• Nie Znaleziono Wyników

Preliminary Test on Automatic Take-Off and Landing of a Multi-Drone Low-Drag Airborne Wind Energy System

N/A
N/A
Protected

Academic year: 2021

Share "Preliminary Test on Automatic Take-Off and Landing of a Multi-Drone Low-Drag Airborne Wind Energy System"

Copied!
2
0
0

Pełen tekst

(1)

Wind

The longest part of the cable is fixed and does not generate aerodynamic drag

Drone Tether (highlighted) Load cell Real time azimuth and elevation measurements Circular path Ground station

Experimental take-off system (top): Experimental rotational start of a half

dual-drone system in fully automated take-off and landing sequence. The axi-symmetric round-the-pole flight of a single wind drone has been investi-gated by means of a dynamic model and an experimental test setup in order to investigate the dual drone concept.

Dual drone concept (left): Two wind drones are linked by a cable at their

starboard wing-tip. They accelerate along a circular landing strip using the power from the motors until take-off (top-left). After take-off, the two drones lift the main cable to the desired altitude (bottom-left). i. e. the main cable is kept fixed and the drones continue to rotate thanks to wind power while using their motors as generators.

(2)

Antonello Cherubini

PhD Researcher Sant’Anna University of Pisa

Tecip Institute Percro Robotics Laboratory

via Alamanni 13b 56010, Ghezzano, Pisa

Italy

a.cherubini@santannapisa.it www.antonellocherubini.com

Preliminary Test on Automatic Take-Off and Landing of a Multi-Drone

Low-Drag Airborne Wind Energy System

Antonello Cherubini1, Balazs Szalai2, Roland Schmehl3, Marco Fontana1,4

1Scuola Superiore Sant’Anna,2Kitepower B.V.,3Delft University of Technology,4University of Trento

Crosswind Airborne Wind Energy Systems are currently able to reach altitudes of several hundred meters above ground level. Although this is higher than conventional wind turbines, the optimal altitude is limited by the in-creasing aerodynamic drag of the tether. Simple mod-els for steady-state crosswind flight suggest that for typi-cal wind shear profiles the power loss due to sweeping a longer tether through the air outweighs the power gained by accessing more powerful winds at higher altitude. A possible solution to this problem is represented by the so called “dancing kitež concept, where a single long ca-ble is attached to two shorter caca-bles, each connected to a kite. The kites are flown in such a way that the long ca-ble is kept in a fixed position with respect to the ground, thus not dissipating power by drag forces, and only the two short cables follow the crosswind motion of the kites. This concept might be the first that is able to reach al-titudes of several thousand meters, thus reaching the extreme power densities of the jet streams, allowing to build low cost and powerful wind turbines.

Envisioning a take-off system for such a concept is par-ticularly challenging, and having repeatable and robust take-off and landing capabilities is crucial for the success of the dancing kite principle.

Extending the dancing kite principle to a rigid wing setup can have several advantages, above all, it allows for sim-ple take-off and landing sequences. For examsim-ple, attach-ing the tethers to the wattach-ing tip of several drones results in

a multi-drone system that can take-off and land on an ax-isymmetric circular runway. For this purpose, the axisym-metric round-the-pole flight of a single wind drone has been investigated by means of a dynamic model and an experimental test setup. In this work, a simple 3-degree-of-freedom model represents the flight of the wind drone in spherical coordinates. The drone is modelled as a point mass with aerodynamic properties, throttle and pitch control. The model also takes into account the stabiliz-ing effect from the lift of the horizontal stabilizer, from the pitch angular velocity, and from the restoring pitch mo-ment due to the centre of gravity being below the aero-dynamic centre.

The experimental campaign demonstrated full au-tonomous take-off and landing capabilities of a small scale wind drone flying round the pole in an axisymmet-ric configuration. The passive stability of the flight sug-gests that autonomous take-off and landing can easily be achieved in a dual drone system.

References:

[1] A. Cherubini, A. Papini, R. Vertechy, M. Fontana, "Airborne Wind Energy Systems: A review of the technologies", Renewable and Sus-tainable Energy Reviews, 51, 1461ś1476, 2015

[2] A. Cherubini, "Advances in Airborne Wind Energy and Wind Drones", PhD Thesis, Sant’Anna University of Pisa, 2017. https://www.areasciencepark.it/wp-content/uploads/PHD_THESIS-Cherubini.pdf

Cytaty

Powiązane dokumenty

Dwie najnowsze prace: Uwagi o dawnych i nowych metodach w klimatologii oraz Materiały do poznania genezy i struktury klimatu Polski wprowadzają w nowe dziedziny

In Chapter 4, the synthesis and molecular weight characterization of the block copolymers based on dithiol terminated PDMS (Mn of 1K, 5K and 10K) and rigid

Podsumowanie Analiza tekstów o grach komputerowych wykazała, że anglojęzyczne tytuły gier niejednokrotnie poddają się – przynajmniej częściowo – wymogom

Celem jest więc próba skonfrontowania rysujących się założeń medioonomastyki z postulatami badawczymi mediolingwistyki, osadzenia badań nad nazwami w mediach w ramach

Jako przykład można wskazać pytanie „dzieci są?” (135), które pozornie może wydawać się neutralne pod względem nacechowania, jednak sugerowana wersja sytuacji (posiadanie

Możemy zatem potwierdzić obecność komponentu ‘ktoś a sądzi, że coś jest takie, że powoduje, że ktoś b będzie się bał’ w znaczeniu jednostki ktoś a straszy kogoś b

Także postać autora, Laurentiusa Nicolai Norvegusa (1539−1622 lub 1621), nazywanego też Wawrzyńcem Norvegusem, okazała się intrygująca i wiele wniosła do historii badanych

wieża Babel (182), salomonowy wyrok (143), Sodoma i Gomora (112), plaga egipska (101), trąba jerychońska (57), łódź Piotrowa (33), judaszowy pocału- nek (30), tłuc się jak Marek