . 9 ) To s i m p l i f y t h e s e e q u a t i o n s we impose t h e f o l l o w i n g r e s t r i c t i o n s on t h e wind: V-w « y . u , (2.10) w h i c h i s q u i t e a c c e p t a b l e as shear f o r c e s a r e predominant i n t h e w i n d f i e l d and t h e c o m p r e s s i b i l i t y o f t h e medium p l a y s b u t a m i n o r r o l e . And f u r t h e r m o r e

(2.11)

w h i c h i s t h e same r e s t r i c t i o n as was imposed on t h e s t a t i c d e n s i t y ( s e e e q u a t i o n ( 2 . 2 ) ) . T h i s r e s t r i c t i o n i s n e c e s s a r y i f o u r p r o b l e m i s n o t t o become unmanagable, t h u s s t r o n g t u r b u l e n c e s cannot be t a k e n i n t o a c c o u n t . E q u a t i o n s ( 2 . 8 ) and ( 2 . 9 ) now reduce t o

J _ | £ + J _ ( w .V) p + P oV- u = 0 2 d t 2 C C and VP + Po - j ^ T+ P0 (- 'v )- + P o ^ ' v ) " . + P0(*'V)w = °-We w i l l c a l c u l a t e t h e d i v e r g e n c e o f e q u a t i o n (2.13) and impose (2.12) (2.13)

I

V p0

I

« j Vp ] = —

I

VP

I

c2 (2.14) T h i s l a t t e r r e s t r i c t i o n means t h a t t h e s p a t i a l v a r i a t i o n s o f p , w h i c h i n o u r c a s e a r e due t o t h e t e m p e r a t u r e g r a d i e n t , a r e much s m a l l e r t h a n t h e s p a t i a l d e n s i t y v a r i a t i o n s due t o t h e sound f i e l d . Note t h a t v a r i a t i o n s o f t h e l o c a l v a l u e s o f c and pQ a r e i m p o r t a n t f o r t h e p r o p a g a t i o n o f t h e sound f i e l d and

(34)

22 A f t e r s u b s t i t u t i o n o f ^ . u , g i v e n i n e q u a t i o n ( 2 . 1 2 ) , and w i t h V.{(w.V)u}= ( w . v H V - u ) + V.{(u.V)w}, (2.15) we f i n d 1 32p _ 2 p - — Z-Z- - — (w.V) 4 £ - — (w.V)Vp + 2 ^ 2 2 — 3 t „ 2 — 2P oV- - f (Ji-V)w} + pQV.{(w.V)w} = 0. (2.16) W i t h o u t wind (w=0) e q u a t i o n (2.16) r e d u c e s t o the w e l l - k n o w n H e l m h o l t z e q u a t i o n v^p - - L Ü P = o. (2.17)

W i t h wind we have n o t y e t succeeded i n e l i m i n a t i n g ii and t h e r e f o r e t h e e q u a t i o n i s s t i l l unmanagably complex. An improvement i s a c h i e v e d i f we assume a p r a c t i c a l l y s t r a t i f i e d medium. I n such a medium t h e i n h o m o g e n e i t i e s o n l y depend on one c o o r d i n a t e , i n our c a s e the a l t i t u d e . W i t h t h e a l t i t u d e i n z - d i r e c t i o n we a p p r o x i m a t e t h e wind v e c t o r by dw dw dw dw << << dx dz dy dz w « w (2.18) A f t e r F o u r i e r t r a n s f o r m a t i o n o f t t o k, e q u a t i o n (2.16) r e d u c e s t o fa \ wA i \ du dw k2P + V2P - 2 j k ( — . V l P - — (—.VIVP + 2p - r — = 0, J \c / c\c / o dz dz ' (2.19) where

k = M / C = the wave number.

I n g e n e r a l o m i s s i o n o f t h e l a s t term i n e q u a t i o n (2.19) i s u n j u s t i f i e d , e s p e c i a l l y n e a r t h e g r o u n d , where |dw/dz| i s n o t n e c e s s a r i l y s m a l l w i t h r e s p e c t t o k|w_| . However, by c o n f i n i n g o u r s e l v e s t o waves t r a v e l l i n g a p p r o x i m a t e l y p a r a l l e l t o t h e x-y p l a n e , n e g l e c t i o n o f t h e l a s t term may be a c c e p t a b l e as f o r

du dz

(35)

P r o v i d e d the Mach numbers o f the wind v e l o c i t y a r e low enough ' 2 « 1, (2.21) and by a i d o f t h e z e r o t h o r d e r a p p r o x i m a t i o n o f ( e q u a t i o n ( 2 . 1 7 ) ) , we may r e w r i t e t h e f o u r t h term o f e q u a t i o n (2.19) w / w \ W2 ~2 - - . v Vp « — 1 1 . (2.22) c^c / •c" a t2 So t h e f o l l o w i n g wave e q u a t i o n w i l l be a p p l i e d i n t h i s t h e s i s k2^ l - — - ^ P + V2P - 2 j k ^ . V ^ P = 0. (2.23) I n l i t e r a t u r e [8] t h e f o u r t h term i n e q u a t i o n (2.19) u s u a l l y i s r e w r i t t e n i n a n o t h e r way and then t h e wave e q u a t i o n i s g i v e n as

k2P + V2p - 2 j | ( w . V ) P - -i(w.V)(w.VP) = 0, (2.24)

w h i c h i s t h e form u s e d t o i n t r o d u c e t h e e i k o n a l f u n c t i o n . I n f a c t , w i t h r e l a t i o n (2.21) i t i s a l l o w e d t o n e g l e c t t h e f o u r t h term i n e q u a t i o n (2.24) c o m p l e t e l y , b u t i n s e c t i o n 3.4 i t w i l l become c l e a r t h a t i t i s p r e f e r a b l e t o use t h e wave e q u a t i o n i n t h e form a s g i v e n i n e q u a t i o n ( 2 . 2 3 ) .

(36)
(37)

CHAPTER 3

THE EXTRAPOLATION METHOD

3.1 INTRODUCTION TO FINITE DIFFERENCE TECHNIQUES

The w a v e f i e l d e x t r a p o l a t i o n method i s a t e c h n i q u e t o s i m u l a t e sound p r o p a g a t i o n by p r e d i c t i n g t h e e x t e n s i o n o f t h e p r o p a g a t i n g sound, s t a r t i n g f r o m a known d i s t r i b u t i o n i n a g i v e n s o u r c e p l a n e . Assuming t h e sound p r o p a g a t i o n i s i n t h e x - d l r e c t i o n , t h e p r e s s u r e d i s t r i b u t i o n Pn i n a p l a n e x=x c a n be c a l c u l a t e d ( f o r a f i n i t e a r e a ) from t h e g i v e n p r e s s u r e n d i s t r i b u t i o n P^ i n t h e p l a n e x=x^ ( s e e f i g u r e 5 ) . The r e l a t i o n between P^ and P c a n be w r i t t e n a s a m a t r i x o p e r a t i o n P ( xn, y , z , a j ) = tV ( xn, x1) P ( x1, y , z , o j ) . ( 3 . 1 ) Throughout t h i s c h a p t e r we w i l l o m i t t h e c i r c u l a r f r e q u e n c y v a r i a b l e co. x = xn propogotion and extrapolation —>> G e o m e t r i c s i t u a t i o n : The s o u r c e p l a n e i n x=x^, t h e F i g u r e 5: e x t r a p o l a t i o n i n x - d i r e c t i o n and t h e sound p r o p a g a t i o n b e i n g m a i n l y i n t h e x - d i r e c t i o n .

(38)

26

One element o f W r e p r e s e n t s t h e t r a n s f e r f u n c t i o n f o r one " s o u r c e " p o i n t ( x ^ , y , z ) t o one " r e c e i v e r " p o i n t ( x , y , z ) . The p r o p a g a t i o n m a t r i x W i s d e f i n e d by t h e wave e q u a t i o n and t h e a c o u s t i c p r o p e r t i e s o f t h e medium. F o r t h e s i m u l a t i o n p r o c e s s two d i f f e r e n t methods can be used: a non r e c u r s i v e o r a r e c u r s i v e method.

S t a r t i n g from t h e g i v e n p r e s s u r e d i s t r i b u t i o n P^, a non r e c u r s i v e method c a l c u l a t e s t h e p r e s s u r e d i s t r i b u t i o n Pn f o r any n i n one e x t r a p o l a t i o n s t e p .

A r e c u r s i v e method i s a s t e p by s t e p e x t r a p o l a t i o n , where a f t e r e v e r y s t e p t h e c a l c u l a t e d p r e s s u r e d i s t r i b u t i o n i s t h e new i n p u t d i s t r i b u t i o n f o r t h e n e x t e x t r a p o l a t i o n s t e p . The r e c u r s i v e method needs more s t e p s t o c a l c u l a t e t h e p r e s s u r e on t h e p l a n e x=x , b u t t h e advantage i s t h a t the used p r o p a g a t i o n

n

m a t r i c e s f o r s m a l l e r s t e p s c a n be c a l c u l a t e d e a s i e r .

I f the p r o p a g a t i o n p r o p e r t i e s o f the medium a r e c o n s t a n t i n t h e x - d i r e c t i o n , t h e p r o p a g a t i o n m a t r i x w i l l be independent o f x. I n t h i s s i t u a t i o n e v e r y e x t r a p o l a t i o n s t e p , o v e r t h e same d i s t a n c e Ax, c a n be done w i t h t h e same m a t r i x o p e r a t i o n V(xn 'xl ) = ^ (xn 'xn - l) , ,'( xn - l >xn - 2) ' " ^x2 >xl > (3'2> o r ( / ( xn, x1) = j /n 1( A x ) , where A x = x1+1 - x± f o r ±»1,2, — ,n.

So, i n a r e c u r s i v e scheme t h e same o p e r a t o r (/(Ax) c a n be used t o p r e d i c t t h e sound f i e l d a f t e r e v e r y e x t r a p o l a t i o n s t e p Ax. F o r a s t a t i o n a r y homogeneous medium an a n a l y t i c e x p r e s s i o n f o r an e x t r a p o l a t i o n m a t r i x W c a n be d e r i v e d from t h e wave e q u a t i o n i! Z + H Z + 3 ^ + k2p = o. 3 x2 3 y 2 (3.3)

W i t h t h i s e q u a t i o n t h e sound f i e l d o f any s o u r c e c a n be computed i n t h e s o u r c e p l a n e x=x^ and w i t h t h e Huygens p r i n c i p l e t h e p r e s s u r e i n a p o i n t ^x2, y2, Z2 ^ Can ^e c alc ula t e^ from the p r e s s u r e d i s t r i b u t i o n i n t h e s o u r c e

(39)

P (X 2, y2, z2) - | 2 ƒ P ( x1 (y ,Z) e ^ d S ^ ( 3 . 4 )

" S, w i t h

r2 = A x2 + ( y2- y )2 + ( z2- z )2 ( 3 . 5 )

and where i s t h e s o u r c e p l a n e x=x^ . E q u a t i o n ( 3 . 4 ) i s known a s t h e R a y l e i g h I I i n t e g r a l [ 9 ] . I f we do t h e same f o r an a r b i t r a r y p o i n t ( x2 >y , z ) on t h e p l a n e x = x2 i n t h e a r e a o f i n t e r e s t , e q u a t i o n ( 3 . 4 ) c a n be w r i t t e n a s a c o n v o l u t i o n P ( x2, y , z ) = f P ( x1, y ' , z ' ) W ( x1, y - y ' , z - z,) d y,d z, J ( 3 . 6 ) o r s y m b o l i c a l l y P ( x2, y , z ) = Wx * P ( x1 > y,Z) . ( 3 . 7 ) A c o n v o l u t i o n p r o d u c t can a l s o be w r i t t e n i n m a t r i x n o t a t i o n : P ( x2, y , z ) = ^ ( x2, x1) P ( x1, y , z ) . ( 3 . 8 ) F o r a s t a t i o n a r y homogeneous medium e q u a t i o n ( 3 . 7 ) g i v e s a r e p r e s e n t a t i o n o f wave f i e l d p r o p a g a t i o n i n terms o f a c o n v o l u t i o n w i t h o p e r a t o r W. E q u a t i o n ( 3 . 8 ) g i v e s a r e p r e s e n t a t i o n i n terms o f m a t r i x m u l t i p l i c a t i o n s w i t h p r o p a g a t i o n m a t r i x W. The e x t r a p o l a t i o n w i t h o p e r a t o r W c a n be c a r r i e d o u t r e c u r s i v e l y o r non r e c u r s i v e l y , W b e i n g g i v e n by 1+ j k r - j k r W =W = . . . = WA= ^ 2 . L e ( 3 . 9 ) l " ^ X2 *X3 Ax 2TT 3 V ' o r r l , 1 + i k r , - j k r , O H ^ J j H , n-1 ( 3 a o ) V * n V X 2 V X 3 2V n-1 r e s p e c t i v e l y , w i t h r * = (nAx)2 + y2 + z2.

(40)

28

Ax """"

s o u r c e

F i g u r e 6: F o r a g i v e n a p e r t u r e a n g l e <t> t h e a r e a S o v e r w h i c h the sound p r e s s u r e must be c a l c u l a t e d , depends on the e x t r a p o l a t i o n s t e p Ax.

F o r a n o n s t a t i o n a r y and inhomogeneous medium i t i s not p o s s i b l e t o d e r i v e the sound f i e l d o f a p o i n t s o u r c e a n a l y t i c a l l y . I n t h i s c a s e a n o t h e r a p p r o a c h must be a p p l i e d t o f i n d W. The a r e a o v e r w h i c h t h e p r o p a g a t i o n of t h e sound f i e l d , due t o one p o i n t s o u r c e , has t o be c a l c u l a t e d t o f i n d the p r e s s u r e i n the n e x t p l a n e , depends on the s i z e o f the e x t r a p o l a t i o n s t e p ( s e e f i g u r e 6 ) . So, f o r s m a l l Ax v a l u e s u s e f u l a p p r o x i m a t i o n s a r e a l l o w e d t o s o l v e t h e p r o b l e m . Such a p p r o a c h e s a r e known as f i n i t e d i f f e r e n c e t e c h n i q u e s . We w i l l d i s c u s s t h e s e t e c h n i q u e s by s t a r t i n g w i t h t h e T a y l o r s e r i e s [10] P ( x 2 , y , z ) = P ( x1 ) y, z ) + ^ |?- + lf£ + ... (3.11) I! 2.' 8 x2 T h i s s e r i e s c o n v e r g e s f a s t f o r s m a l l Ax v a l u e s . I n t h i s r e l a t i o n between P^ and t n e unknown v a r i a b l e s a r e the d e r i v a t i v e s t o x. The wave e q u a t i o n

g i v e s a r e l a t i o n between 3P/ax and the p r e s s u r e d i s t r i b u t i o n a t the p l a n e x=x^ ( f o r e v e r y p o i n t ( x ^ , y , z ) ) . L e t us w r i t e t h i s r e l a t i o n i n terms of m a t r i c e s

(•^) P C x ^ y . z ) = ^ . x ^ P / x ^ y . z ) . (3.12) \ /x=Xj

One element o f m a t r i x A r e p r e s e n t s the c o n t r i b u t i o n o f one p o i n t o f t h e g i v e n p r e s s u r e d i s t r i b u t i o n to one p o i n t o f t h e d e r i v a t i v e p r e s s u r e d i s t r i b u t i o n . Second and h i g h e r d e r i v a t i v e s w i t h r e s p e c t t o x can be o b t a i n e d by a p p l y i n g t h i s m a t r i x A two o r more t i m e s (tV) ^ l . ^ = ^ P i + | U i (3.13) \dX /X=Xj [ — \ P ( x1 > y, z ) = AA£SX + A | | Pt + \3x3/x=x, x and

(41)

+ 2 | i ^ + — P1. (3.14)

dX 3 x2

I f we assume t h a t t h e medium p a r a m e t e r s a r e i n d e p e n d e n t o f x o v e r one e x t r a p o l a t i o n s t e p Ax, t h e d e r i v a t i v e s o f A w i t h r e s p e c t t o x become z e r o . I n t h i s a p p r o a c h we assume t h e medium t o be b u i l t up o f homogeneous l a y e r s i n t h e x - d i r e c t i o n . E r r o r s a r e i n t r o d u c e d a t t h e t r a n s i t i o n between t h e l a y e r s . These e r r o r s c a n be n e g l e c t e d f o r s m a l l changes i n t h e a c o u s t i c p r o p e r t i e s o f t h e medium. A more a c c u r a t e a p p r o a c h i s t o l i n e a r i z e t h e medium o v e r one s t e p ( s e e f i g u r e 7 ) . I n t h i s c a s e 3 A / 3 x i s i n c l u d e d and the second and h i g h e r d e r i v a t i v e s o f A t o x a r e n e g l e c t e d . MEDIUM P A R A M E T E R F i g u r e 7: Medium p r o p e r t i e s c a n be k e p t c o n s t a n t o r c a n be l i n e a r i z e d o v e r one e x t r a p o l a t i o n s t e p . S u b s t i t u t i o n o f e q u a t i o n (3.13) and (3.14) i n t o e q u a t i o n (3.11) g i v e s a s e r i e s e x p a n s i o n o f m a t r i x W. By n e g l e c t i n g t h e f i r s t and h i g h e r o r d e r d e r i v a t i v e s o f A we g e t ^(x+Ax.x) = ( J + — A + — AA + — AAA + . . . ) . ( 3 . 1 5 ) 1! 21 3! N o t e t h a t f o r x=0, W becomes t h e u n i t y m a t r i x . I n s e c t i o n 3.3 i t w i l l be shown t h a t f o r t h e homogeneous c a s e t h e r e s u l t g i v e n i n e q u a t i o n (3.15) i s t h e same as t h e o p e r a t o r i n e q u a t i o n ( 3 . 8 ) , w h i c h i s found by a i d o f t h e R a y l e i g h I I i n t e g r a l . I n t h i s c h a p t e r we w i l l d i s c u s s t h e f i n i t e - d i f f e r e n c e t e c h n i q u e i n more d e t a i l and we w i l l show how we c a n use t h i s t e c h n i q u e t o f i n d a s u i t a b l e o p e r a t o r f o r e x t r a p o l a t i o n o f t h e sound f i e l d i n t h e x - d i r e c t i o n o f a medium w i t h w i n d and t e m p e r a t u r e g r a d i e n t s . I m p o r t a n t t o o l s used i n t h i s t e c h n i q u e w i l l be

(42)

30

d i s c u s s e d f i r s t , i . e . " s p a t i a l c o n v o l u t i o n " i n s e c t i o n 3.2 and " f l o a t i n g t i m e r e f e r e n c e " i n s e c t i o n 3.4.

3.2 DERIVATIVES IN TERMS OF SPATIAL CONVOLUTION

The F o u r i e r t r a n s f o r m o f a f u n c t i o n f ( z ) i s d e f i n e d by ( s e e a p p e n d i x ) F ( kz) =

J

f ( z ) e 2 dz (3.16) o r , s y m b o l i c a l l y , f ( z ) « F ( k ). z From t h i s d e f i n i t i o n i t f o l l o w s t h a t

ƒ

3f J V H , jkzz •7— e dz = f ( z ) e dz j k z j k f ( z ) e d z . —CO —CO (3.17) I f f ( z ) = 0 a t t h e i n t e g r a l l i m i t s , t h e F o u r i e r t r a n s f o r m o f t h e d e r i v a t i v e o f f ( z ) w i t h r e s p e c t t o z i s g i v e n by ï ^ ï l « - j k F ( k ). dz z z (3.18) Because we a r e d e a l i n g w i t h p h y s i c a l phenomena, t h e f u n c t i o n F ( kz) w i l l be z e r o f o r h i g h e r s p a t i a l f r e q u e n c i e s (kz-*»). We i n t r o d u c e a band l i m i t e d f u n c t i o n D ( kz) d e f i n e d a s and w i t h D ( kz) = - j kz D(k ) = 0 z f o r k < k „„ z max f o r k co z ' (3.19a) (3.19b)

k = t h e maximum wave number o f i n t e r e s t , max

So, we a r e a b l e t o w r i t e 3 f ( z ) / 3 z i n terms o f s p a t i a l c o n v o l u t i o n

(43)

F i g u r e 8: A band l i m i t e d f i l t e r f o r t h e second o r d e r d e r i v a t i v e i n s p a t i a l f r e q u e n c y domain ( a ) and i n space domain ( b ) .

w i t h d ( z ) » D ( kz) . (3.21) N o t e t h a t i n t h i s c a s e e q u a t i o n (3.20) i s o n l y e x a c t i f F ( kz) = 0 f o r k >k . H i g h e r o r d e r d e r i v a t i v e s c a n a l s o be o b t a i n e d by c o n v o l u t i o n z max 32f(z) = d ( z ) * d ( z ) * f ( z ) = d2( z ) * f ( z ) Jf ( z ) 3 z3 ! t C . = d ( z ) * d2( z ) * f ( z ) = d3( z ) * f ( z ) (3.22) An example o f s u c h a band l i m i t e d d e r i v a t i v e " f i l t e r " i s g i v e n i n f i g u r e 8. I n f i n i t e - d i f f e r e n c e t e c h n i q u e s a d e r i v a t i v e f i l t e r i s an i m p o r t a n t t o o l . W i t h t h e wave e q u a t i o n t h e d e r i v a t i v e o f t h e p r e s s u r e w i t h r e s p e c t t o one c o o r d i n a t e c a n be computed as a t w o - d i m e n s i o n a l c o n v o l u t i o n a l o n g t h e o t h e r two c o o r d i n a t e s .

F o r i n s t a n c e t h e wave e q u a t i o n f o r a s t a t i o n a r y homogeneous medium,

l ! l + i!*L + k2P = 0, (3.23)

3 x2 3 y2 8 z2

c a n be w r i t t e n i n terms o f s p a t i a l c o n v o l u t i o n as

i!l + { d2( y , z ) + k * 6 ( y , z ) } * P = 0 ( 3 . 2 4 )

Cytaty

Powiązane dokumenty

Moim zdaniem dowodzi to, że tak zwane „nowe chrystologie”, rodzące się w celu przełożenia w nowoczesny sposób dawnej prawdy o Chrystusie, usankcjonowanej przez sobory,

Nie są liczne, niece- lują oryginalnością, ale rozeszły się szeroko, przekłady Ezopa polskiego (prozaicznego) dostały się w XVII. Naj pierwszy krok, zrobiony na

Smart technology solutions for the NeTIRail-INFRA case study lines: Axle box acceleration and ultra-low cost smartphones.. Poster session presented at Transport Research Arena

O zaletach jego artystycznych sądzić może krytyk czeski, a sąd jego będzie pochlebny zapewne, bo Kvapil jest i rymotwórcą wzorowym i śpiewakiem natchnionym,

The concepts analyzed are the Small Waterplane Area Single Hull (SWASH) Ship, Hydrofoil Small Waterplane Area Ship (HYSWAS), Large Hydrofoil Hybrid Ship (LAHHS), Hydro- foil Air

Do tego typu tekstów należą drukowane w „Gazecie Olsztyńskiej” w latach 1925-1939 felietony Kuba spod Wartemborka gada4 i Gotlib z pod Jańsborka stawny politykier

153 S. Próba monografii historyczno-etnograficznej, Warszawa 1938; J. Uwagi do problemu, „Rocznik Tatarów Polskich”, t. wypowiedź publicysty „Naszego Dziennika”

Kolejne wydarzenia, które osobiście dotknęły Radnótiego, sprawiły, że jego prymarna tożsamość, tożsamość pisarska, zmuszona była stać się medium dla