• Nie Znaleziono Wyników

OPTIMIZATION OF INDUCTION HARDFACING OF THIN DISCS, ALLOWING FOR THERMAL AND ELECTROMAGNETIC SHIELDING

N/A
N/A
Protected

Academic year: 2021

Share "OPTIMIZATION OF INDUCTION HARDFACING OF THIN DISCS, ALLOWING FOR THERMAL AND ELECTROMAGNETIC SHIELDING"

Copied!
4
0
0

Pełen tekst

(1)

OPTIMIZATION OF INDUCTION HARDFACING

OF THIN DISCS, ALLOWING FOR THERMAL

AND ELECTROMAGNETIC SHIELDING

O .M . S H A B L Y 1, C h .V . P U L K A1 and A .S . P IS M E N N Y2

I. P u ly u j T crnopil S ta te Technical U n iv ersity , T e m o p il, U k rain e

2E .O . P a to n E lec tric W eld in g In stitu te , NASU, K yiv, U k rain e

A m ath em atical m odel has been developed to determ ine th e tem p eratu re field in th e process o f disc h ard facin g u sin g a tw o -tu rn rin g in d u c to r w ith allo w an ce for th erm al and electrom agnetic shielding. T his m odel enables o p tim izin g th e m en tio n ed te m p e ra tu re in th e zone o f disc h ardfacing depending on th e param eters o f th e in d u cto r, disc, electro m ag n etic and th erm al shields, as w ell as e le c tric c u rre n t.

K e y w o r d s : in d u ctio n h a r d fa c in g , th in discs, tw o -tu rn ring in d u cto r, o p tim izin g th e in d u c to r p aram eters, tem perature f i e l d , th e rm a l a n d elec tro m a g n etic sh ie ld in g , in vestig a tio n s, ca lc u la tio n s

In work [ 1 ] studies have been performed t o optim ize th e design parameters of a tw o-tu rn ring inductor for hardfacing thin round and shaped discs o f an arbitrary diam eter and w idth o f hardfacing zone, taking into account sh ield in g o f ju st the electrom agnetic field, in order to obtain a specified power distribution over th e hardfacing zone w id th . D im ensions o f the tw o- turn ring inductor are selected , depending on disc diam eter and hardfacing zone w id th , as w ell as al­ lo w in g for the values o f th e coefficien ts o f electro­ m agnetic field sh ield in g ( K sh = 1; K sh = 0 .2 5 , K & = = 0 — full sh ield in g ) [1 ].

It is o f interest to study the temperature field in th e hardfacing zone w ith developm ent o f a mathe­ m atical model to determ ine th e tem perature in the disc through the parameters o f a tw o-turn ring induc­ tor, w hich is used to perform heating, allow in g for electrom agnetic and therm al shield in g sim ultaneously [2 ], w hich significan tly affect th e temperature distri­ bution in the hardfacing zone. The developed model w ill allow designin g th e heating system (inductor, thermal and electrom agnetic shields, part) for hard- facing thin round and shaped discs.

Let a round disc (F igure 1) of 2h thickness and

r2 radius be heated, using a tw o-turn ring inductor.

In this case the specific power o f the heat sources, which emerge in the disc area under th e im pact o f an electrom agnetic field , has the form o f [1]

(

1

)

oco2Ho

W -- --- 5“ X

1287E-/2

x [Al]A2a] + U \ a \ B 2 + Aha^C^e'2^ ' n A],

where A 2, B 2, C 2 are the functions o f radius r [3], geometrical dimensions o f the inductor and disc h\,

2h, a \ t #2» r 2 (Figure 2 ), as well as physical parameters of the electromagnetic field; A = V 2/(a)jia) is the depth of penetration o f the electromagnetic field into disc material (co is the circular frequency of the electromag­ netic field; |i is the magnetic permeability; a is the electric conductivity); no = 4n*10”7 H / m .

Temperature field in th e disc satisfies the equation of heat condu ctivity [4]:

c ^ t i a r _ 2T _ 1 5*1 = _ E

dr2 r dr a Bt X*

2 a

m = t t ,

(

2

)

where X is the coefficient o f heat condu ctivity o f disc material; a is the coefficien t o f heat transfer to the

F ig u re 1. C ross-section of th e h e a tin g system : 1 — p a rt; 2 — ch arge; ) - tw o -tu rn rin g in d u cto r; </, 5 - th erm al and electro- nugm*t*c sh ield s, respectively

F ig u re 2. Schem atic of a disc w ith th e in d u cto r: / — u p p e r tu rn of th e in d u cto r; 2 — low er tu rn

(2)

en viron m en t In th e absence o f a shield;

T

T\

-

f cn

( T \ %

^ th e tem perature o f th e disc and environ­

m ent, resp e c tiv e ly ); boundary con d ition s are as fol­ low s: Y " = 0 at r = 0; or dT* X — + a T = 0 at r = r>. or (3) (4)

A nalysis o f calcu lation s, g iven in [1 ], show s that electrom agn etic sh ield in g o f the specific power o f heat sources at disc edge sig n ifica n tly influences the uni­

form ity o f its distribution along the radius, particu­ larly over the w idth o f th e hardfacing zone O2 - rg ® = 1 0 -5 0 m m ). If thermal sh ield in g is also im ple­ m ented at disc edge (see Figure 1), the heat flow through the edge w ill be sign ifican tly reduced or stopp ed com p letely, w hich w ill strongly influence the level o f tem perature distribution in the hardfacing zone, and th e heat losses through the edge w ill also be reduced.

In the case o f electrom agn etic shieldin g o f disc edge formula ( 1 ) may be expressed as follow s:

2 2

crarw

w = --- — x 1 28tc /i

x t&I2A2ci2 + &l\a2B2 + K s\i\ha\l2C2e{~2(r- “r>)

(5)

K sh = exp _ 2 — 1

Ashj*

(

6

)

w here d s h is the sh ield thickness; Ash = V2/(o)|xshCTsh) is th e depth o f electrom agn etic field penetration into th e shield; a sh is th e electric conduc­ tiv ity o f th e sh ield m aterial.

A ssum ing sh ield thickness d 9h = Ash, th e pow er of heat sources on disc edge w ill decrease e tim es, if rfsh = 2Ash» it w ill decrease e4 tim es, at d sh = 4Ash it w ill decrease e8 tim es (i.e . it w ill be p ractically zero). At K sh = 0 w e achieve full electrom agn etic sh ield in g, at /Csh = 1 th e sh ield in g is absent.

W hen a therm al shield is also in stalled at disc edge, boundary condition ( 4 ) has the fo llo w in g form:

\ 4 L + K .a T = 0

d r at r = r2, (7)

where K t is th e co efficien t o f therm al sh ield in g [6 ], w hich varies in th e range o f 0 < K t < 1. At K t = 0 w e have full therm al sh ield in g , at = 1 the sh ield in g is absent. C o efficien t o f therm al sh ield in g , w hen using

a

sh ield o f th ick n ess d t, w ill be found from th e fol­

lowing relationship [6]:

K ta « £ ; K t «

d t 1 d ta

(

8

)

where A, / d t is th e co effic ien t o f heat c o n d u ctiv ity o f the shield.

I f X / d t = a , then K t = 1, i.e. sh ield in g is ab sent,

an inten sive co n v ectiv e heat exch an ge w ith th e en vi­ ronment is in place and boundary con d ition ( 7 ) has th e form o f equation ( 4 ) .

Let us assume th a t at th e in itial m om ent o f tim e the disc tem perature is equal to th at o f th e environ­ m ent. Then, initial co n d itio n for equation ( 2 ) w ill be expressed in the fo llo w in g form:

T = 0 at t = 0. (9)

Solu tion o f eq uation ( 2 ) at boundary con d ition ( 7 ) and in itial co n d itio n ( 9 ) in th e case, w hen th e specific pow er is determ ined from form ula ( 5 ) , has the fo llo w in g form:

' Jie(r, (*/„(/„, r)rdr - ^ J 2 _ ---0 r)rdr

(

10

)

J o(^v» r),

where /Csh* the coefficien t o f electrom agnetic sh ield in g for a sh ield , located close to the disc [5 ], has the fo llo w in g form:

where /J = Xv - m 2; Xy = V/J + m 2 \ S&Qy* r ) is th e B es­ sel function o f the first kind of zeroth order o f the real argument; a is th e therm al d iffu siv ity; /v are th e roots of th e characteristic equation

X/v y ,(/v, r2) + a K t / 0(/v, r2) = 0.

(

11

)

Thus, a m athem atical m odel is obtained o f deter­ m ination o f tem perature in th e disc through th e source o f its induction h eatin g, using electrom agn etic and thermal sh ield in g o f disc ed ge. T his a llo w s determ i­ nation and optim izing th e above tem perature in the zone of disc hardfacing, d ep end ing on the parameters o f the inductor, disc, electrom agn etic and therm al sh ield s, as w ell as electric current.

To optim ize th e param eters o f th e inductor and electric current, flo w in g through it, it is necessary to optim ize th e fo llo w in g functional:

T r 7

0 = 1 \ ( T - ThA)2 rd rd t.

(

12

)

w’here Th.d is th e tem perature at w h ich sound hard- facing o f a p ow d er-lik e hard a llo y on th e w ork in g surface o f th e disc is perform ed; T is th e tem perature, w hich is determ ined from form ula ( 1 0 ) .

(3)

•c

F ig u r e 3. Temperature distributions around disc radius: r2 =

= 0 .1 2 5 m for different moments in tim e: / — 22; 2 — 19; 3

15; 4 - I t; 5 — 5 s

R esults o f temperature calculation (*C) in different m o m e n t of tim e, depending on disc radius

f t. nt T 5 11 15 19 22 0 .0 1 0 129.82 347.82 543.63 792.95 1023.71 0.020 131.79 352.20 550.40 802.74 1036.20 0.030 133.33 357.25 558.69 815.69 1052.42 0.040 137.38 367.11 573.66 836.58 1079.77 0.050 140.55 376.76 589.08 859.19 1108.96 0.060 145.98 390.55 610.06 889.09 1146.96 0.070 150.74 402.31 627.75 914.10 1178.64 0.075 155.25 412.48 624.39 934.13 1199.76 0.080 154.59 410.35 639.98 931.55 1202.21 0.090 154.01 411.21 641.67 934.36 1204.68 0 .0 9 5 152.86 411.99 641.96 935.54 1205.64 0.1 0 0 154.90 413.08 644.25 937.72 1205.64 0 .1 0 5 154.57 412.16 642.79 935.57 1205.93 0 .1 1 0 154.62 411.99 641.96 934.56 1201.72 0 .1 2 0 156.55 4 13.50 642.76 933.56 1201.99 0.124 157.89 414.78 643.65 933.87 1201.74 0 .1 2 5 157.67 414.10 642.54 932.22 1199.59

entire working surface of a thin round and shaped

disc.

As an example of calculation of the inductor, allow­

ing for the design features and optimization capabilities,

let us assign the geometrical dimensions of the heating

system: radius of the inductor external turn#j = 0.131 m

(see Figures 1 and 2), criterion B, = 0.27 for a thermal

insulation material on the external contour of the disc

of asbestos sheeting of thickness

d t

= 0.004 m, radius

r

3

= 0.075 m (see Figure 1), hardfacing time x = 22 s,

X » 0.35 W /(m -#C).

Experimental data confirms that hardfacing tem­

perature

T\

= 1220 #C. Then, at

Tcn

= 20 °C we have

T'h.d = 1200 °C. If the electromagnetic shield is made

of copper, at circular frequency co = 2n-440 kHz the

depth of the electromagnetic field penetration into

the shield is A, = 0.1 mm.

Let us assume #

2

» ^

2

»

A , K e

to be the optimi­

zation parameters. Performing the procedure of func­

tional minimizing by these parameters, we obtain their

values:

= 0.0945 m;

A

= 165.20;

K e

= 0.655;

h i

=

= 0.0315 m;

a\ -

0.131 m;

h\

= 0.01 m;

r$

= 0.075 m.

Results of temperature calculations in the disc area

at these values in different moments of time are given in

the Table, and their graphic representation — in Figure 3.

It can be seen from the Figure that the temperature is

almost the same across the width of the hardfacing zone

(in this case 5 = r

2

- r

3

= 0.125 - 0.075 = 0.05 m),

deviation from the specified temperature being 0.5 %,

and it is equal to 1200 °C over time x = 22 s (which

is highly important at induction hardfacing). As the

hard alloy (for instance, PG-S1) melts from the sur­

face of the base metal, the thickness of the deposited

metal is uniform over the entire working surface.

It follows from the conducted analysis that the

final (at x = 22 s) temperature in the hardfacing zone

in this case deviates from the required one by not

more than 0.5%. For implementation of the found

optimum coefficient of electromagnetic shielding/C<, =

= 0.655 it is sufficient, according to formula (6), to

use a copper plate of thickness

d e

= 0.021 mm, i.e.

spraying of copper pow’der onto the thermal shield or

pasting of copper foil of the same thickness on it can

be performed in practice.

The following data are assumed in calculations:

• for disc: 2

h

= 3 mm; c = 846 J /(k g -#C); X =

= 40 W /(m °C);

y =

5969.2 k g /m 3; a = 1.25-1 O’*

l/(O hm -m ); r

2

= 0.125 m; a = 455 W / ( m 2-°C);

r$

=

= 0.075 m; x = 22 s; 7Vd = 1200 °C. Base metal is

steel St3, deposited layer is of alloy PG-S1, thickness

of deposited metal is 0.8-1.5 mm;

• for inductor (copper): n = 2.75^o>

£0

=

= 8.854-l0“12 F /m ; n0 = 4n-10"7 H /m ; o =

= 2.763-10"6 Hz;

C\

= 5.0 mm;

c-i

= 8.0 mm; p =

= 0.17-10'7 Ohm*m;

• for electromagnetic shield (copper):

0,1 = P = b . ' ^ K T 7 = 5 8 l 8 ' 1C)6

l/(O h m m); ne =

= HHo = 1-4J110'7 = 12.5610'7 H /m ;

K c

= 0.655.

,

t * e l

i

(

___________________ __ 9/2003

(4)

f ' ' SCIENTIFIC AND TECHNICAL V

For thermal shield (asbestos

s h e e tin g ) : d { * • 0

004

m ; X -

0.35 W

(n v * C );

a

«

455

W / ( m 2-°C );

K%

* X W ta ) * 0.192.

C O N C L U S I O N S 1 T h e d e r iv e d m a th e m a ti c a l m o d e l fo r d e te r m in a tio n

of

t h e t e m p e r a t u r e in t h e d is c th r o u g h th e p a ra m e te rs

of

a t w o - t u r n r in g i n d u c to r , w h ic h is u sed to p e rfo rm h e a t i n g w ith e le c tr o m a g n e tic a n d th e rm a l s h ie ld in g , a llo w s o p tim iz in g t h e a b o v e t e m p e r a t u r e in th e zo n e

o f

d is c h a r d f a c i n g , d e p e n d in g o n t h e p a r a m e te r s o f t h e i n d u c to r , d is c , e le c tr o m a g n e tic a n d th e r m a l s h ie ld s , a s w e ll as e le c tr ic c u r r e n t in th e in d u c to r . 2. D e v e lo p e d a l g o r ith m a ls o a llo w s d e s ig n in g t h e h e a t i n g s y s te m ( i n d u c t o r , th e r m a l a n d e le c tr o m a g ­ n e tic s h ie ld s , p a r t ) , w h ic h p r o v id e s t h e r e q u ir e d co n ­ d i t i o n s fo r p e rf o rm a n c e o f t h e te c h n o lo g ic a l p ro c e ss o f h a r d f a c in g . 3 . T h e d e v e lo p e d h e a ti n g s y s te m e n s u r e s th e re ­ q u ir e d te m p e r a t u r e in t h e h a r d f a c in g z o n e w ith th e a c c u r a c y o f u p t o 0 .5 %. 4. A p ro c e d u re h as b e en d e v e lo p e d fo r fin d in g th e c o e ffic ie n ts o f th e e le c tr o m a g n e tic a n d th e rm a l s h ie ld s , w h ic h a re u sed fo r te m p e r a tu r e re g u la tio n a c ro ss t h e w id th o f th e h a r d f a c in g z o n e w ith a c o m p le x g e o m e tric a l s h a p e o f th e s u rfa c e . 1. S h a b ly , O .M ., P u lk a , C h .V ., P ism e n n y , A .S . (2 0 0 2 ) O p t i ­ m isatio n o f in d u c to r p a ra m e te rs fo r u n ifo rm h e a tin g o f d iscs across th e w id th o f th e h a rd fa c in g zone, a llo w in g fo r sc re e n ­ in g . T h e P a to n W e ld in g J ., 11, 2 3 -2 5 .

2. S h a b ly , O .N ., P u lk a , C h .V ., M ik h a jlis h in , M .S . e t a l. D e- v ic e fo r p o w e r c o n tr o l in zo n e o f h a r d fa c in g . P o s itiv e d e c i­ sio n on issu in g o f p a te n t o n a p p lic a tio n 200 2 1 1 9 4 9 1 . F ile d 2 8 .1 1 .0 2 .

3 . S h a b ly , O .N ., P u lk a , C h .V ., P ism e n n y , A .S . (1 9 9 7 ) O p t i ­ m isa tio n o f d e sig n p a ra m e te rs o f in d u c to r fo r in d u c tio n h a rd fa c in g o f th in ste e l d isc s. A v to m a tic h . S v a r k a , 6, 1 7 - 20.

4. S h a b ly , O .N ., P u lk a , C h .V ., B u d z a n , B .P . (1 9 8 7 ) O p tim i­ s a tio n o f p o w e r c o n s u m p tio n d u r in g in d u c tio n h a rd fa c in g o f th in -w a lle d d iscs. I b i d . , 1, 3 6 - 3 9 .

5 . S em y o n o v , N .A . (1 9 7 3 ) T e c h n ic a l e le c tr o d y n a m ic s . M o s­ cow': Svyaz.

Cytaty

Powiązane dokumenty

Although Alvarez pays tribute to only three women, the rest of the victims are evoked in the pages of her book because the events she describes changed the course of the lives of

The actual optimization program is usually created in a specialized language (e.g. In contrast, computational software are equipped with basic optimization

Każdy rocznik składa się z dwóch ze­ szytów, które ukazują się w odstępach półrocznych przy zachowaniu paginacji ciągłej dla całego rocznika.. Poszczególne

On the basis of the Scheffe’s test of multiple comparisons for the image gathered on 13 June 2000 (Table 9) it was assumed that the land surface temperature at for-

However, presence of a shield with a certain screening coefficient leads to a marked change of air gap /ju between the inductor upper branch and disc

Significantly less works related to optimization of coupling shapes in such connections [11] (optimization of chain couplings). At that stress state in connections is analyzed

Considering increase of industry demands the method of induction surfacing is continuously improved in th e follow ing directions: rise of proc­ ess efficiency and wear

Метоя ціюї статті ю проаналізувати потенціал трудових мігрантів у сфері представництва і захисту національних інтересів Уљраїни та розљрити його