• Nie Znaleziono Wyników

Sheet 6. Investigation of Functions

N/A
N/A
Protected

Academic year: 2021

Share "Sheet 6. Investigation of Functions"

Copied!
3
0
0

Pełen tekst

(1)

Faculty of Management – Mathematics – Exercises

Sheet 6. Investigation of Functions

Exercise 6.1. Find the asymptotes of the graphs of the given functions:

a) f (x) = 1

1 − x2 b) f (x) = x2

2x + 3 c) f (x) = x x2+ 1 d) f (x) = x3+ x2

x2− 4 e) f (x) = x − 3

√x2− 9 f) f (x) =√

1 + x2+ 2x

g) f (x) =

√1 + x2

x h) f (x) = sin x

x i) f (x) = x2e−x

Exercise 6.2. Find the intervals of increase and decrease of the given functions:

a) f (x) = 2x3− 15x2+ 36x − 14 b) f (x) = x4+ 4x − 2 c) f (x) = x x2+ 4 d) f (x) = x2+ 3x + 16

x + 3 e) f (x) = e13x3−3x−4 f) f (x) = e3x−x3 g) f (x) = xe−3x h) f (x) = x − ln(1 + x) i) f (x) = (x2− 3) e−x Exercise 6.3. Find the local maximum and minimum values of the following functions:

a) f (x) = x3+ 3x2− 9x + 7 b) f (x) = 1

3x3− 3x2+ 5x + 9 c) f (x) = −x3+ 9x2− 24x + 17 d) f (x) = 3x5+ 5x3− 11 e) f (x) = x4− 4x3+ 4x2− 11 f) f (x) = 13x3 12x2− 2x + 1 g) f (x) = 2x3− 15x2+ 36x − 14 h) f (x) = x4+ 4x − 2 i) f (x) = e13x312x2+2x−2 k) f (x) = e13x312x2+6x+10 l) f (x) = e23x312x2−x+3 m) f (x) = x

x2+ 4 n) f (x) = x2+ 1

x2+ 4 o) f (x) = 3x

x2+ x + 1 p) f (x) = x2− 3x + 4 x − 3 q) f (x) = x2+ x + 9

x + 1 r) f (x) = x2− 2x − 3

x − 2 s) f (x) = 2 + x − x2 x − 1 t) f (x) = −x2+ 2x + 9

x + 2 u) f (x) = 8x − 4x2− 1

2 − x v) f (x) = (1 − x)2 2x w) f (x) = x −√

x x) f (x) = ex+ e−x

Exercise 6.4. Find the absolute maximum and absolute minimum of a function f on the given interval:

a) f (x) = x4− 32x, x ∈ h−2, 3i b) f (x) = x3− 3x2+ 6x − 5, x ∈ h−1, 1i c) f (x) = 3x − x3, x ∈ h0, 4i d) f (x) = x4− x2, x ∈ h−1, 2i

e) f (x) = x33 + x2− 3x, x ∈ h−4, 4i f) f (x) = 23x3 x22 − x −13, x ∈ h−2, 2i g) f (x) = −x33 − x2+ 3x + 23, x ∈ h−4, 2i h) f (x) = x3− 3x2+ 3x + 1, x ∈ h0, 3i i) f (x) = −2x3+ 3x2− 6x − 2, x ∈ h−1, 2i j) f (x) = x3− 3x2+ 15x − 3, x ∈ h−1, 1i k) f (x) = x2− 2x + 3, x ∈ h−2, 5i l) f (x) = 2x3− 3x2− 36x − 8, x ∈ h−3, 6i m) f (x) = x − 2√

x, x ∈ h0, 5i n) f (x) = x2ln x, x ∈ h1, ei

Last update: December 2, 2008 1

(2)

Faculty of Management – Mathematics – Exercises

Exercise 6.5. Find the points of inflection and the intervals on which the given functions are convex and concave:

a) f (x) = x4− 12x3+ 48x2 b) f (x) = x2 − 5x + 6

x + 1 c) (x) = x + sin 2x d) f (x) = xe−x e) f (x) = ln x

x f) f (x) = x4 12 −x3

3 + x2 Exercise 6.6. Suppose the function f satisfies the following conditions:

a) f : R → R, f (0) = 5, f (1) = 0, f¡3

2

¢ = 12, f (2) = 1, f (3) = 0, lim

x→−∞f (x) = ∞, lim

x→∞f (x) =

−∞,

f0 : R → R, f0(x) > 0 ⇔ x ∈ (1, 2) , f0(x) < 0 ⇔ x ∈ (−∞, 1) ∪ (2, ∞) , f0(1) = f0(2) = 0, f00 : R → R, f00(x) < 0 ⇔ x ∈¡3

2, ∞¢

, f00(x) > 0 ⇔ x ∈¡

−∞,32¢

, f00¡3

2

¢= 0.

b) f : R → R, f (−2) = 0, f (−1) = −2, f (0) = −4, f (1) = 0, lim

x→−∞f (x) = −∞, lim

x→∞f (x) = ∞, f0 : R → R, f0(x) > 0 ⇔ x ∈ (−∞, −2)∪(0, ∞) , f0(x) < 0 ⇔ x ∈ (−2, 0) , f0(−2) = f0(0) = 0, f00 : R → R, f00(−1) = 0, f00(x) > 0 ⇔ x ∈ (−1, ∞) , f00(x) < 0 ⇔ x ∈ (−∞, −1) .

c) f : R → R, f (−1) = 0, f ¡

12¢

= 1, f (0) = 2, f¡1

2

¢ = 1, f (1) = 0, lim

x→−∞f (x) = ∞,

x→∞lim f (x) = ∞,

f0 : R → R, f0(x) < 0 ⇔ x ∈ (−∞, −1) ∪ (0, 1) , f0(x) > 0 ⇔ x ∈ (−1, 0) ∪ (1, ∞) , f0(−1) = f0(0) = f0(1) = 0,

f00 : R → R, f00¡

12¢

= f00¡1

2

¢ = 0, f00(x) < 0 ⇔ x ∈ ¡

12,12¢

, f00(x) > 0 ⇔ x ∈ ¡

−∞, −12¢

¡1

2, ∞¢ .

d) f : R → R, f (−4) = −12, f (−2) = −2, f (0) = 0, f (2) = 2, f (4) = 12, lim

x→−∞f (x) = 0,

x→∞lim f (x) = 0,

f0 : R → R, f0(x) < 0 ⇔ x ∈ (−∞, −2)∪(2, ∞) , f0(x) > 0 ⇔ x ∈ (−2, 2) , f0(−2) = f0(2) = 0, f00 : R → R, f00(−4) = f00(4) = 0, f00(x) > 0 ⇔ x ∈ (−4, 0) ∪ (4, ∞) , f00(x) < 0 ⇔ x ∈ (−∞, −4) ∪ (0, 4) .

e) f : R\ {−1, 1} → R, f (0) = 0, lim

x→−∞f (x) = 0, lim

x→∞f (x) = 0, lim

x→−1f (x) = ∞, lim

x→−1+f (x) =

−∞, lim

x→1f (x) = ∞, lim

x→1+f (x) = −∞,

f0 : R\ {−1, 1} → R, f0(x) > 0 ⇔ x ∈ R\ {−1, 1} ,

f00 : R\ {−1, 1} → R, f00(x) > 0 ⇔ x ∈ (−∞, −1) ∪ (0, 1) , f00(x) < 0 ⇔ x ∈ (−1, 0) ∪ (1, ∞) . f) f : R\ {−2, 2} → R, f (0) = 1, f (−1) = f (1) = 0 lim

x→−∞f (x) = 2, lim

x→∞f (x) = 2, lim

x→−2f (x) =

∞, lim

x→−2+f (x) = −∞, lim

x→2f (x) = −∞, lim

x→2+f (x) = ∞,

f0 : R\ {−2, 2} → R, f0(0) = 0, f0(x) > 0 ⇔ x ∈ (−∞, −2) ∪ (−2, 0) , f0(x) < 0 ⇔ x ∈ (0, 2) ∪ (2, ∞) ,

f00 : R\ {−2, 2} → R, f00(x) > 0 ⇔ x ∈ (−∞, −2) ∪ (2, ∞) , f00(x) < 0 ⇔ x ∈ (−2, 2) . Sketch the graph of f.

Last update: December 2, 2008 2

(3)

Faculty of Management – Mathematics – Exercises

Exercise 6.7. Investigate the function f and then sketch its graph:

a) f (x) = x3− 3x2+ 4 b) f (x) = (x − 1)2(x + 2) c) f (x) = x 1 − x2 d) f (x) = x3

x − 1 e) f (x) = x√

1 − x2 f) f (x) =√ x − x g) f (x) = ln x

x h) f (x) = e−x2 i) f (x) = ex

x + 1

Last update: December 2, 2008 3

Cytaty

Powiązane dokumenty

The law says: ’ ’Communes, as basic units of the administrative and economic division in rural areas, are formed in order to create by their size an economic potential

It is useful to use the following formula old period b = new period , where the old period is the period of the original function, so in case of sine and cosine we have 2π b =

At this point, the problem of supports of homomorphisms of G(X, 01) have been completely solved. It turns out that theorems of the above type hold true for

Limits and Continuity of Functions - some answers.

Limits and Continuity of Functions.

11 Functions of two variables..

Catalysts preparation, investigation its basic properties, activity and selectivity measurements in carbon dioxide methanation reaction was proposed as laboratory

[1] Carath´ eodory, C., ¨ Uber den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. S., Functions starlike and convex of order