• Nie Znaleziono Wyników

Geographical point cloud modelling with the 3D medial axis transform

N/A
N/A
Protected

Academic year: 2021

Share "Geographical point cloud modelling with the 3D medial axis transform"

Copied!
177
0
0

Pełen tekst

(1)

Delft University of Technology

Geographical point cloud modelling with the 3D medial axis transform

Peters, Ravi

DOI

10.4233/uuid:f3a5f5af-ea54-40ba-8702-e193a087f243

Publication date

2018

Document Version

Final published version

Citation (APA)

Peters, R. (2018). Geographical point cloud modelling with the 3D medial axis transform.

https://doi.org/10.4233/uuid:f3a5f5af-ea54-40ba-8702-e193a087f243

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Geographical point cloud modelling

with the 3D medial axis transform

Ravi Peters

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)

O ⊂ Rn

S = δO

O

O Rn

(24)

exterior

interior

exterior

interior

O S O O B O O B O B O B O Rn \ O B Rn\ O B Rn \ O S S C2 S O M(O)

(25)

O M(O) O C R O M(O) = ⟨C, R⟩ C O R C S

(26)

a c∈ C r∈ R a =⟨c, r⟩

R3

R2

(27)

junctioncurve medial sheets a =⟨c, r⟩ c r a c r B(c, r) a S r c p q c p s˜p q s⃗q ˜ sp ˜ sq b˜ θ s˜p ˜ sq

(28)

p

f (p)

✏f (p)

S

M[S]

f (p) p M[S] ϵ ϵ f (p) p O M(O) p S S ϵ P O ϵ O p∈ P ϵf (p) ϵ ϵ→ 0

(29)

ϵ ϵ = 0.4 ϵ ϵ R2 R3 S

(30)

S

O M(O)

d− 1 O

(31)
(32)

S O S M(O) O M(O) S O M(O)

(33)

O M(O) S M(O) O S O O

(34)

λ = 11 λ = 15

(35)

λ = 0

λ = 6

λ = 10

(36)

O

θ θ

10003

(37)

s B B

(38)
(39)

λ λ

λ λ

(40)

p1 p2 m λ ✓ p1 p2 m θ p1 p2 m p1 p2 m λ θ θ s > 1 1/s θ s

(41)

M(O) O

(42)
(43)
(44)
(45)

1. Surface

point cloud approximation2. Normal 3. MAT approximationfor both normal orientations 4.Unstructured MAT ⃗ n p c p c L ⃗n q p q L p q

(46)

T p ⃗ n θ0 θ1 c r i← 0 r← rinit c p, ⃗n, r qnext← T, c rnext← p, ⃗n, qnext cnext← p, ⃗n, rnext rnext> r− ϵconv i = 0 θ0>∠pcnextqnext i > 0 θ1>∠pcnextqnext c← cnext r← rnext p q p, ⃗n q p, ⃗n, q p L q q qnext c p, ⃗n, qnext cnext qnext

(47)

Po ∈ Po T P , ⃗n∈ Po T, p, ⃗n T, p,−⃗n c q p, ⃗n p,−⃗n p 2n

(48)
(49)

p, ⃗n p, ⃗n, q T, q P q O(log n) P O(n log n) p, ⃗n, q O(1) p, ⃗n, r O(1) O(n log n) 2n O(log n) O(log n)

(50)

O(n log n) O(n log n) O(n2)

p N p

(51)
(52)

central MAT sheet protruding sheets bumps in surface p q qnoise pnoise p

(53)

p p pnoise qnoise qnoise p q p p q p p B p

(54)

1

2

3

4

1

2

3

4

5

5th 4th 4th 5th q q θ θ0 θ1

(55)

Separation angle threshold

last stable ball

noisy balls

n

p

p

c

i+1

q

i

c

i

q

i+1

i+1

i p θi+1

(56)
(57)
(58)

Pn P Pn M(Pn) θ < 30◦ MF(Pn) MD(Pn) θ0 = 30◦ θ1 = 60◦ M(P ) A B A B A→ B A→ B B→ A A B M(P )

(59)

M(P )→ M(Pn) M(P )→ MF(Pn) M(P )→ MD(Pn)

(60)

M(P )→ M(Pn) M(Pn) M(P ) M(P ) M(P ) MD(Pn) MD(Pn) M(P ) MD(Pn) M(P ) MF(Pn) M(P ) MF(P ) MD(Pn) θ1 M(S) Pn P

(61)

10× 20 × 15

Pn M(S)

MD(Pn)

θ0= 30◦

(62)

5 10 15 20 25 30 35 40 45 θ1 (degrees) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 st and ar d d ev ia ti on in d is ta n ce to re fe re n ce (m ) M() MD() θ1 θ1 = 32◦ M(Pn) MD(Pn) M(S] MD(Pn) θ1 MD(Pn) 0.33 0.22 θ0 = 20◦ MD(P ) P

(63)

θ1

(64)
(65)

Without denoising F ront -vi ew T op-vi ew With denoising θ0= 20◦ θ1= 32◦

(66)

θ < 20◦ λ < 0.05 θ0= 20◦ θ1= 32◦ λ < 0.05 rinit rinit rinit rinit

(67)
(68)
(69)
(70)
(71)
(72)

interior

interior

exterior

1. Unstructured

(73)

watercourse

buildings

hill

(74)
(75)

o = r1+ r2 d

d

(76)

S a, b i← 0 S̸= ∅ S ← 0 s← S C s ← i C̸= ∅ c C n c, n n C ← i S← S − n i← i + 1 o > toverlap toverlap > 1 toverlap

(77)
(78)

locally similar bisector direction divergent bisector direction in case of extrema in radius the sheet is into 'sub-sheets' a, b a b tbisec

(79)

tbisec

180◦

180◦

(80)
(81)
(82)

S tmincount tstraight tbisec tθ S a, b ← ∠ a b < tbisec S tmincount M ← a S a > tstraight a, b ← | a b | < tθ M

(83)

adjacency graph flip graph Common feature points interior MAT exterior MAT surface

(84)

S A A a S a ̸= n a < n l← ⟨a, n⟩ l← ⟨n, a⟩ l[0] = 0 l A[l]← 1 A[l] O(n) n

(85)
(86)

S A A a, b S a ̸= b a < b l← ⟨a, b⟩ l← ⟨b, a⟩ l[0] = 0 l A[l]← 1 A[l]

(87)

z Bz

Bz > 0

(88)
(89)
(90)
(91)
(92)
(93)

surface

points

no

rmals

first

atom

second

atom

(94)

i+ i− r c rinit rinit rinit rinit rinit

(95)

r

init

(96)
(97)
(98)
(99)
(100)

nth

(101)

k k k ϵ S ϵ ϵ ϵ P ∈ P B( , ϵf ( )) P P

(102)

c d nmin nmax ϵ

favg c

ntarget=ϵfavgd

nmin< ntarget< nmax

c x = ntarget n n c ϵ ϵ ϵf2(p) ϵf (p) ϵ ϵ ϵ ϵ ϵ

(103)

ϵ = 0.2 211373 ϵ = 0.2 167848

ϵ = 0.4 88835 ϵ = 0.4 86973

ϵ = 0.6 53359 ϵ = 0.6 54385

10% 74746 0.8m

(104)
(105)
(106)

r r

(107)

r

r r

ϵf ( ) ϵ

(108)

p f (p) ✏f (p)

S

M[S]

p ϵ≈ 0.5 ϵ ϵf ( ) ϵ = 0.4

(109)

ϵ = 0.4

(110)
(111)
(112)
(113)
(114)

p0 ⃗vx ⃗vy

(115)

p0 ~vy ~vx s|~vx| s|~vy| pm p0, ⃗vx, ⃗vy, s pm ps ⃗v← p0− pm l⃗vx← ⃗v·⃗vx |⃗vx|⃗vx l⃗vy ← ⃗ v·⃗vy |⃗vy|⃗vy ps.x← (l⃗vx+|⃗vx|) s |⃗vx| ps.y← (l⃗vy +|⃗vy|) s |⃗vy| ⃗n← (⃗vy× ⃗vx) ps.z← ⃗v|n|·⃗n

(116)

c r s D D (c, r) cs← c x −rs +rs y −rs +rs h!x2+ y2 h rs d′← cs.z− (rs − h) d← D[cs.x + x, cs.y + y] d′ d D[cs.x + x, cs.y + y]← d′ qm D qm qs← qm d← D[qs.x, qs.y] qs.z d qm qm

(117)

O((rs)2N ) N

(118)

15.0 10.0 5.0 0.0 5.0 depth

a)

b)

c)

a) b) c) d) e)

(119)
(120)

Tree

(121)
(122)
(123)
(124)

0 100 200 m

Identified water courses Missed water courses

0 100 200 m

Reference water courses Erroneously identified water courses

(125)
(126)

1.Groundpoints. 2.3D skeletonof the ground points.

3. Segmentation of 3D

skeleton in sheets. 4.sheets and select lowerTriangulateexterior envelope to find the centrelines.

exterior sheet

centreline

(127)

Exterior skeleton Interior skeleton Ground Surface Skeleton points Ground points xy

(128)
(129)

Peat

Clay

0 m 200 m

0 m 200 m 0 m 200 m

(130)
(131)
(132)
(133)
(134)

0 50 100 m

0 100 200 m

Reference water courses Erroneously identified water courses

(135)

buildings

terrain buildings

(136)
(137)
(138)
(139)
(140)
(141)
(142)

θ r

θ r

r θ

(143)
(144)
(145)
(146)
(147)
(148)
(149)
(150)

−2 −2 −2 −2 −2 −2 −2

(151)
(152)
(153)
(154)
(155)
(156)
(157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)
(172)
(173)
(174)
(175)
(176)
(177)

Cytaty

Powiązane dokumenty

Nasycanie materiałów glinokrzemianowych lejnymi zawiesinami tlenku glinu i tlenków glinu i krzemu powoduje korzystne zmiany mikrostruktury, po- legające na redukcji

Obrazy rzeczywiste są reprezentacją realnych obiektów, powstają w wyniku ich oddziaływania na czułą na to oddziaływanie powierzchnię, będącej miejscem powstania obrazu.

The existing methods for spatial network analysis such as those of Space Syntax and alike or those of Transport Planning do not adequately address walking and cycling in

–cegła dziurawka tworząca wewnętrzną ścianę studia, odsunięta na Ch-ka czasu pogłosu przeciętnego studia: 1- po zamontowaniu adaptacji, 2- przed

Dodaj nazwy akordów (komenda Shift+K). Przepisz do programu MuseScore następujący fragment utworu. Za podanie tytułu tej kompozycji oraz popularnej amerykańskiej piosenki,

Conform´ ement ` a la m´ ethode pr´ esent´ ee dans le chapitre I, bas´ ee sur le th´ eor` eme de Nash et Moser, nous allons montrer successivement que P est lisse apprivois´ ee, que

[r]

Observations of infants inwardly 'contemplative' states of mind suggest that right from birth an infant can have some kind of creative experience of being alone with the feelings