• Nie Znaleziono Wyników

Journal of the American Concrete Institute, Vol. 17, No. 2

N/A
N/A
Protected

Academic year: 2022

Share "Journal of the American Concrete Institute, Vol. 17, No. 2"

Copied!
76
0
0

Pełen tekst

(1)

AMERICAN CONCRETE INSTITUTE

(ACI PROCEEDINGS Vol. 42)

V o l. 17 November 1945 N o . 2

CONTENTS

Papers and Reports... 105-164

M ain te n a n ce and Repair o f Concrete Bridges on the O regon H ig h w a y System... G. S. P A X S O N 105

Should Portland Cement Be D is p e rs e d ? ...T. C. POWERS 117

A n Investigation o f the Strength o f W e ld e d Stirrups in Reinforced Concrete

Beams ORESTE M O RETTO 141

News Letter... 1-12 42nd A N N U A L A C I CO N V EN TIO N , New Yorl< City, Feb. 18-21,1946

N ew Mem bers • H o n o r Roll • W ho's W ho • Phaon H . Bates Retires

• Douglas E. Parsons

to provide a com radeship in finding the best ways to do concrete work o f a ll kinds and in spreading that knowledge

A D D R E S S . 7 4 0 0 S E C O N D B O U L E V A R D , D E T R O I T 2 , M I C H .

S7.50 by the year S1.50 per copy

Extra copImIo members S1.00

(2)

Discussion closes M a rch 1, 1 94 6

Sept. JU ’ 45 Concrete Construction in the N a tio n a l Forests— C liffo rd A . Betts

L a p p e d Bar Splices in Concrete Beams— Ralph W . Kluge and E dw ard C . Tuma Tests o f Prestressed Concrete Pipes C ontaining A Steel C ylinder— C ulbertson W . Ross Field Use o f Cement C ontaining V in s o l Resin— Charles E; W u e rp e l

N o v. J L '4 5 M ain te n a n ce and Repair o f Concrete Bridges on the O re g o n H ig h w a y System

— G . S. Paxson

Should P ortland Cement Be Dispersed?— T. C. Powers

A n Investigation o f the Strength o f W e ld e d Stirrups in Reinforced Concrete Beams—

O re s te M o re tto

(3)

V o l. 17— N o. 2 November 1945

r'Cr a 5 ivsiieuw

o f i t a * . >

J O U R N A L

o f the

AMERICAN CONCRETE INSTITUTE

P u b lis h e d b y th e A m e r ic a n C o n c r e te In s titu te . T h e In s titu te w a s fo u n d e d 1 9 0 5 ; in c o r p o r a te d in th e D is tric t o f C o lu m b ia in 1 9 0 6 as T h e N a tio n a l A s s o c ia tio n o f C e m e n t U se rs; th e n am e c h a n g e d 1 9 1 3 b y c h a r te r a m e n d ­ m e n t; r e in c o r p o r a te d , w it h n e w sta te m e n t o f o b je c ts , A u g u s t 8 , 1 9 4 5 . T h e J o u r n a l is issued six times y e a r ly in th e m onths o f J a n u a ry , F e b ru a ry , A p r il , J u n e , S e p te m b e r a n d N o v e m b e r u n d e r th e a u th o r ity o f th e

BOARD OF DIRECTION, AMERICAN CONCRETE INSTITUTE

President D O U G L A S E PARSONS

V ic e Presidents

H A R R IS O N F. G O N N E R M A N , S T A N T O N WALKER Secretary-Treasurer

H A R V E Y WHIPPLE Regional Directors

P A U L W . N O R T O N FRANK H . J A C K S O N

M Y R O N A . S W A Y Z E CHARLES S. W H IT N E Y

ALEXAND ER FOSTER, JR. HERBERT J. GILKEY

Direcfors-at-Large

HARRY F. T H O M S O N ROBERT F. BLANKS HENRY L. KENNEDY

Past Presidents

RODERICK B. Y O U N G R A Y M O N D E. D A V IS

BEN MOREELL M O R T O N O . W ITHEY

RO Y W . CRUM

Papers a n d o th e r c o n trib u tio n s p re p a re d w it h a v ie w to J o u rn a l p u b lic a tio n sh ou ld b e s u b m itte d in t r ip lic a t e , a d d re sse d : S e c re ta ry , P u b lic a tio n s C o m m itte e , A m e r ­ ica n C o n c r e te In s titu te , 7 4 0 0 S e co n d B o u le v a rd , D e ­ tr o it 2 , M ic h ig a n . P u b lic a tio n o f a c o n trib u tio n d o e s n o t im ply th e a c q u ie s c e n c e o f c ritic s ( w h o s e a d v ic e is so ug ht b y th e C o m m itte e , p r io r to a c c e p ta n c e ) o r o f th e In s titu te in th e o p in io n s w h ic h it e xpresses n o r th e a p p ro v a l o f d a ta o r p ra c tic e w h ic h th e c o n tr i­

b u tio n re c o rd s . In s titu te a u th o r ity a tta c h e s o n ly to S ta n d a rd s fo r m a lly a d o p te d as p r o v id e d in th e By- L a w s . A c o m m itte e r e p o r t im p lie s m e re ly th e jo in t c o n tr ib u tio n o f a n a p p o in te d g ro u p .

S u b s c rip tio n p ric e $ 7 .5 0 p e r y e a r p a y a b le in a d v a n c e . To m em bers, $ 7 .5 0 p e r y e a r , in c lu d e d in th e a n n u a l

d u e s . ( A s p e c ia l d ue s ra te o f $ 3 .0 0 p e r y e a r a p p lie s fo r “ a s tu d e n t in re s id e n c e a t a re c o g n iz e d te c h n ic a l o r e n g in e e r in g s c h o o l” a n d in c lu d e s J o u r n a l s u b s c rip tio n . B ou n d vo lu m e s 1 to 4 0 o f P R O C E E D IN G S O F T H E A M E R I C A N C O N C R E T E IN S T IT U T E (1 9 0 5 to 1 9 4 4 ) a r e fo r sa le as f a r as a v a ila b le , a t p ric e s to b e h a d on in q u ir y o f th e S e c re ta ry -T re a s u re r. S p e c ia l p ric e s a p p ly f o r mem bers o r d e r in g b o u n d volu m e s in a d d itio n to th e m o n th ly J o u r n a l.

P u b lic a tio n add re ss: 7 4 0 0 S e co n d B o u le v a rd , D e tr o it 2 , M ic h ig a n . C o p y r ig h t, 1 9 4 5 , A m e ric a n C o n c r e te In ­ s titu te , P rin te d in U . S. A . E n te re d a t th e Post O f f ic e a t D e tr o it, M ic h ig a n , as m ail o f th e se co n d class u n d e r p ro v is io n s o f th e A c t o f M a r c h 3 ,1 8 7 9 .

(4)
(5)

d isto rtio n t h a t con crete m em bers will s ta n d w ith o u t serious in ju ry is su rp risin g in view of th e general opinion t h a t concrete is a stiff an d b r ittle m a te ria l. T h e cause of d am ag e of th is k in d can be d e term in ed easily, a n d th e re p airs can be expected to effect a p e rm a n e n t cure.

D e te rio ra tio n caused b y som e w eakness of th e m a te ria l itself is m ore difficult to tr e a t. T h e cause of th e tro u b le is obscure an d rem edial w ork is o fte n only a te m p o ra ry check to th e deterio ratio n .

T h e first alarm in g exam ple of th is second ty p e of d isin te g ra tio n to be n o ticed on th e O regon hig h w ay sy stem show ed u p on th e S nake R iv e r B ridge a t O n tario , Ore. T h is bridge consists of fo u r 200-ft. steel tru ss sp an s w ith concrete deck, cu rb s a n d piers, a n d w ith a sh o rt concrete v ia d u c t ap p ro a c h a t each end. A steel h an d ra il w as used on th e tru ss sp a n a n d a concrete h a n d ra il on th e a p p ro ach spans. T h e bridge was b u ilt in 1924 an d b y 1928 w ide cracks h a d opened u p in th e piers an d in th e la rg e r m em b ers of th e h a n d ra il. T hese cracks w ere p ecu liar in t h a t little , if an y , d isin te g ra tio n of th e concrete accom panied th e cracking.

T h e cracks w ere re la tiv e ly wide, an open w id th of as m u ch as th re e - e ig h th s in ch w as found, b u t th e concrete along th e edges of th e crack a p p e a re d sound. Fig. 1 shows a m assive h a n d ra il p o st w ith th e wide crack s show ing in th e to p . F ig. 2 shows a h ead w all of a c u lv e rt b u ilt te n y ears before th e p ic tu re w as ta k e n . T h e cracking occurred in th e first five y e a rs a fte r th e stru c tu re w as b u ilt, a n d h as show n little or no progress since t h a t tim e. T h e fa c t t h a t th ese cracks occur in m em bers n o t su b je c t to s tru c tu ra l stress in d icates a lack of a n y connection betw een stress a n d th is ty p e of cracking.

A n a tte m p t w as m ad e to seal th e cracks in th e S nake R iv e r B ridge p iers w ith a h e a v y m ix tu re of w hite lead a n d oil forced in u n d e r pressure.

T h e co n tin u ed opening of th e cracks broke th e seal, a n d th e p ier sh a fts a n d w ebs w ere encased w ith concrete in 1934. T h is new concrete w as w aterp ro o fed in 1937 a n d no fu rth e r tro u b le h a s occurred. T h e h a n d ­ rails w ere n o t encased, a n d th e cracks h av e show n no increase in w id th fo r th e p a s t te n years. I t seem s t h a t th is ty p e of cracking ta k e s place d u rin g th e first few y ears a fte r th e concrete is placed, a n d if n o t com ­ p lic a te d b y o th e r ty p e s of disin teg ra tio n , th e n ceases or a t least progresses v e ry slowly. T h ere are a few exam ples of th is ty p e of cracking in th e W illam ette R iv e r V alley w here only a few cycles of freezing a n d th aw in g occur each y ear. F ig. 3 show s a h a n d ra il p o st on th e W illam ette R iv e r B ridge a t A lb an y in 1937. N o re p a ir w ork has to be done, a n d th e re has been no a p p a re n t change in th e condition in th e la s t eig h t years.

A t th e tim e th ese stru c tu re s w ere b u ilt it w as n o t com m on p ractice to m ak e alkali d e te rm in a tio n s on th e cem ent used. I t so h ap p en ed , hm vever, t h a t m o st of th is k in d of tro u b le developed in concrete m ad e w ith c em en t m a n u fa c tu red d u rin g th e first tw o y ears o p e ratio n of one

(6)

Fig. 3— H a n d ­ ra il post a t the W illa m e tte River

B r i d g e i n

A lb a n y .

cem en t p la n t. Sam ples w ere o b ta in e d fro m th e corners of a b in w hich p ro b a b ly re p re se n te d th e first c em en t sto red . T h ese sam ples show ed a n alk a li c o n te n t of 1.68 p er cen t, c a lc u la te d as Nc^O. I t is p ro b a b le t h a t th is ty p e of crack in g can be a ttr ib u te d to th e in te ra c tio n of a h ig h -alk ali ce m en t a n d a re a c tiv e ag g reg ate, as no n o tic e a b le c ra ck in g of th is ty p e h a s b e en fo u n d w hen th e se sam e ag g reg ate s a n d c em en ts ru n n in g fro m 0.6 to 0.8 p e rc e n t alk ali w ere used. S tru c tu re s b u ilt in th e sam e a re a w ith th e sam e ag g reg ates a n d w ith cem en t fro m th e sam e m ill a fte r a change in th e source of ra w m ate ria ls, h a v e show n no d is in te g ra tio n of th is ty p e .

W h en th e c rack in g h as b ee n serious en o u g h to n e c e ssita te re p a ir, th e su rfaces h a v e been ch ip p ed a w a y a n d th e m e m b ers en cased w ith co n ­ crete m ad e w ith low -alkali c em en t a n d a g g re g ates k n o w n to b e n o n ­ re a c tiv e . T h e p re p a ra tio n of th e surfaces a n d th e p lacin g of th e con­

c rete is carefu lly done to in su re a good b o n d . W h ere a n e n c a se m e n t exceeding fo u r inches th ic k is placed, a n c h o r dow els a n d m esh rein fo rc e­

m e n t are used.

T h e cause of th is d isin te g ra tio n , w hich m an ifests itself b y w ide crack s, is q u ite clearly re la te d to th e alk ali c o n te n t of th e c e m e n t a n d th e re­

ac tiv e n ess of th e ag g reg ates. T h e fa c t t h a t it occurs in lo catio n s h a v in g m ild clim a te a n d few cycles of freezing a n d th a w in g as w ell as in th e colder clim ates in d ic a te s t h a t te m p e ra tu re ch an g e is n o t th e p rim a ry cause. A fte r th is c rac k in g h as occurred, m o istu re p e n e tra te s th e co n ­ cre te m ore easily a n d d is in te g ra tio n d u e to freezing a n d th a w in g is ac c elerate d . T h is ty p e of d isin te g ra tio n , w hile serious in th e few s tru c ­

(7)

tu re s t h a t h a v e been affected, is n o t of g re a t concern in Oregon. T h e cause an d m ean s of p re v e n tio n are know n.

D u rin g th e la s t 15 y ears a n o th e r ty p e of d isin te g ra tio n h as developed th a t is m u ch m ore serious th a n th e ty p e described above. T h e first in d ic a tio n of tro u b le u su ally shows u p w ith in fo u r or five y e ars a fte r co n stru c tio n . A large n u m b e r of fine cracks appear. T hese are closely spaced a n d p arallel w ith th e edges of th e affected m em bers. T h e cracks are filled w ith a grey dep o sit an d are generally called “ D -lin e” cracks.

In so fa r as h as been observed, th is ty p e of d isin te g ra tio n h as been con­

fined to th e e a ste rn section of th e s ta te a n d to th e hig h er p a rts of th e C ascade M o u n ta in s. I t a p p ears to be definitely a fu n ctio n of th e n u m b e r of cycles of freezing a n d th aw in g . I n th e w estern section of th e s ta te w here a few cycles only of freezing a n d th a w in g occur an n u ally , no tro u b le h as been experienced.

T h is d isin te g ra tio n , so far, has been confined to h an d rails, curbs, w ing w all to p s, a n d o th e r m em bers above th e ro ad w ay surface. M em b ers w hich are p ro te c te d b y th e ro ad w ay slab hav e n o t been affected. T hese o b serv atio n s p o in t to w a rd th e conclusion t h a t th e ten d en cy to disin­

te g ra te , due p rim arily to a w eakness of th e concrete itself, can be over­

com e, or a t least re ta rd e d , b y w aterproofing th e surfaces of m em bers exposed to ra in or snow.

One significant p o in t b ro u g h t o u t in th e analysis of d a ta from th e fre q u e n t inspections of th e bridges on th e h ighw ay sy stem is th e correla­

tio n betw een th e d a te of co n stru ctio n an d th e presence or absence of th is

“ D ” line d isin te g ratio n . A ta b u la tio n of all concrete bridges on a 228- m ile section of th e Old Oregon T ra il H ighw ay (U. S. 30) betw een U m atilla a n d O n tario was m ade recen tly . T h ere are 61 stru c tu re s in th is section.

Of these 61 stru c tu re s, 37 were b u ilt p rio r to 1930 an d 24 were b u ilt from 1930 to 1937. Of th e 37 older stru c tu re s, only seven show evidences of

“ D -lin e” d isin teg ratio n , a n d five of th ese were b u ilt w ith th e high-alkali ce m e n t previously referred to . T h e d isin te g ratio n on th e o th e r tw o s tru c tu re s occurs a t th e end of a wing w all an d in a section of cu rb w here la ita n ce in d icate s im p ro p er placing. Of th e 24 stru c tu re s b u ilt from 1930 to 1937, 15 show “ D ” line d isin te g ra tio n in m ore or less degree, a n d fo u r of th e o th e r nine stru c tu re s were w aterp ro o fed w ith in tw o y ea rs a fte r th e ir con stru ctio n .

T h e co n stru c tio n of th e se 61 bridges covers a period of 20 years. In general ag gregates from th e sam e local sources w ere used. W e are n o t re a d y to a d m it t h a t th e la te r m eth o d s of pro p o rtio n in g , placing, an d cu rin g are inferior to th o se used 20 y ears ago. T h e rem ain in g in g re d ie n t is th e cem ent. A t a b o u t 1930, finer grinding of cem ent becam e general p ra c tic e to m eet th e d em a n d for higher e a rly -stre n g th concrete. T h e

(8)

s tre n g th w as o b tain ed , b u t i t seem s p ro b a b le t h a t i t w as a t a sacrifice of d u ra b ility .

B y 1937 th e e x te n t of “ D -lin e ” d isin te g ra tio n in th e h ig h w ay s tru c tu re w as causing serious concern. T h e d e te rm in a tio n of th e basic cause of th e tro u b le is to o com plex a p ro b lem for a single s ta te h ig h w ay o rg an izatio n , a n d b u t little progress along th is line h as been m ade. A m a in te n a n c e p ro ced u re h a s been developed, how ever, w hich h a s been q u ite successful in re p a irin g d am ag e t h a t h a s a lre a d y o ccu rred a n d in p re v e n tin g fu r th e r progress of th e d isin te g ra tio n . T h is p ro ced u re consists in th e rem o v al a n d rep la c e m en t of th e d isin te g ra te d con crete a n d w aterp ro o fin g of th e surfaces w ith a linseed oil a n d w h ite le a d p a in t co at. T h is p ro c ed u re follows, in general, th e suggestions m a d e b y F . R . M cM illan , D ire c to r of R esearch of th e P o r tla n d C em e n t A ssociation.

T h e follow ing is a n o u tlin e of th e p ro ced u re used b y th e O regon S ta te H ig h w ay D e p a rtm e n t in p a tc h in g d isin te g ra te d co n crete a n d w a te r­

proofing con crete surfaces for th e p re v e n tio n of d isin te g ra tio n .

W h en d isin te g ra tio n of th e com m only called “ D -lin e ” ty p e h a s ta k e n place, i t u su a lly affects th e edges a n d corners of curbs, h a n d ra ils, w ing w alls, a n d o th e r exposed m em bers. T o p re v e n t fu rth e r progress i t is n ecessary to rem ove co m p letely all d isin te g ra te d m a te ria l, g re a t care bein g ta k e n to re ach so u n d co n crete b e y o n d th e e x te n t of th e d isin teg ­ r a te d area. T h is ca n be accom plished b y th e use of h a m m e rs a n d chisels on sm all areas or b y p a v in g b re a k e rs o r ch ip p in g h a m m e rs on larg er areas. I f th e d isin te g ra tio n h a s reach e d a n a d v a n c e d stag e, th e co m p lete rem o v al a n d rep la c e m en t of th e affected p o rtio n of th e s tru c tu re m a y be n ecessary. T h e im p o rta n c e of th e rem o v al of all tra c e s of d isin te g ra te d m a te ria l c a n n o t be o verem phasized. E x p erien ce h a s show n t h a t o ften th e w o rk m a n w ill rem ove all visible affected m a te ria l, th e n place a p a tc h on w h a t w as, in his ju d g m e n t, so u n d concrete, o n ly to disco v er la te r t h a t th e m a te ria l a d ja c e n t to th e p a tc h co n tin u es to d isin te g ra te .

A fte r th e rem o v al of th e d isin te g ra te d co n crete a p a tc h is ap p lied , th e success of w hich d ep en d s u p o n secu rin g a b o n d to th e p a r e n t concrete, o vercom ing th e te n d e n c y of th e p a tc h to sh rin k a fte r p la c e m e n t, a n d p ro p e r curing. All places to be p a tc h e d should be c h ip p ed o u t to secure n o t less th a n th re e -fo u rth s-in ch th ick n ess for th e p a tc h . T h e edges of th e p a tc h sh o u ld be sq u a re a n d n o t fe a th e re d . All surfaces sh o u ld be clean a n d ro u g h so as to secure a good b o n d a n d sh o u ld be s a tu r a te d th o ro u g h ly b y sev eral ap p lic a tio n s of w a te r. T h e p re sh rin k a g e of m o rta r is re q u ire d for all p atch es. T h is is done b y m ixing th e m o r ta r well a h e a d of use a n d le ttin g i t sta n d . T h e tim e re q u ire d for p re sh rin k ag e of m o r ta r v arie s w ith th e d ifferen t b ra n d s of c e m en t a n d co n d itio n s of te m p e ra tu re a n d h u m id ity , a n d is b e s t d e te rm in e d b y e x p e rim e n t on th e

(9)

job. In general th e m o rta r th u s p re sh ru n k should be susceptible to use w ith o u t th e ad d itio n of w a te r before rew orking it for ap p licatio n . A fter th e p a tc h h a s been applied, p ro p er care in curing m u st be ta k e n b y keep ­ ing th e p a tc h covered w ith w et b u rla p for six to te n hours, a fte r w hich it can be covered w ith d a m p sand or b u rla p u n til th e concrete h as th o ro u g h ly h ard en e d .

N ew concrete p a tc h e s should be allow ed a t le a st tw o w eeks to d ry o u t before a p p ly in g th e w aterp ro o fin g tre a tm e n t. N ew concrete should be

(10)

November 1945

(11)

given a n eu tralizin g w ash before th e ap p licatio n of th e linseed oil used in th e w aterproofing tre a tm e n t. A solution consisting of th re e p o u n d s of zinc su lp h a te cry stals to a gallon of w a te r is b ru sh ed over th e surface to be tr e a te d a n d allow ed to d ry for 48 hours. W hen th o ro u g h ly d ry , all c ry sta ls on th e surface are rem oved b y wire b rushing. T h is tre a tm e n t is n o t necessary on old concrete.

B efore th e w aterproofing tre a tm e n t is applied, it is necessary t h a t th e con crete surface be clean a n d d ry. D u s t an d loose m a te ria l can be rem o v ed w ith a w ire bru sh . R o a d oil or grease can be rem oved b y scru b b in g w ith gasoline or a so lv en t. Efflorescence can be rem oved b y sc ru b b in g w ith a te n p er cen t so lu tio n of hydrochloric acid. W hen w a te r is used in cleaning, am ple tim e m u st be allow ed to p e rm it th o ro u g h d ry in g of th e concrete surfaces before ap p ly in g th e w aterproofing.

A fter th e surface h as been p ro p erly p rep a red a n d is clean a n d d ry , tw o co a ts of h o t linseed oil are to be applied. T h e first co at consists of a m ix­

tu r e of 50 p er c e n t raw linseed oil an d 50 p er cen t tu rp e n tin e h e a te d to 175 F . an d ap p lied w ith an o rd in ary p a in t b ru sh . B e tte r resu lts will be o b ta in e d if th e air te m p e ra tu re is above 65 F . T h e first coat is allow ed to set 24 ho u rs before a p p ly in g th e second coat. A fter th e first coat of th e linseed o il-tu rp e n tin e m ix tu re has set, sp o ts will u sually be n oticed w here th e concrete is m ore porous th a n th e rem ain d er of th e surface tre a te d . T h ese sp o ts should be sp o t tre a te d w ith th e h o t m ix tu re a n d allow ed to s e t before th e second coat of linseed oil is applied.

T h e second co at consists of u n d ilu te d raw linseed oil h e a te d to 175 F.

a n d ap p lied in th e sam e m a n n e r as th e first coat. W hen th is co at is th o ro u g h ly d ry , th e surface is re a d y for a p a in t coat.

T h e e n tire surface tre a te d w ith oil is given tw o coats of w hite lead a n d oil p a in t, tin te d to th e desired shade. A concrete color can be o b ta in e d b y th e ad d itio n of lam p b lack an d raw sienna ground in oil.

T h e w h ite p a in t used in Oregon has th e following fo rm u la:

P aint Composition P er cent

Pigm ent not less th a n 70

Vehicle not more th a n 30

Pigment Composition

W hite lead carbonate 40.0 to 45.0

T itanium barium pigm ent 35.0 to 40.0

Zinc Oxide 15.0 to 20.0

T inting pigm ents, if required 0.0 to 5.0

T h e first co at is th in n e d b y th e ad d itio n of tw o q u a rts of tu rp e n tin e a n d tw o q u a rts of boiled linseed oil to th e gallon oa p a in t. T h e second co a t is th in n e d w ith a b o u t one q u a rt of boiled linseed oil to th e gallon of p a in t so as n o t to give a h e a v y p ig m en t co at t h a t will be susceptible to scaling, b u t w hich is still h ea v y enough to b ru sh o u t u niform ly an d ev en ly .

(12)

T h is w aterp ro o fin g tr e a tm e n t is n o t a cure for th e basic w eakness of th e concrete w hich m ak es i t su scep tib le to d isin te g ra tio n . I f p ro p e rly ap p lied a n d m a in ta in e d , it prom ises to p o stp o n e serious d isin te g ra tio n for m a n y years.

Fig. 4 show s a sidew alk w here th e edges h a v e d eveloped “ D -lin e ” d is­

in te g ra tio n a n d th e con crete h as cru m b led aw ay. Fig. 5 show s th e sam e sidew alk a fte r p a tc h in g a n d w aterproofing. Fig. 6 show s a h a n d ra il w ith “ D -lin e” d isin te g ra tio n w ell a d v a n ced . Fig. 7 show s th e sam e h a n d ra il a fte r th e affected concrete h as been ch ipped o u t a n d th e m e m b e r b u ilt u p w ith new concrete, b u t before th e w aterp ro o fin g w as ap p lied . T h ese figures show t h a t con crete m em b ers w hich h a v e b een seriously affected can be rep aired a n d m ad e serviceable a n d p re sen tab le.

(13)
(14)
(15)

[

a v a ila b le from A C I a t 2 5 ce nts e a c h — q u a n tify q u o ta tio n s o n re q u e s t. Discussion o f th is p a p e r ( c o p ie s in t r ip lic a t e ) s h o u ld re a c h th e In s titu te n o t la te r th a n M a r c h 1 , 1 9 4 6 J

Title 4 2 -6 — a p art o f PROCEEDINGS, A M E R IC A N CONCRETE INSTITUTE V o l. 42

J O U R N A L

o f the

A M E R I C A N C O N C R E T E I N S T I T U T E

(c o p y rig h te d )

V o l. 17 N o . 2 7 4 0 0 S E C O N D B O U L E V A R D , D ETR O IT 2 , M I C H I G A N Novem ber 1945

Should Portland Cement Be D ispersed?*

By T. C. POWERSt

M e m b e r A m e ric a n C o n c r e te In s titu te

S Y N O P S I S

A developm ent of definitions of wetting and dispersion is followed by a discussion of dispersion of portland cement.

F rom elem entary principles it appears th a t a w etting agent is unnecessary, for p ortland cem ent is highly hydrophilic.

T he dispersed state of portland cement in w ater is defined as th a t state in which interparticle attractio n in a fresh paste is absent or so weak th a t it has no appreciable effect on the physical properties of th e fresh paste.

E xperim ents and reasoning from general principles indicate th a t dis­

persion would be undesirable because it would increase the rate and am ount of sedim entation and prom ote particle-size segregation in cement paste; it would destroy the plasticity of th e pastes and give them the properties of a fluid, a probably undesirable change; it would have no beneficial effect on rate of hydration during th e early stages through an increase in exposed surface area because the whole surface is norm ally exposed to w ater even when the particles are flocculated.

A reduction in interparticle attractio n short of actual dispersion should reduce th e w ater required for a given slump, b u t it would not improve w orkability except in unusually rich mixes. I t would increase bleeding.

Air entrainm ent requires an increase in paste content and reduction of w ater content to m aintain a given slump. I t reduces strength b u t improves frost resistance. I t im proves w orkability and reduces bleeding.

Air entrainm ent together w ith some reduction in interparticle a ttra c ­ tion affects paste content and w ater requirem ent in th e same w ay as air entrainm ent alone, b u t the increase in paste content is smaller and the reduction in w ater content is greater th a n when there is no reduction in interparticle attractio n . Air entrainm ent offsets the undesirable effects of reducing interparticle attractio n on plasticity and reduces bleeding.

Some agents do n o t affect the chemical processes of hardening; their effects on strength can be predicted from the voids-cement ratio. Others tend to re ta rd hydration unless they contain an accelerating agent. Such agents have different effects w ith different cements.

* R eceiv ed b y th e I n s tit u te M a rc h 19, 1945.

f M a n a g e r of B asic R esea rc h , P o r tla n d C e m e n t A ssn. R e se a rc h L a b o ra to ry , C hicago.

(117)

(16)

IN T R O D U C T IO N

T h is discussion was p re p a re d in response to m a n y re q u e sts for in fo r­

m a tio n on v a rio u s ad m ix tu re s sold as dispersing ag en ts. T h e q u estio n s a re u su a lly one of tw o ty p e s ; (1) W h a t is th e effect of A d m ix tu re X on concrete? a n d (2) W h a t is b a c k of th e id ea of dispersion of cem en t? T h is discussion will deal p rim a rily w ith th e q u estio n of w h a t is b a c k of th e id e a of dispersing cem en t— n o t w ith th e a c tu a l m e rits of p re p a ra tio n s t h a t h a v e been sold as dispersing agents.

Som e m a te ria ls sold as dispersing a g en ts m ay h a v e m e rit because of effects n o t re la te d to dispersion. H ow ever, th e y c a n n o t be endorsed on th e basis of som e of th e claim s m ad e for th e m . I n ex p lain in g re su lts o b ta in e d or h o p ed for th e assu m p tio n s h av e been m ade t h a t a n o rm al cem en t p a ste is com posed of in d iv id u a l floes (clusters) of cem en t grains such as m a y be seen w hen a sm all a m o u n t of cem en t is su sp en d ed in a large volum e of w a te r; also t h a t w a te r for h y d ra tio n does n o t p e n e tra te th e floes a n d hence t h a t th e cem en t c a n n o t h y d r a te as well as i t m ig h t;

t h a t th e w a te r t h a t is “ tr a p p e d ” in th e floes does n o t c o n trib u te to w o rk ab ility . I t is th e n fu r th e r assum ed t h a t th e floes of c em en t g rain s can be caused to d isin teg rate , t h a t is, t h a t th e grains in a floe can be dispersed, b y a d d in g a su ita b le a g e n t w hich causes th e g rain s to acq u ire e le c tro sta tic charges a n d th u s to becom e m u tu a lly re p e lle n t; a n d t h a t w hen th e cem en t grains are th u s dispersed th e y h y d r a te m o re ra p id ly a n d to a g re a te r e x te n t th a n w hen flocculated. M oreover, it is assum ed t h a t w hen th e p a rticle s a re b ro u g h t to a s ta te of m u tu a l repellency, th e a m o u n t of b leeding or “ s e ttle m e n t-sh rin k a g e ” is reduced. D isp e r­

sion is said also to im p ro v e resistan ce to fro st actio n .

M o st of th ese assu m p tio n s seem plausible, b u t th e y are n o t co m p atib le w ith th e re su lts of re c e n t researches on th e n a tu r e of c em en t p a s te a n d on th e w hole are believed to be u n te n a b le on e ith e r a th e o re tic a l or em pirical basis. T h e basis for th is conclusion w ill be given briefly in th is discussion.

T h e q u e stio n to be discussed can easily becom e confused b y th e fa c t t h a t som e p re p a ra tio n s used as disp ersin g a g en ts are a c tu a lly m ix tu res co n ta in in g n o t only a disp ersin g a g e n t b u t also a n ac c e lera to r such as calcium chloride, a n d b y th e fa c t t h a t m ost, if n o t all, such m a te ria ls cause m ore or less a ir-e n tra in m e n t. Y e t all th e effects of such m ix tu re s h a v e been a ttrib u te d , b y som e, to th e su p p o sed dispersion of th e cem en t p articles. I t is th e refo re necessary to rem em b e r t h a t w h a t m a y be said in th e follow ing discussion a g a in st th e idea of dispersion does n o t necessarily im p u g n a n y p a rtic u la r p re p a ra tio n unless th e p re d o m in a n t effect of th e p re p a ra tio n is t h a t of dispersing th e cem ent.

Ow ing to th e m a n n e r in w hich v a rio u s ty p e s of m a te ria ls of th is class h a v e been in tro d u c e d to th e con crete in d u s try , th e re is som e confusion

(17)

SHOULD PORTLAND CEMENT BE DISPERSED?

w ith resp ect to th e te rm s “ w e ttin g a g e n t,” “ dispersing a g e n t,” a n d “ air- e n tra in in g a g e n t.” T herefore, a seco n d ary aim of th is discussion is to clear a w a y som e of th e confusion w ith resp ect to term inology. I t is especially im p o rta n t to grasp th e fa c t t h a t ce rta in difficulties su rro u n d th e use of th e te rm “ d isp ersio n ” as applied to p o rtla n d cem ent. T o b rin g o u t th e n a tu re of th ese difficulties, it is necessary to p re se n t a brief discussion of fu n d a m e n ta ls. T h is discussion leads to a definition of dispersion of p o rtla n d cem en t p a ste on w hich th e final p a r t of th e p a p e r is b ased . T h e rea d e r is asked to av o id a p p ly in g th e final con­

clusions concerning dispersion as defined here, to dispersion defined in som e o th e r w ay.

T h e discussion of fu n d a m e n ta ls will be found r a th e r sk etch y . F o r th o se seeking fuller in fo rm a tio n a guide to th e lite ra tu re is provided.

THE P H E N O M E N O N O F W E T T IN G *

W h en a d ro p of liquid is placed on a clean surface of a solid, it m ay e ith e r sp re a d on th e surface or rem ain as a m ore or less fla tten ed drop, show ing a definite angle of c o n ta c t w ith th e surface. W hen th e liquid sp read s sp o n tan eo u sly , w e ttin g is said to be com plete (co n ta ct angle = zero) and, if th e liq u id is w ater, th e solid is called hydrophilic. If w ater does n o t sp read b u t establishes a finite c o n ta c t angle, w e ttin g is incom ­ plete or p a rtia l a n d th e solid is reg ard ed as h y d ro p h o b ic .16 P a rtia l w et­

tin g , t h a t is, th e fo rm atio n of a c o n ta c t angle, denotes t h a t th e force of adhesion b etw een th e solid a n d th e liquid (which te n d s to cause th e liq u id to sp re a d over th e surface) is less th a n th e surface tension of th e liquid, w hich te n d s to cause th e liquid to g a th e r itself in to a drop. C on­

versely, w e ttin g is alw ays com plete w hen th e force of adhesion exceeds th e surface tension of th e liquid.

A w e ttin g a g e n t is u su a lly a m a te ria l com posed of elongated organic m olecules, th e m olecules h a v in g an affinity for th e solid a t one end a n d affinity for th e liq u id a t th e other. Such a n ag en t form s, a lay er of m olecules on th e solid, th e m olecules being so oriented as to p resen t a w e tta b le surface to th e liquid.

W hen th e force of adhesion betw een a pow dered solid an d a liq u id is less th a n th e surface ten sio n of th e liquid, th e pow der a n d th e liquid are difficult to m ix unless a su ita b le w e ttin g a g en t is used. Or if th e a d ­ hesion ten sio n exceeds th e surface ten sio n only slightly, a w e ttin g a g en t will be n o ticeab ly helpful. On th e o th e r h a n d , if th e solid a n d liquid show a stro n g m u tu a l a ttra c tio n , th e liquid will sp read over th e solid surface w ith o u t outside aid. F o r a n y given case th e surface ten sio n an d adhesion ten sio n m a y be m easured an d th e need for a w e ttin g ag en t

*See R ef. 1 a t e n d of p ap e r.

(18)

ju d g e d from th e results. I t is sim pler, how ever, m erely to observe d ire c tly w h e th e r w e ttin g is com plete or n o t. F o r exam ple, if th e specific g ra v ity of th e solid exceeds t h a t of th e liquid, sm all p a rtic le s of th e solid, w hen s c a tte re d on th e surface of th e liq u id , will sin k re a d ily if th e con­

ta c t angle is v e ry sm all or zero, or th e y will re m ain on th e su rface if th e c o n ta c t angle is sufficiently large, as does an oiled needle on w ater.

I n th e case of p o rtla n d c em en t a n d w a te r it is still sim p ler m erely to observe th e a b so rp tio n w hen w a te r is p laced in a c ra te r of d ry ce m e n t;

cap illary ab so rp tio n is re ad ily a p p a re n t unless th e cem en t co n ta in s a

“ w a te r-re p elle n t” sub stan ce.

A n y such c rite ria ap p lied to p o rtla n d cem en t w ould show t h a t th e w e ttin g of p o rtla n d cem en t b y w a te r could h a rd ly be im p ro v e d b y a w e ttin g ag en t, unless th e c em en t h a s a cq u ired a “ w a te r-re p e lle n t”

coating. T h e degree of so lu b ility of th e c o n stitu e n ts of c em en t a n d , in fact, th e ra p id fo rm atio n of h y d ra te s t h a t occurs im m e d ia te ly on c o n ta c t w ith w a te r show t h a t p o rtla n d cem en t h as a stro n g affin ity for w ater.

T h e a ttra c tio n is so stro n g t h a t each c em en t grain becom es co m p letely su rro u n d e d b y w a te r even th o u g h in a d ilu te suspension th e g rain s are clustered. T h is is show n b y th e fa c t t h a t d u rin g s e d im e n ta tio n of a con­

c e n tra te d suspension, i.e., d u rin g bleeding, th e whole su rface a re a of th e c em en t is effective in re g u la tin g th e ra te of flow of w a te r.2 So fa r as th e w rite r know s, no one h as seriously c o n te n d ed t h a t cem en t n eeds a w e ttin g agent.

W h e n a pow der is rea d ily w e tte d , so t h a t each g ra in becom es s u r­

ro u n d ed w ith w ater, th e g rain s are n ecessarily s e p a ra te d , a t le a st b y a th in film of w ater. B ecause of th is, th e w e ttin g of a p o w d er b y im m e r­

sion in a liq u id is som etim es referred to as dispersion. H ow ever, it is a d v a n ta g e o u s a n d in line w ith m o d e rn te x tb o o k te rm in o lo g y to d ra w a d istin c tio n b etw een w e ttin g a n d dispersion. As described ab o v e, th e te rm wetting p e rta in s to th e sp o n ta n e o u s sp read in g of a liq u id over a surface. I t applies to a n y sh ap e of surface, n o t to p a rtic le s alone.

D ispersion, on th e o th e r h a n d , p e rta in s only to p articles.* I t is th e opposite of flocculation, ag g lo m e ratio n , or co ag u latio n . W e tte d p a rtic le s m a y be in e ith e r a flocculated or a dispersed s ta te . F lo c c u la te d p a rtic le s in a liq u id m a y be h eld to g e th e r b y forces a c tin g across se p a ra tin g films of liq u id ; hence, a flocculated s ta te is n o t necessarily one re q u irin g p a rtic le -to -p artic le co n ta c t.

T h ese re m a rk s give a general id ea of w h a t is m e a n t b y dispersion, flocculation, a n d w e ttin g , b u t a definition of dispersion w holly a d e q u a te for th e p re se n t discussion c a n n o t be given w ith o u t considering som e a d d itio n a l d e ta ils of th e phenom enon.

* B u t n o t n e c essarily to solid p a rtic le s o n ly .

(19)

SHOULD PORTLAND CEMENT BE DISPERSED?

INTERPARTICLE FORCES

A ccording to p re se n t-d a y theories, th e in te rp a rtic le force in an aggre­

g a tio n of p article s in a fluid m edium is m ade u p p rin cip ally of th e follow ­ ing co m p o n en ts:

(1) A n e v er-p resen t force of a ttra c tio n (van d er W a a l’s forces) w hich causes a d ja c e n t p articles to ad h e re ; an d

(2) A n e le c tro sta tic force of repulsion t h a t opposes th e force of a ttra c tio n . T h is repulsion is stro n g ly d e p e n d e n t on th e en v iro n ­ m e n t of th e p articles a n d is th erefo re su b ject to control.

T h e co n tro l of in te rp a rtic le force m ay involve c o ntrolling th e k in d a n d co n c e n tra tio n of electrolytes, or th e use of ce rta in kinds of organic m olecules or colloids.

B ecause of th e n a tu re of th e relatio n sh ip s betw een d istan ce of se p ara­

tio n a n d in te n s ity of repulsion an d in te n s ity of a ttra c tio n , tw o p a rtic le s m a y h av e m in im u m p o te n tia l energy w hen th e y are se p a ra te d b y a sm all b u t definite d ista n c e .3-4 H ence, even in th e flocculated s ta te , suspended p articles m a y te n d to rem ain slig h tly sep arated .*

DISPERSION Spontaneous dispersion

D ispersion h as been p ic tu re d as a spo n tan eo u s process w hereby p articles b earin g like e lec tro static charges “ spring a p a r t an d s ta y a p a r t”

b y d istan ces easily observed w ith th e m icroscope. H ow ever, even u n d e r th e m o st fav o rab le conditions, th e forces of repulsion in a suspension are effective over only v e ry sh o rt distances. Indeed, if th e particles w ere se p a ra te d only b y th e effective d istan c e of repulsion, th e y w ould a p p e a r to be in c o n ta c t u n d e r o rd in a ry m agnification. N evertheless, if th e p articles are v e ry sm all, th e y m a y be capable of dispersing th e m ­ selves b y th e ir B row nian m otion, fa r bey o n d th e ran g e of in te rp a rtic le forces. B row nian m o tio n is a h a p h a z a rd m ovem ent, or v ib ra tio n , caused b y u n b a la n ced im p a c ts of th e m olecules of th e su rro u n d in g m edium . If a p a rtic le is sm all enough, th e forces of th e im p acts received sim u ltan eo u sly from different directions do n o t balance an d th e p article th u s acquires m otion.

P a rtic le s h av in g B row nian m otion w an d er a t ran d o m a n d te n d to b ounce aw ay from each o th e r w hen th e y collide. If th e forces te n d in g to keep th e p article s in m o tio n exceed th e force of a ttra c tio n betw een th e p articles, th e n a s ta te of dispersion will sp o n tan eo u sly be m ain tain e d . On th e o th e r h a n d , if th e forces of a ttra c tio n betw een th e particles exceed th e forces te n d in g to keep th e particles in m otion, th e n a s ta te of flocculation, or agglom eration, will persist. N o te t h a t in te rp a rtic le

* F o r a th o ro u g h d iscu ssio n of in te r p a r tic le forces, see R ef. 5.

(20)

rep u lsio n is n o t necessary for disp ersio n ; b u t, of course, th e m o re th e in te rp a rtic le a ttr a c tio n is cancelled b y in te rp a rtic le repulsion, th e sm aller th e a m o u n t of k in e tic energ y re q u ire d to keep th e p a rtic le s dispersed.

B ro w n ia n m o tio n can occur to a significant degree only a m o n g v e ry sm all p a rtic le s— colloidal p articles. H ence, p o rtla n d c e m en t c a n n o t be caused to disperse sp o n ta n eo u sly , for cem en t p a rtic le s are p red o m i­

n a n tly m icroscopic, n o t colloidal.6

M ech a n ica l dispersion

E v e n w hen sp o n tan eo u s dispersion is n o t possible, disp ersio n can be effected m echanically. S tirrin g a su spension te n d s to se p a ra te th e p a r ti­

cles, p a rtic u la rly if th e stirrin g is v io len t. T h e degree to w hich th e p a rtic le s will becom e se p a ra te d on stirrin g d ep en d s larg e ly on th e in te n s ity of th e in te rp a rtic le a ttra c tio n . Of course, m u tu a lly re p ellen t p a rtic le s sho u ld be m ore easily dispersed th a n th o se w hich h a v e som e te n d e n c y to stic k to g eth er.

* * *

T h e discussion im m e d ia te ly ab o v e w as p re se n te d to show t h a t som e of th e p h en o m e n a p ic tu re d in connection w ith th e use of disp ersin g a g e n ts w ith p o rtla n d cem en t a c tu a lly can occur only a m o n g p a rtic le s t h a t are of tr u ly colloidal dim ensions. I t m u s t be a d d e d t h a t w h e th e r or n o t sp o n tan eo u s dispersion ta k e s p lace is of little p ra c tic a l conse­

quence. The im portant question is whether it is necessary or desirable to cancel or reduce the forces of interparticle attraction that norm ally pre­

dominate over the forces of repulsion in a suspension of cement particles in water.

INTERPARTICLE A T T R A C T IO N A N D PASTE PROPERTIES

A lth o u g h th e influence of in te rp a rtic le a ttr a c tio n on th e p h y sic al p ro p e rtie s of p a ste s will b e discussed m ore fu lly in th e follow ing section, tw o im p o rta n t effects m a y be m e n tio n e d a t th is p o in t. T h e first is t h a t th e g re a te r th e in te rp a rtic le a ttra c tio n , th e stiffer w ill a p a ste seem to b e w hen i t is stirred . In c o m p a ra tiv e ly c o n c e n tra te d suspensions su c h as cem en t p astes, w here in te rp a rtic le a ttr a c tio n p re d o m in a te s o v er re ­ pulsion, th e suspension b e h av es m ore like a solid th a n a fluid.711' n * T h e o th e r effect a p p e a rs w hen suspensions are allow ed to settle. I f th e forces of a ttr a c tio n p re d o m in a te , th e large a n d sm all p a rticles se ttle to g e th e r.

If th e forces of rep u lsio n p re d o m in a te or if th e n e t force of a ttr a c tio n is v ery w eak, p a rticles t h a t w ould rem ain in c o n ta c t w hen q u iescen t becom e se p a ra te d as th e y fall th ro u g h th e liquid d u rin g sed im en tatio n .

T h e cause of th is m a y be seen b y considering tw o p a rticle s of different size a d h e rin g to one a n o th e r a t th e beginning of th e ir fall th ro u g h th e

* I t b e h a v e s lik e a so lid in t h a t i t is c a p a b le of w ith s ta n d in g s m a ll s h e a iin g forces. S e e p a g e 129, E ffe c t of F lo c c u la tio n o n P la s tic ity .”

(21)

liquid. T h e d rag of th e liq u id on th e sm all p a rtic le will be g re a te r p er u n it m ass th a n t h a t on th e large o n e ; therefore, a force te n d in g to se p a ra te th e m w ill develop. If th is force, w hich depends u p o n th e difference in th e size of th e p artic les, exceeds th e force of a ttra c tio n , th e p articles w ill se p a ra te , th e larg e r p a rtic les falling m ore rap id ly . W hen th e a ttr a c ­ tiv e forces are v e ry w eak, a n d especially w hen th e p articles are m u tu a lly rep ellen t, th e sed im en t t h a t is form ed te n d s to be n o n -u n ifo rm in com ­ position, th e p ro p o rtio n of coarse p artic les increasing to w a rd th e b o tto m of th e sedim ent. M oreover, th e sed im en t form ed is co m p act a n d difficult to redisperse, w hereas a flocculated sed im en t is b u lk y , soft, a n d easily re sto re d to its original s ta te in th e suspension. T h is fe a tu re of th e b e h a v io r of th e dispersed suspension is v ery significant w ith respect to th e questio n of dispersing cem ent, as will be developed below.

D E F IN IT IO N O F DISPERSION A P P L IC A B L E T O CEM EN T PASTE

T h e foregoing discussions serve to show t h a t a criterio n for dispersion ap p licab le to colloidal suspensions is n o t alto g e th e r applicable to te m ­ p o ra ry suspensions of non-colloidal particles; dispersion ca n n o t m ean ex a c tly th e sam e th in g for b o th ty p e s of suspension. Y e t circum stances seem to require using th e sam e te rm for b o th cases; indeed, th e re is consider­

ab le ju stificatio n for it. T h e dilem m a is avoided b y th in k in g in te rm s of in te rp a rtic le a ttra c tio n in ste a d of th e repulsion t h a t is im plied b y th e w ord “ dispersion.” A su itab le definition of dispersion can be set u p in te rm s of th e influence t h a t in te rp a rtic le a ttra c tio n has on certain p ro p ­ erties of suspensions, p a rtic u la rly , th e force-flow relatio n sh ip . W hen in te rp a rtic le a ttra c tio n is a b se n t or negligible, a suspension t h a t is n o t to o c o n c e n tra ted flows like a tru e flu id ; b u t w hen in te rp a rtic le a ttra c tio n is n o t negligible, th e suspension acquires th e p ro p erties of a p lastic solid to som e degree. Also, in a dilute suspension of particles, segregation of sizes ta k e s place d u rin g se d im en tatio n if th e in te rp a rtic le a ttra c tio n is a b se n t or w eak an d it does n o t ta k e place if in te rp a rtic le a ttra c tio n is stro n g . I n view of such o bservations as th ese th e following definition of dispersion is used in th e discussion of cem ent p aste t h a t follow s:

When interparticle attraction in a fresh cement paste is so weak that it has no appreciable effect on the behavior and physical properties of the paste, the particles in the paste m ay be said to be dispersed.

B y th is definition we w ould call a n y suspension dispersed in w hich th e in te rp a rtic le a ttra c tio n is zero or negative. T h is w ould n o t disagree w ith o th e r definitions ap p lied to colloidal suspensions. B u t we w ould also call a suspension dispersed if th e in te rp a rtic le force w as positive, b u t to o w eak to h av e an appreciable effect on th e physical p ro p erties of

(22)

th e suspension. I t should be n o te d t h a t th e defin itio n does n o t re s t on th e presence or absence of p a rtic le -c lu s te rs ; n e ith e r does i t im p ly t h a t dispersion is a sp o n tan e o u s process.

T h is definition a d m its th e po ssib ility of v ario u s degrees of in te rp a rtic le a ttr a c tio n am ong th e p a rtic le s in flocculated suspensions, t h a t is, su s­

pensions in w hich th e a ttr a c tio n h a s a n effect on flow -properties, etc.

C o n seq u e n tly , we can discuss tw o q u estio n s, one p e rta in in g to th e d e ­ sira b ility of p ro d u c in g dispersion, a n d one p e rta in in g to th e d e sira b ility of changing th e in te n s ity of in te rp a rtic le a ttr a c tio n in a flo ccu lated p aste.

DISPERSION O F P O R T L A N D C E M E N T Flocculated state o f normal po rtla n d cement paste

As im plied a t v ario u s p o in ts in th e foregoing discussion, th e re is no q u estio n b u t t h a t cem en t p a rticles in a n o rm a l p a s te a re flocculated.

T h is m a y be seen b y m icroscopic e x a m in a tio n of c e m e n t-w a te r m ix tu re s sufficiently d ilu te to tra n s m it lig h t or b y o b se rv a tio n , a t low m agnifica­

tio n , of th e te x tu re of p a ste s th ro u g h th e w all of a glass c o n ta in er.

T h e process b y w hich cem en t becom es flocculated m a y be v isu a lized as follow s: U n d e r th e a c tio n of a m e ch an ical m ixer, ce m e n t p a rtic le s p ro b a b ly te n d to be dispersed d u rin g th e first few seconds of c o n ta c t w ith th e w ater. C hem ical reactio n s begin im m e d ia te ly a n d co n tin u e a t a re la tiv e ly h ig h ra te for a perio d of n o t o v er five m in u te s— p ro b a b ly less th a n tw o m in u te s— d u rin g w hich tim e th e e le c tro ly te c o n c e n tra tio n in th e m ixing w a te r increases ra p id ly . T h e ele c tro ly te s (a p p a re n tly th e h y d ro x y l ions) b rin g p b o u t flocculation of th e c e m e n t p articles.

D u rin g th e sam e perio d a c o a tin g of h y d ra te s form s on th e c em en t grains. Once th is c o atin g h a s form ed, a n d th e e le c tro ly te so lu tio n h as reach ed full stre n g th , th e ra te of re a c tio n becom es v e ry low a n d th u s th e cem en t rem a in s c o m p a ra tiv e ly d o r m a n t chem ically. T h is s ta te la sts for a considerable period, u su a lly a b o u t a n h o u r. T h e p a s te rem ain s p lastic d u rin g th is period, a n d , if left u n d is tu rb e d , u n d erg o es s e d im e n ta ­ tio n (“ b leed in g ” ).

EFFECT O F F L O C C U L A T IO N O N A M O U N T O F SETTLEM ENT

E x c e p t for c e rta in fe a tu re s t h a t n eed n o t be discussed h ere, th e sedi­

m e n ta tio n of cem en t p a ste s h a s been show n to be essen tially like t h a t of o th e r c o n c e n tra te d suspensions of flocculated m in eral pow ders. V arious ex p e rim e n ts h a v e been c a rrie d o u t t h a t rev eal th e effect of flocculation on th is process. S te in o u r26 o b serv ed th e se d im e n ta tio n of em e ry p articles b o th flocculated a n d n o t flocculated. T y p ic al re su lts are giv en in T ab le 1:

(23)

T A B L E 1

M aterial D iam eter, microns

Fluid C ontent, %

A m ount of F inal Settlem ent,

% of original height D ispersed Flocculated

Em ery A 12.2 65 36 17

A 12.2 80 63 44

B 9 .6 75 55 35

As show n in th e la s t tw o colum ns of th e ta b le , flocculation reduced th e a m o u n t of se ttle m e n t a t all co n cen tratio n s.

T h e a m o u n t of s e ttle m e n t is influenced b y th e co n c e n tra tio n of th e flocculating a g en t. T h is is deduced from d a ta such as th e following o b ta in e d b y th e w rite r.8

T A B L E 2— S E D IM E N T A T IO N O F P U LV E R IZ E D S IL IC A IN L IM E -W A T E R (60 ml of solution per 100g of silica)

Initial C oncentration of Ca(O H )2 in Mixing W ater

R ate of Settlem ent cm /sec x 106

F inal Settlem ent per U nit of Origi­

nal Height, %

14 satu rate d solution 58 10

satu rate d solution 53 5

satu rate d solution 53 • 1

S te in o u r9 in te s ts on a n o th e r silica-pow der observed sim ilar b u t less p rono u n ced effects, th e se ttle m e n t being 12 an d 19 p er cen t for s a tu ra te d a n d 1 /6 -s a tu ra te d solutions, respectively, w ith th e in itia l fluid c o n te n t a t 60 p e r cent.

R e su lts of som e experim ents w ith p o rtla n d cem en t are given in Fig. 1.

T h is show s th e volum es of sed im en t form ed from d ilu te suspensions (in itial flu id -c o n ten t 86 p er ce n t b y volum e) of cem ent in v ario u s m ix­

tu re s of eth y l-alco h o l (d en a tu red ) an d w ater, ran g in g from all w a te r to all alcohol. One p o in t rep re se n ts th e resu lts o b tain ed in p u re toluene.

T h e ad d itio n of alcohol u p to a b o u t 50 p er cen t b y volum e increased th e sed im e n tatio n -v o lu m e;* hig h er co n c en tratio n s of alcohol reduced th e volum e, finally to a p o in t below t h a t for w a te r alone. All suspensions w ere flocculated to th e e x te n t t h a t no se p a ra tio n of p article sizes could be observed, except th e one in s tra ig h t alcohol. I n th e la tte r, m o st of th e cem en t s e ttle d o u t quickly, th e larg e st p article s co n c e n tra tin g to w ard th e b o tto m of th e sed im en t while th e v e ry finest flour rem ain ed in sus­

pension, even a fte r 24 hours, p ro b a b ly because of B row nian m otion.

* D efin ed a s th e r a tio of b u lk v o lu m e of th e se d im e n t to th e so lid v o lu m e of th e p articles.

(24)

Fig. 1— Sedim entation v o l­

umes o f cement in a lc o h o l- water solutions and in pure toluene. — Period o f settle­

ment 24 hours, except as noted.

C em ent 1 5 7 5 4

I t is reaso n ed t h a t in se ttlin g from d ilu te suspensions th e p a rtic le - flocs, in m ak in g c o n ta c t w ith th e sed im en t, te n d to fo rm arch es or b rid g es enclosing re la tiv e ly larg e spaces w hich c o n trib u te to th e b u lk i­

ness of th e sed im e n t.10’11 T h e g re a te r th e e x te n t to w hich such arch es are able to w ith s ta n d th e pull of g ra v ity , th e g re a te r w ill be th e final v o lu m e of th e sed im en t. I t seem s reaso n ab le to assum e t h a t th e g re a te r th e in te rp a rtic le a ttr a c tio n th e g re a te r th e s tre n g th of th e arch es a n d th e b u lk of th e sed im en t. T herefore, th e fa c to rs t h a t c o n tro l in te rp a rtic le a ttra c tio n should co n tro l se d im e n ta tio n volum e.

T h e rev ersal in th e slope of th e cu rv e of Fig. 1 can be a c c o u n te d for as follow s:* T h e in te rp a rtic le force in a n y given suspension is d e te rm in e d b y th e k in d a n d c o n c e n tra tio n of su b stan ces in so lu tio n a n d b y th e force of ad h esio n b e tw e en th e p a rticles a n d th e liq u id m ed iu m . E le c tro ly te s in so lu tio n or c e rta in ty p e s of organic m olecules te n d to m ak e th e p a rtic le s e le c tro sta tic ally rep elle n t. (U n d e r m o st circu m stan ces th e ele c tro ­ s ta tic rep u lsio n is a t a m ax im u m a t v e ry low e le c tro ly te co n c e n tra tio n s.) Also, th e adh esio n of th e liq u id to th e surface a n d th e a d so rp tio n of ions o r m olecules fro m th e so lu tio n b y th e surface te n d to cancel som e of th e p a rtic le s’ surface energy, th e surface en erg y bein g th e source of th e force of a ttr a c tio n b etw een th e p articles. W h en alcohol is a d d ed , it a p p a r e n tly reduces th e force of adhesion f b etw een th e w a te r a n d th e c em en t p a rticles

* T h is e x p la n a tio n is n ec essarily sp e c u la tiv e , sin ce specific d a t a o n in te r p a r tic le forces in th is s y ste m a re la c k in g . O th e r e x p la n a tio n s ca n b e d ev ised .

tT h is is d ire c tly in d ic a te d b y th e f a c t t h a t th e h ig h e r th e alco h o l c o n te n t, th e lo w er th e d ie lectric c o n s ta n t of th e s o lu tio n . See R ef. 4.

(25)

SHOULD PORTLAND CEMENT BE DISPERSED?

a n d th u s increases th e n e t force of a ttra c tio n . A t th e sam e tim e, th e a d d itio n of alcohol decreases th e so lu b ility of th e cem en t c o n stitu e n ts a n d th u s favors a n increase in e le ctro sta tic repulsion, a change te n d in g to offset th e effect of th e decrease in th e force of adhesion betw een liquid a n d solid. E v id e n tly , from Fig. 1, one effect is p re d o m in a n t a t low alcohol co n c e n tra tio n an d th e o th e r effect is p re d o m in a n t a t high con­

c e n tra tio n .

T hese d a ta d e m o n stra te t h a t th e forces of in te rp a rtic le a ttra c tio n in ce m e n t-w a ter p a ste are n o t as high as th e y m ig h t be a n d t h a t if a change in th e force of flocculation is desired, it could be e ith e r an increase or a decrease, according to choice.

T e sts w ith v ario u s dispersing a g en ts for p o rtla n d cem en t show t h a t th e y pro d u ce a co n d itio n sim ilar to t h a t found w ith cem en t alone in p u re alcohol, b u t only in v e ry d ilu te suspensions. U sed in concretes or p astes in p ro p o rtio n s recom m ended for field use, th e y do n o t cause such dis­

p ersio n ; th e p a ste s clearly show th e effects of in te rp a rtic le a ttra c tio n . T h e re is evidence, how ever, t h a t th e se ag en ts w eaken th e forces of a ttra c tio n .

Effect o f flo ccu la tio n on rate of sedimentation

T h e effect of flocculation on th e r a te of se d im e n ta tio n is illu stra te d in F ig. 2. T h e curve illu stra te s th e follow ing general rule:

I n dilute suspensions, flocculation increases th e r a te of sedim en­

ta tio n over th e av erag e for th e dispersed m a te ria l; in concentrated suspensions flocculation decreases th e ra te .

P o rtla n d cem en t p a ste s as used in p rac tic e m a y be classed as con­

c e n tra te d suspensions; accordingly, they settle (bleed) more slowly than they would i f the 'particles were dispersed.

A t h ig h d ilu tio n , flocculation increases th e ra te of sed im e n ta tio n b e­

cause th e d isplaced w a te r is able to flow m o stly a ro u n d th e floes, each floe a c tin g m u ch like a single large p article . B u t a t som e sufficiently h ig h p a rtic le -c o n c e n tra tio n th e p articles form a flo c-stru ctu re so con­

tin u o u s t h a t th e d isplaced w a te r can flow only th ro u g h th e flo c-stru ctu re itself. I n an in te rm e d ia te range, th e flow is p a rtly a ro u n d an d p a rtly th ro u g h th e floes, a co n d itio n giving rise to “ channeled b leed in g .” 13

T h e a c tu a l co n d itio n s in a n o rm a l cem en t p a ste seem to be a b o u t as follow s: F ro m consid eratio n s a lre ad y discussed, i t seem s t h a t before or d u rin g th e process of flocculation th e cem en t p articles becom e co ated w ith h y d ra te s a n d th e co atin g acquires a lay er of ad so rb ed w a te r an d ions. T h e p a rticles a re so" c o n c e n tra ted t h a t w hen flocculation occurs they do not draw together into discrete groups b u t th e y form a co n tin u o u s netw o rk . T h e bo n d s of th e n etw o rk are, it w ould be im agined, a t p o in ts

(26)

Fig. 2 - Effect o f flo ccu la ­ tio n on rate o f settlement as influenced b y concentra­

tion o f solids.

(F ro m R e f. 2 b )

on a d ja c e n t p a rtic le s t h a t w ould be in c o n ta c t w ere i t n o t for th e stro n g ly a tta c h e d a d so rb e d layer.

T h is conclusion is re q u ire d b y a t le a st th re e co n d itio n s:

(1) T h e n a tu r e of th e re la tio n sh ip b etw een changes in w a te r c o n te n t a n d corresponding changes in th e ra te of bleed in g is such as to show t h a t a change in w a te r c o n te n t causes a ch ange in th e spacin g of th e n e tw o rk ; t h a t is, th e effect is not t h a t of ch an g in g th e spacin g b etw een clu sters of p articles.

(2) S te in o u r’s ex p erim en ts show ed t h a t th e viscous re sistan ce to se d im e n ta tio n involves th e sam e a m o u n t of p a rtic le su rface w hen th e p a rtic le s are flocculated as w hen th e y are n o t flocculated.

(3) M e a su re m e n ts of h y d ro s ta tic p ressu re in c em e n t p a ste s show ed t h a t th e p a rtic les in a fresh p a ste are s u p p o rte d e n tire ly b y th e liq u id ; t h a t is, none of th e ir w eig h t is tra n s m itte d to th e b o tto m of th e vessel th ro u g h p o in t-to -p o in t co n tacts.

P o in ts (1) a n d (2) show t h a t th e particle's c a n n o t exist as se p a ra te floes. P o in t (3), s u p p o rte d b y (1), show s t h a t th e p a rtic le s are n o rm a lly su rro u n d e d w ith w ater.

Cytaty

Powiązane dokumenty

The Report of the Jo in t Committee on Standard Specifications for Concrete and Reinforced Concrete submitting &#34;Recommended Practice and Standard Specifications

The Report of the Joint Committee on Standard Specifications for Concrete and Reinforced Concrete submitting “ Recommended Practice and Standard Specifications for

gate and to cement, do no t perm it satisfactory prediction of the quality of concrete. F or exam ple,' tests on crushed quartz reveal how strong, im permeable,

This heavily armored surface vastly increases the d u rability of concrete floors,/ so th a t M asterplate concrete floors have been adopted in many industries

R esults sim ilar to those of the m ortar bars were obtained in freezing and thaw ing tests of larger concrete specimens.. T he cycle used in these studies was

gates can usually be secured, however. The engineers of Brazil have organized th e Brazilian Association of Engineering Codes and this group has issued the six

ican Concrete Institute, 7400 Second Boulevard, De­.. troit 2,

Construction joint procedure, lightweight aggregate concrete and mix control, handling, placing and vibration practice, curing, testing and repair problems are