• Nie Znaleziono Wyników

Towards an UV fixed point in CDT gravity

N/A
N/A
Protected

Academic year: 2022

Share "Towards an UV fixed point in CDT gravity"

Copied!
18
0
0

Pełen tekst

(1)

P u b l i s h e d f o r S IS S A b y S p r i n g e r R eceiv ed : June 17, 2019

A c c e p te d : July 9, 2019 P u b lish e d : July 29, 2019

Towards an UV fixed point in C D T gravity

J . A m b j 0 r n , b,c J . G i z b e r t - S tu d n i c k i, " A. G orlich," J. J u rk ie w ic z " a n d D. N e m e t h "

a The M. Sm oluchow ski In stitu te o f Physics, Jagiellonian U niversity, Lojasiew icza 11, Kraków, P L 30-348, Poland

bThe N iels B o h r In stitu te, Copenhagen U niversity, B legdam svej 17, D K 2100 Copenhagen, D enm ark cIM A A P , Radboud U niversity,

P O B o x 9010, N ijm egen, The N etherlands

E -m a il: ambjorn@nbi.dk, jakub.gizbert-studnicki@uj.edu.pl, andrzej.goerlich@uj.edu.pl, jerzy.jurkiewicz@uj.edu.pl, dnemeth@th.if.uj.edu.pl

A b s t r a c t : C D T is a n a tte m p t to fo rm u la te a n o n -p e rtu rb a tiv e la ttic e th e o ry o f q u a n tu m g ravity. W e d esc rib e th e p h a se d ia g ra m a n d a n a ly se th e p h a se tra n s itio n b etw e en p h ase B a n d p h a se C (w hich is th e an a lo g u e of th e d e S itte r p h a se o b serv ed for th e sp h eric al s p a tia l to p o lo g y ). T h is tra n s itio n is accessible to o rd in a ry M o n te C arlo sim u la tio n s w hen th e to p o lo g y of space is to ro id a l. W e find t h a t th e tra n s itio n is m o st likely first o rd e r, b u t w ith u n u su a l p ro p e rtie s. T h e en d p o in ts of th e tra n s itio n line a re c a n d id a te s for second o rd e r p h a se tra n s itio n p o in ts w h ere a n U V c o n tin u u m lim it m ig h t exist.

K e y w o r d s : L a ttic e M odels o f G rav ity , L a ttic e Q u a n tu m F ie ld T heo ry, M odels of Q u a n ­ tu m G ra v ity

A r X i v e P r i n t : 1906.04557

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(2)

C o n te n ts

1 I n tr o d u c tio n 1

2 T h e p h a s e s tr u c tu r e o f C D T 5

3 O rd er p a r a m e te r s 9

4 C o n c lu s io n a n d d is c u ss io n 13

1 In tr o d u c tio n

Since th e m id d le o f la st c e n tu ry p h y sicists have b een p u rs u in g th e id ea of u nify in g th e four fu n d a m e n ta l in te ra c tio n s, th e stro n g , th e w eak, th e e le c tro m a g n e tic a n d th e g ra v ita tio n a l in te ra c tio n s. T h e fram ew o rk o f Q u a n tu m F ie ld T h e o ry (Q F T ) unified th e first th re e of th e m in th e so-called S ta n d a rd M odel. In c lu d in g g ra v ity re m a in s an u n so lv ed p ro b lem in a Q F T c o n te x t.1 D ifficulties a p p e a r w h en on e trie s to fo rm u la te a q u a n tu m v ersio n of E in s te in 's th e o ry of G e n e ra l R e la tiv ity . T h e naive q u a n tiz a tio n lead s to a p e rtu r b a tiv e ly n o n -re n o rm a liz a b le th e o ry w hich c a n n o t b e sim p ly in clu d ed in th e unified m odel of all in te ra c tio n s. T h e id ea of a s y m p to tic safety in tro d u c e d by W ein b erg [1] is a n a tte m p t to fo rm u la te a n o n -p e rtu rb a tiv e Q F T o f g ravity. I t assum es t h a t th e re n o rm a liz a tio n g ro u p flow in th e b a re co u p lin g c o n s ta n t space leads to a n o n -triv ia l fin ite-d im en sio n al u ltra v io le t fixed p o in t a ro u n d w hich a new p e r tu r b a tiv e e x p a n sio n c a n be c o n s tru c te d w hich leads to a p re d ic tiv e q u a n tu m th e o ry of g rav ity . T h e so-called E x a c t R e n o rm a liz a tio n G ro u p p ro g ra m [2- 6] h as trie d to e s ta b lish th e ex isten c e of such a fixed p o in t w ith a fa ir a m o u n t o f success, b u t relies in th e end, d e sp ite th e n am e, on tr u n c a tio n o f th e re n o rm a liz a tio n g ro u p eq u a tio n s. T h u s it w ould b e re a ssu rin g if o th e r n o n -p e rtu rb a tiv e Q F T ap p ro ach e s cou ld confirm th e e x a c t re n o rm a liz a tio n g ro u p resu lts.

L a ttic e Q F T is such a n o n -p e rtu rb a tiv e fram ew o rk a n d it is well su ite d to d ea l p re ­ cisely w ith th e s itu a tio n w h ere one id entifies fixed p o in ts, since th e s e a re w h ere o ne w a n ts to re ach c o n tin u u m physics by scaling th e la ttic e sp ac in g to zero in a w ay w h ich keeps physics fixed. It h as b ee n very successful p ro v id in g us w ith re su lts for Q C D w h ich are n o t accessible v ia p e r tu r b a tio n th eo ry . T h e re e x ists a n u m b e r of la ttic e Q F T of g ravity. O n e of th e m , th e so-called D y n a m ic a l T ria n g u la tio n (D T ) fo rm alism [7- 12] h as p ro v id ed us w ith a

“p ro o f o f c o n c e p t” , in th e sense t h a t it h as show n us, in th e case o f tw o -d im en sio n al q u a n ­ tu m g ra v ity [13- 16], t h a t th e c o n tin u u m lim it of th e la ttic e th e o ry of g ra v ity co u p led to co n fo rm al field th e o rie s agree w ith th e co rre sp o n d in g c o n tin u u m th e o rie s. O f co u rse th e re a re no p ro p a g a tin g g ra v ita tio n a l degrees o f freedo m in tw o d im en sio n s, b u t th e m a in issue

1 Going beyond conventional Q FT, string theory provides us with a theory unifying the interaction of m atter and gravity. Likewise loop quantum gravity uses concepts beyond conventional QFT.

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(3)

w ith th e la ttic e re g u la riz a tio n is w h e th e r o r n o t d iffeo m o rp h ism in v aria n ce is recovered w h en th e la ttic e sp ac in g goes to zero. T h a t is th e case in th e D T fo rm alism , a n d for th e

scaling d im en sio n s o b ta in e d also in th e co n tin u u m , i.e. scaling d im en sio n s w hich are differ­

e n t from th e ones in flat s p a c e tim e (th e so-called K P Z scalin g [17- 19]). T h e D T fo rm alism w as e x te n d e d to h ig h er d im e n sio n a l g ra v ity [20- 27], b u t th e re it w as less successful [2 8 , 29].

I t is n o t ru led o u t t h a t th e th e o ry c a n p ro v id e us w ith a successful v ersio n of q u a n tu m g ravity, b u t if so th e fo rm u la tio n h as to be m o re e la b o ra te th a n th e first m o dels (see [30- 33]

for re cen t a tte m p ts ) . H ow ever, th e re is on e m o d ificatio n o f D T w hich seem s to w ork in th e sense t h a t la ttic e th e o ry m ig h t have a n o n -triv ia l c o n tin u u m lim it, th e so-called C a u sa l D y ­ n a m ic a l T ria n g u la tio n s m od el (C D T ). T h e m od el is m o re c o n s tra in e d th a n th e D T m odels b ec au se one assum es g lo bal h y p erb o lic ity , i.e. th e ex isten c e of a g lo bal tim e fo liatio n .

T h e C D T m o d el o f fo u r-d im e n sio n a l q u a n tu m g ra v ity is realized by co n sid erin g piece­

w ise lin e a r sim plicial d is c re tiz a tio n s o f sp ac e-tim e. T h e sim p licial b u ild in g blocks c a n be glu ed to g e th e r, sa tisfy in g th e b asic to p o lo g ic al c o n s tra in ts of g lo bal h y p e rb o lic ity (as m en ­ tio n e d ) a n d a sim plicial m an ifo ld s tru c tu re . T h e q u a n tu m m od el is now defined usin g th e F e y n m a n p a th in te g ra l fo rm alism , su m m in g over all such g eo m etrie s w ith a s u ita b le a c tio n to b e defined below . T h e s p a tia l U niv erse w ith a fixed to p o lo g y evolves in p ro p e r tim e.

G e o m e tric s ta te s a t a fixed valu e of th e (d iscrete) tim e a re tria n g u la te d , u sin g re g u la r th re e -d im e n sio n a l sim plices ( te tra h e d ra ) g lu ed alon g tria n g u la r faces in all p o ssib le w ays, c o n s iste n t w ith topology. T h e co m m o n le n g th of th e edges o f s p a tia l links is a ssu m ed to b e a s . T e tra h e d ra a re th e bases of fo u r-d im e n sio n a l { 4 ,1 } a n d {1 ,4 } sim plices w ith fo u r v ertic es a t tim e t co n n e c te d by tim e links to a v e rte x a t t ± 1. All tim e edges a re assu m ed to h ave a u n iv ersa l le n g th a t . To c o n s tru c t a fo u r-d im e n sio n a l m an ifold o ne need s tw o a d d itio n a l ty p e s o f four-sim plices: {3 ,2 } a n d {2 ,3 } (h a v in g th re e v ertic es a t tim e t an d tw o v ertices a t t ± 1). T h e s tr u c tu r e d e sc rib e d ab o v e p e rm its for every c o n fig u ra tio n th e a n a ly tic c o n tin u a tio n b etw e en im a g in a ry at (L o re n tz ia n sig n a tu re ) a n d re al at (E u c lid e a n sig n a tu re ). E v en a fte r W ick ro ta tio n th e o rie n ta tio n of th e tim e axis is re m e m b ered . T h e sp a tia l a n d tim e links m ay have a d ifferen t le n g th , a n d a re re la te d by a a 2 = a 2. T h e q u a n tu m a m p litu d e b etw e en th e in itia l an d final g eo m etric s ta te s s e p a ra te d by th e in teg er tim e T is a w eig h ted sum over all sim plicial m an ifo ld s c o n n e c tin g th e tw o s ta te s . In th e L o re n tz ia n fo rm u la tio n th e w eight is a ssu m ed to b e given by a d iscre tiz ed versio n of th e H ilb e rt-E in s te in ac tio n .

w h ere [g] d e n o te s a n eq u iv ale n t class o f m e tric s a n d Dm [g] is th e in te g ra tio n m e a su re over n o n eq u iv ale n t classes o f m etrics. A piecew ise lin e a r m anifo ld w h ere we have specified th e le n g th of links defines a g e o m e try w ith o u t th e need to in tro d u c e c o o rd in a te s. In th e C D T a p p ro a c h th e in te g ra tio n over eq u iv ale n t classes of m e tric s is th u s re p la ced by a su m m a tio n over all tria n g u la tio n s T satisfy in g th e c o n s tra in ts . A fte r a W ick ro ta tio n th e a m p litu d e becom es a p a r titio n fu n c tio n

co n fo rm al field th e o rie s living o n th e la ttic e o ne o b ta in s p recisely th e n o n -triv ia l critic a l

( 1 . 1)

Zc d t = ^ e ,

T

( 1 .2)

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(4)

w h ere Sr is a s u ita b le form o f th e E in s te in -H ilb e rt a c tio n o n piecew ise lin e a r geo m etries.

T h e re e x ists such a n ac tio n , w hich even h as a nice g eo m etric in te rp re ta tio n , th e so-called R egge a c tio n Sr for piecew ise lin e a r g eo m etrie s [34]. In o u r case it becom es v ery sim ple b ec au se we h ave o n ly tw o k in d s of fo ur-sim plices w hich we glu e to g e th e r to form o u r piecew ise lin e a r fo u r-m an ifo ld :

Sr = - ( K o + 6A ) ■ No + K4 ■ (N41 + N32) + A ■ N4 1, (1.3) w h ere N 0 is th e n u m b e r o f v ertic es in a tria n g u la tio n T , N 41 a n d N 32 a re th e n u m b e rs of {4 ,1 } p lu s { 1 ,4 } a n d { 3 ,2 } plus { 2 ,3 } sim plices, resp ectiv ely . T h e a c tio n is p a ra m e triz e d by a set of th re e dim en sio n less b a re co u p lin g c o n s ta n ts , K 0, re la te d to th e inverse g ra v ita ­ tio n a l c o n s ta n t, K 4 — th e d im en sio n less cosm ological c o n s ta n t a n d A — a fu n c tio n of th e p a r a m e te r a , th e ra tio of th e s p a tia l a n d tim e edge len g th s (for a d e ta ile d discu ssio n we refer to [35] a n d to th e m o st re cen t review [36] a n d fo r th e o rig in al lite ra tu re to [3 7 , 38]).

T h e a m p litu d e is defined for K 4 > K 4rit a n d th e lim it K 4 ^ K 4rit c o rre sp o n d s to a (d is­

c re te ) in fin ite v olum e lim it. In th is lim it, th e p ro p e rtie s of th e m o del d e p e n d on values o f th e tw o re m a in in g co u p lin g c o n s ta n ts . T h e m o d el w as ex ten siv e ly s tu d ie d in th e case, w h ere th e s p a tia l to p o lo g y w as a ssu m ed to b e sp h eric al ( S 3) [39- 45]. T h e m o d el could n o t b e solved a n a ly tic a lly a n d th e in fo rm a tio n a b o u t its p ro p e rtie s w as o b ta in e d u sin g M o n te C arlo sim u la tio n s. I t w as fo u n d t h a t th e m o d el h as a su rp risin g ly rich p h a se s tru c tu re , w ith fo u r d ifferent phases. T h e m o st in te re stin g am o n g th e fo u r p h ases is p h a se C, w h ere th e m o d el d y n a m ic a lly develops a sem iclassical b a c k g ro u n d g e o m e try w hich in som e re sp e c t is like (E u c lid e an ) de S itte r geo m etry , i.e. like th e g e o m e try o f S 4. B o th th e sem iclassical vol­

u m e d is trib u tio n a n d flu c tu a tio n s a ro u n d th is d is trib u tio n c a n be in te rp re te d in te rm s o f a m in isu p e rsp a c e m o d el [46- 49]. F or in cre asin g K 0 p h a se C is b o u n d e d by a first-o rd e r p h ase tra n s itio n to p h a se A, w h ere th e tim e c o rre la tio n b etw e en th e co n secu tiv e slices is a b se n t.

F o r sm aller A p h a se C h as a p h a se tra n s itio n to a so-called b ifu rc a tio n p h ase , w h ere one ob serves th e a p p e a ra n c e of local c o n d e n sa tio n s of g e o m e try a ro u n d som e v ertices o f th e tr ia n g u la tio n [50- 53]. T h e p h a se tra n s itio n is in th is case of seco nd o r h ig h er o rd e r. F o r still low er A th e b ifu rc a tio n p h a se is linked w ith th e fo u rth ph ase, th e so-called B p h ase, w h ere o ne observes a sp o n ta n e o u s co m p a c tific a tio n of v olum e in th e tim e d ire c tio n , such t h a t effectively all v olum e con d en ses in on e tim e slice. T h e p h a se tra n s itio n b etw e en th e b ifu rc a tio n p h a se a n d th e B p h a se is also of second o r h ig h er o rd e r [44]. T h e b e h a v io r o f th e m odel n e a r co n tin u o u s p h a se tra n s itio n s is c ru cial if one w a n ts to define a ph ysical larg e-v o lu m e lim it (a carefu l discu ssio n of th is c a n b e fo u n d in [54]). In th is re sp e c t p h a se C s ta n d s o u t, th e re a so n b ein g t h a t o n ly in th is p h a se th e larg e scale s tr u c tu r e o f th e average g e o m e try is “o b se rv e d ” (v ia th e M o n te C arlo sim u la tio n s) to b e fo u r-d im e n sio n a l, iso tro p ic a n d hom ogeneous, a n d one c a n define a n in fra re d sem iclassical lim it w ith a c o rre c t scaling o f th e p h y sical v olum e [4 2 , 46]. V ia p h a se C we th u s w a n t a re n o rm a liz a tio n g ro u p flow in th e b a re co u p lin g c o n s ta n t space to w a rd s an U V fixed p o in t (th e a s y m p to tic safety fixed p o in t), w hile keeping p hysical ob serv ab les fixed. T h e n a tu r a l e n d p o in t o f such a flow w ould b e a p o in t in th e p h a se d ia g ra m w h ere several p h ases m eet. In th e e a rly stu d ie s it w as s p e c u la te d t h a t th e re could be a q u a d ru p le p o in t, w h ere all fo u r p h ase s m eet. U n fo rtu ­ n a te ly th e n u m eric al a lg o rith m used w as n o t efficient in th is m o st ph ysically in te re stin g

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(5)

F i g u r e 1. T h e phase stru c tu re of C D T for a fixed n u m b er of tim e slices T = 4 an d average lattice volum e N4 1 = 160k. B lue color rep resen ts th e b ifurfaction phase, black color th e crum pled phase, green color th e C phase an d orange color th e A phase.

ra n g e in th e co u p lin g c o n s ta n t space. As a con seq u en ce it w as n o t p o ssib le to an a ly z e th e m o d el in th is range.

T h e p re se n t a rtic le discusses a new fo rm u la tio n of th e m o d e l, w h ere th e s p a tia l to p o lo g y is assu m ed to be t h a t of a th re e -to ru s ( T 3) [55- 57], r a th e r th a n t h a t o f a th re e -s p h e re , w hich w as th e to p o lo g y used in all th e fo rm e r stu d ie s. I t w as fo u n d t h a t th e fo u r p h ase s in th is case a re th e sam e as in th e sp h eric al m od el, w ith th e p o s itio n of p h a se b o u n d a rie s sh ifted a l i ttle.2 T h e a d d itio n a l, im p o rta n t b o n u s in th is new fo rm u la tio n com es from th e fa ct t h a t th e p h y sically in te re stin g regio n in th e b a re co u p lin g c o n s ta n t space m e n tio n e d above becom es n u m eric ally accessible w ith th e s ta n d a r d a lg o rith m used in th e ea rlie r stu d ies. W e cou ld th e n observe t h a t th e sp e c u la tiv e q u a d ru p le p o in t, m a y b e n o t su rprisin gly, s e p a ra te s in to tw o trip le p o in ts, co n n e c te d by a p h a se tra n s itio n line b etw e en p h a se C a n d th e B ph ase , a n d n o t s e p a ra te d by th e b ifu rc a tio n p h a se (see figure 1) . A n im p o rta n t p o in t is t h a t we now have access to th e s e trip le p o in ts d ire c tly fro m p h a se C a n d it is th u s possible to have a re n o rm a liz a tio n g ro u p flow from th e in fra re d to th e p o te n tia l U V fixed p o in t e n tire ly in th e “p h y sical” C phase.

T h e p h ases of th e m od el w ere id en tified for a sy ste m w ith N41 = 160k, a n a ly z in g th e s tr u c tu r e o f g e o m e try a t th e g rid o f p o in ts in th e co u p lin g c o n s ta n t p lan e show n in figure 1, th e d ifferent p h ase s re p re se n te d by d o ts w ith d ifferen t colors. In th e p re se n te d p h a se d ia g ra m th e p recise p o sitio n of p h a se tra n s itio n s w as n o t d e te rm in e d . T h is req u ires a carefu l s tu d y of th e in fin ite v o lum e lim it a n d scalin g of th e p o sitio n o f p h a se tra n s itio n

2This may be a finite-size effect. The diagram was determined by analyzing systems with only one volume.

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(6)

lines w ith th e la ttic e volum e. T h e m o st in te re stin g regio n is th e one s e p a ra tin g p h a se C a n d B w h ere we m ay observe tw o trip le p o in ts. T h e p re se n t p a p e r is th e first ste p in th e a n a ly sis of th is m o st p h y sically in te re stin g region. W e will p erfo rm a d e ta ile d an a ly sis of th e b e h a v io r of th e m odel a t K0 = 4.0 in th e n e ig h b o rh o o d of th e p h a se tra n s itio n line. W e w ill t r y to d e te rm in e th e o rd e r of th e p h a se tra n s itio n a t th is p o in t. W e will show t h a t th e tra n s itio n seem s to b e a first o rd e r tra n s itio n . T h e re s u lts p re se n te d in th is a rtic le show t h a t th e m o st in te re stin g region in th e b a re p a r a m e te r sp ace c a n successfully b e an a ly zed u sin g th e s ta n d a r d M o n te C arlo a lg o rith m u sed in th e e a rlie r sim u la tio n s.

2 T h e p h a se s tr u c tu r e o f C D T

A s m e n tio n e d , th e p h a se d ia g ra m of th e C D T m o del w ith a to ro id a l s p a tia l to p o lo g y p e r­

m its us to in v e stig a te th e p ro p e rtie s o f th e m od el in a n im p o rta n t ra n g e o f th e b a re co u p lin g c o n s ta n ts , p re v io u sly inaccessible to n u m eric al m e a su re m e n ts. F o r sy stem s w ith a sp h eric al s p a tia l to p o lo g y a d e ta ile d an a ly sis o f th e p h a se d ia g ra m w as p e rfo rm e d follow ing tw o lines in th e b a re co u p lin g c o n s ta n t space. T h e se w ere th e v e rtic a l line w ith v ary in g A a t K0 = 2.2 a n d th e h o riz o n ta l line a t A = 0.6. In th e first case it w as p o ssible to an a ly z e th e p h ase tra n s itio n b etw e en C a n d b ifu rc a tio n p h ases a n d b etw e en th e b ifu rc a tio n a n d B p h ases. In th e second case a tra n s itio n b etw e en th e C a n d A p h ases w as s tu d ie d (see [58] for re c e n t re­

su lts). T h e belief com ing from th e an a ly sis of th e sp h eric al case w as t h a t if we d ec rea se th e value of A for a fixed value of K0 we n ecessarily m ove from C p h a se to th e b ifu rc a tio n p h ase a n d only, for still lower A , to th e B ph ase. H ow ever, ch a n g in g to to ro id a l s p a tia l to p o lo g y we d iscovered t h a t th is is n o t th e case, p ro b a b ly also in th e sp h eric al topolog y. T h e re exists a ra n g e of b a re co u p lin g c o n s ta n ts w h ere C a n d B p h ases are d ire c tly n eig h b o rin g . T h is h a p p e n s close to th e A = 0 line in th e ra n g e o f K0 b etw een , ap p ro x im a te ly , 3.5 a n d 4.5.

O ne m ay ex p e c t th e ex isten c e of tw o trip le p o in ts (in ste a d of th e p re v io u sly co n je c tu re d q u a d ru p le p o in t): one trip le p o in t w h ere C, A a n d B p h ase s m eet, an d a seco nd trip le p o in t w h ere C, b ifu rc a tio n a n d B p h ase s m eet. F in d in g th e p recise lo c a tio n of th e trip le p o in ts m ay b e n u m eric ally m o re difficult th a n a n a ly z in g th e gen eric tra n s itio n b etw e en p h a se C a n d B. As a first s te p in th e d e ta ile d an a ly sis we have chosen to d e te rm in e th e p o sitio n an d th e o rd e r of th e p h a se tra n s itio n b etw e en C a n d B p h ase s alo ng a v e rtic a l line a t K0 = 4.0.

T h is is a p p ro x im a te ly in th e m id d le b etw e en th e p o s itio n of th e tw o trip le p o in ts. Since th e c h a ra c te ris tic b e h a v io r in th e tw o p h ases c o rre sp o n d s to d ifferent sy m m etries o f th e co n fig u ratio n s (we have tr a n s la tio n a l s y m m e try in tim e in th e C p h a se a n d a sp o n ta n e o u s b re a k in g o f th is s y m m e try in th e B p h ase ) we e x p e c t a re la tiv e ly large h y stere sis w h en we cross th e p h a se b o u n d a ry . W e w a n t to find m e th o d s w hich m ak e th e h y stere sis effect as sm all as possible. W e also e x p e c t re la tiv e ly larg e fin ite size effects. A n im p o rta n t p o in t in th e an aly sis w ill be to check how th e h y stere sis beh av es w h en th e sy ste m size goes to infinity.

T h e an a ly sis p re se n te d in th e p a p e r is b ase d o n a s tu d y o f sy stem s w ith a fixed tim e p e rio d T = 4 a n d d ifferen t (a lm o st) fixed volum es N 41. In th e e a rlie r stu d ie s, it w as show n t h a t re d u cin g th e p e rio d T does n o t p ro d u c e significan t fin ite-size effects [58]. O n th e o th e r h a n d , in p a r tic u la r in th e C p h ase, th e av erage v olum e p e r tim e slice for a fixed to ta l v olum e g ets re la tiv e ly large, w h ich is v ery im p o rta n t. In th e M o n te C arlo sim u la tio n s we

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(7)

enforce th e la ttic e v olum e N 41 to flu c tu a te a ro u n d a chosen valu e N 41, so t h a t th e m easu red (N 41) = N 41. T h is is realized by a d d in g to th e R egge a c tio n ( 1.3) a volu m e-fixing te rm

Sr ^ Sr + e(N 41 — N 41)2- (2 -1)

In th e th e rm a liz a tio n p rocess it is esse n tial to fin e -tu n e th e value o f K4 in such a w ay t h a t one g e ts s ta b ility of th e sy stem volum e. T h is is realized by le ttin g th e v alu e of K 4 d y n a m ic a lly ch a n g e by sm all step s, u n til th e re q u ire d s ta b le s itu a tio n is realized. If a value o f K 4 is to o high, we o bserv e t h a t sy stem vo lu m e stab iliz es below th e ta r g e t v alue N 41.

Sim ilarly, if we ta k e it to o sm all, th e v o lu m e w ill b e to o large. O n ly fo r K 4 K4Crit(N41) flu c tu a tio n s of v olum e are ce n te re d a ro u n d N 41 w ith th e w id th co n tro lle d by e. D u rin g th e th e rm a liz a tio n p a r t of th e M o n te C arlo sim u la tio n s th e a lg o rith m trie s to find th e o p tim a l value of K 4 for a given fixed set o f p a ra m e te rs K 0, A a n d N 41. T h e w hole p rocess of m e a su re m e n ts is o rg a n iz ed in th e follow ing way:

• W e s ta r t a sequence of th e rm a liz a tio n ru n s a t a set of A values in th e n e ig h b o rh o o d of th e e x p e c te d p o sitio n o f th e p h a se tra n s itio n . T h e in itia l c o n fig u ra tio n o f th e sy stem is ta k e n to b e th e sm all h y p e r-c u b ic co n fig u ra tio n discu ssed in referen ce [55]. W e choose th e ta r g e t v olum e N 41 a n d let th e sy ste m size grow to w a rd s N 41 a n d a d a p t th e K4 value from th e guessed in itia l value. T h e in itia l K4 c a n b e chosen e ith e r a little below o r a little above th e guessed c ritic a l value.

• W e find t h a t on th e g rid of A values we c a n d e te rm in e ran g es co rre sp o n d in g to th e a p p e a ra n c e of tw o d ifferen t phases, w ith a re la tiv e ly s u d d e n ju m p b etw e en th e phases.

In g en e ral th e ju m p is o b served b etw e en tw o n eig h b o rin g values o n th e g rid of A . T h e co rre sp o n d in g values o f K4 are m a rk e d ly d ifferent in th e tw o p hases. T y p ica lly th e value is sm aller for th e C p h a se t h a n for th e B ph ase. W e c a n d e te rm in e th e p h a se of th e sy stem by th e m e a su re d values o f th e o rd e r p a ra m e te rs (see la te r for d efin itio n s), w hich are very d ifferen t in th e d ifferen t p hases.

• T h e value of A w h ere th e p h a se tra n s itio n is o b serv ed d e p e n d s on th e in itia l value of K 4 used in th e th e rm a liz a tio n process. As a con sequ ence, we ob serv e in g en eral tw o values AfOW(N41) a n d Ah1gh (N 41). B o th values a re d e te rm in e d w ith th e ac c u ra c y d e p e n d in g o n th e g rid o f A .

• W e re p e a t th e an a ly sis o n a finer g rid , w hich covers th e ra n g e w h ere we observed p h a se tra n s itio n s . W e fo u n d th e m o st effective p ro c e d u re is to r e s ta r t th e M o n te C arlo e v o lu tio n from th e sam e sm all in itia l c o n fig u ra tio n as before, b u t usin g as th e in itia l values of K4 th e ones d e te rm in e d for th e C o r th e B p h a se from e a rlie r ru n s in th e n e ig h b o rh o o d o f th e tra n s itio n s , co rre sp o n d in g to A£11W(N41) o r Ahigh (N 41) respectively.

• A finer g rid p e rm its to d e te rm in e th e tw o p o sitio n s of th e p h a se tra n s itio n w ith b e t te r accuracy. T h e d ifferen t p o sitio n of ju m p s b etw e en th e tw o p h ase s (low or h ig h ) c a n b e in te rp re te d as th e h y stere sis effect in a p rocess w h ere we slowly in crease th e value of th e A p a r a m e te r o r slow ly d ec rea se its v alue. W e observe th a t the size

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(8)

A

F i g u r e 2. T he p lo t illu stra te s th e hysteresis m easured d u rin g sim ulations for th e ta rg e t volum e NN4i = 160k. T he green an d blue d o ts correspond to th e location of th e phase C side of th e p h ase-tran sitio n , while th e red an d black d o ts correspond to th e location of th e p hase B side of th e p h ase-tra n sitio n . T he sam e colors will be used in th e n e x t plots, w here we com pare resu lts for different volumes.

o f the h ystere sis fo r a p a rtic u la r choice o f IV41 does n o t decrease w ith in reasonable th e rm a liza tio n tim e s. B y ta kin g a fin e r g rid in A we can on ly d e te rm in e the en d p o in ts o f a h ystere sis curve w ith a better accuracy. W e illu s tra te th e s itu a tio n in figure 2 . T h e lines show n w ere o b ta in e d from th e m e a su re d values of A an d K4 for N41 = 160k.

• In th e ra n g e of A values b etw e en AfOW(N41) a n d Ah1jgth(N 41), d e p e n d in g on th e in itia l value of K4 a sy stem en d s e ith e r in th e B o r C p h ase . T h is c a n b e in te rp re te d as a ra n g e o f p a ra m e te rs , w h ere th e tw o p h ases m ay co e x ist. T h e d is trib u tio n of th e values of th e o rd e r p a ra m e te rs (to be d efin ed below ), c h a ra c te ris tic for th e tw o phases, is very n arro w . As a co nsequ ence, a tu n n e llin g b etw e en th e tw o p h ases is nev er o b serv ed a fte r we have re ach ed a “s ta b le ” en sem b le of co n fig u ratio n s in th e th e rm a liz a tio n stage.

T h e th e rm a liz a tio n p a th chosen abo v e m ean s in p ra c tic e , t h a t in th e b eg in n in g , th e sy ste m grow s in a re la tiv e ly ra n d o m w ay from th e in itia lly sm all c o n fig u ra tio n to th e d esired ta r g e t v olum e IV41 a n d th e g e o m e try evolves to a s ta b le ra n g e in th e c o n fig u ra tio n space.

T h e first s te p c a n b e in te rp re te d as a s te p in th e d ire c tio n ty p ic a l for th e p h a se A, w here c o rre la tio n s b etw e en th e s p a tia l co n fig u ratio n s in th e co n se cu tiv e tim e slices are sm all o r a b s e n t. O n ly a fte rw a rd s we reach th e d o m a in s co rre sp o n d in g to th e tw o p h ases we stud y.

As a con sequence, we ex p e c t t h a t th e d e sc rib e d m e th o d will b e v ery well su ite d to th e fu tu re an a ly sis of th e trip le p o in t involving th e A ph ase.

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(9)

F i g u r e 3. T he pseudo-critical value K 4rlt(N4 1) as a function of A crlt(N4 1). T he d a ta points m easured for increasing la ttic e volum e N4 1 are going from left to rig h t. C en ter of th e black ellipse corresponds to th e e stim a te d p o sitio n of (A crlt(TO), K 4rlt(TO)) and its radii correspond to th e e stim a te d uncertain tie s. Colors of th e fits follow th e convention used in figure 2 .

T h e b e h a v io r of th e p se u d o -c ritic a l values K 4rit(N 41) is v ery s im ila r to t h a t of A crit(N 41). T h is c a n b e seen in figure 3 , w h ere we show th e values of K 4rit(N 41) p lo tte d as a fu n c tio n of A crit(N 41). O n b o th sides o f th e h y stere sis th e d e p e n d e n c e is a p p ro x im a te ly lin ear, w hich m ean s t h a t values o f b o th p se u d o -c ritic a l p a ra m e te rs ( K 4rit a n d A crit) scale in th e sam e w ay w ith th e la ttic e v olu m e N 41. E x tra p o la tin g th e lines to a p o in t w h ere th e y cross p e rm its to d e te rm in e values fo r K 4rit a n d A crit in th e lim it N41 ^ to . T h e fit gives K 4rit(TO) = 1.095 ± 0.001 a n d A crit(TO) = 0.022 ± 0.002. T h e e rro rs o n th is a n d o th e r p lo ts a re th e e s tim a te d s ta tis tic a l erro rs a n d in clu d e th e g rid sp acin g for A .

A lth o u g h th e size of th e h y stere sis sh rin k s w ith v olu m e N 41, th e p lo ts in d ic a te t h a t th e sh rin k in g p rocess is re la tiv e ly slow a n d th u s in o rd e r to g et rid o f th e h y stere sis one sh o u ld use e x tre m e ly large la ttic e volum es, n o t tr a c ta b le nu m erically . T h e d e p e n d e n c e of A crit o n th e la ttic e volum e, ra n g in g b etw e en N41 = 40k an d N41 = 1600k is p re se n te d in figure 4 . As it w as ex p la in e d above, th e p lo t c o n ta in s fo u r sets of d a t a co rre sp o n d in g to th e fo u r d ifferent p o in ts d e sc rib in g th e h y stere sis (see figure 2) . T h e d a t a p o in ts c a n be fitte d w ith th e curve

A crit(N41) = A crit(TO) - A ■ N ~1 / 7. (2.2)

T h e b e st fit for th e co m b in ed sets of d a t a (w ith fixed A crit(TO) = 0.022 d e te rm in e d above) w as o b ta in e d for 7 = 1.64 ± 0.18. A n a lte rn a tiv e fit w ith 7 = 1 (a n d th e sam e valu e of A crit(TO)) is ex c lu d e d as c a n be seen in figure 4 (th e d a sh e d line). T h e value 7 = 1 w ould b e a s tro n g evid en ce for a first o rd e r tra n s itio n . T h e fits w ere b ase d o n d a t a m easu red for v olum es ra n g in g from N41 = 40k to N41 = 720k. T h e la rg e st v olu m e N41 = 1 6 0 0 k w as u sed o n ly for checking c o n sisten cy w ith th e e x tra p o la tio n s T h e an a lo g o u s p lo t p re se n tin g th e fo u r sets of th e p se u d o -c ritic a l K4rit(N 41) values for th e sam e ra n g e of volum es is show n in

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(10)

F i g u r e 4. T he pseudo-critical value A crlt as a function of NN4 1. T h e solid lines are (one p a ram eter) fits of form ula (2.2) w ith fixed com m on values of 7 = 1.64 an d A crlt( w ) = 0.022. Colors of th e fits follow th e convention used in figure 2 . T h e d ash ed line shows a com m on fit of all d a ta p o in ts to th e scaling function (2.2) w ith enforced value of 7 = 1 and A crlt( w ) = 0.0 2 2.

figure 5. T h e e x p e rim e n ta l p o in ts a re a g a in well fitte d by th e fo rm u la

K4Crit(N 4i) = K 4ritM - B ■ N - 1 h , (2.3)

w h ere th e m e a su re d value of 7 = 1.62 ± 0.25 agrees well w ith th e re su lt o b ta in e d for A crit.

T h e fits a re re p re se n te d by curves w ith d ifferen t colors, w hich a g a in follow th e co n v e n tio n used in figure 2 . O n th e scale used in th is p lo t th e g re en a n d b lu e cu rv es p ra c tic a lly o verlap.

3 O rder p a r a m e te rs

To id en tify th e p h ases of C D T w ith to ro id a l s p a tia l to p o lo g y we follow m e th o d s used in th e p re v io u s stu d ie s. T h ese are b ase d o n th e an a ly sis of o rd e r p a ra m e te rs w hich h av e a d ifferen t b e h a v io r in th e differen t ph ases. W e use o rd e r p a ra m e te rs w hich c h a ra c te riz e b o th g lobal a n d local p ro p e rtie s of th e sim plicial m anifolds. T h e g lo bal o rd e r p a ra m e te rs w ere called O 1 a n d O 2, w here

O i = N T ' ° 2 = (3A)

In each p h a se th e d is trib u tio n s of N 0 a n d N 32 a re v ery n arro w , a n d p ra c tic a lly G au ssia n . P h a se s B a n d C are c h a ra c te riz e d by v ery d ifferen t averag e values for th e tw o d is trib u tio n s . T h e d e p e n d e n c e of th e o rd e r p a ra m e te rs O 1 a n d O 2 o n N 41 a t th e e n d p o in ts o f th e h y steresis is p re se n te d in figure 6 . T h e colors follow th e co n v e n tio n u sed in figure 2 .

T h e d a t a p re se n te d o n th e p lo ts co rre sp o n d for each N 41 to th e fo u r v alu es of th e A crit(N 41) p o in ts, follow ing a g a in th e n o ta tio n of figure 2 . I t is seen t h a t a lth o u g h b o th p se u d o -c ritic a l values K 4rit(N 41) a n d A crit(N 41) b eco m e v ery close for in cre asin g N 41, this is n o t the case fo r the order pa ra m eters, w hich in fa c t behave in a w ay sim ila r to th a t

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(11)

F i g u r e 5. T he pseudo-critical value K 4rlt as a function of NN4 1. T he solid lines are (one p ara m eter) fits of form ula (2.3) w ith fixed com m on values of 7 = 1.62 an d K 4rlt( w ) = 1.095. Colors of th e fits follow th e convention used in figure 2.

ch ara cterizin g the fir s t order tra n sitio n . I t m ean s t h a t a tra n s itio n b etw e en th e B an d C p h ases becom es v ery ra p id . O n th e o th e r h a n d , d u e to th e o b serv ed h y steresis, th e m e th o d u se d in th is an aly sis chooses a p o s itio n of m e a su re d values for th e o rd e r p a r a m e te rs slig h tly aw ay from th e tru e tra n s itio n p o in t (lo c a te d in sid e th e h y stere sis region) a n d th u s in fa c t we w ere n o t ab le to p erfo rm s ta b le sim u la tio n s e x a c tly a t K 4rit(N 41) a n d A crit(N 41) co rre sp o n d in g to such a tra n s itio n p o in t.3

A sim ilar b e h a v io r is o b serv ed for th e set o f local o rd e r p a ra m e te rs O3 a n d O4 defined by

O3 = ^ ( n t + 1 - n t ) 2, O4 = m a x op . (3.2)

H ere nt is th e n u m b e r of t e tr a h e d r a s h a re d by {4,1} a n d {1, 4} fo ur-sim plices w ith bases a t tim e t a n d nt =

1

N 41(t) =

2

N

41

. m a x op is th e m a x im a l o rd e r o f a v e rte x in a tria n g u la tio n . T h e ty p ic a l b e h a v io r o f th e se tw o o rd e r p a ra m e te rs is e x p e c te d to be d ifferen t in p h ases B a n d C. P h a s e B is c h a ra c te riz e d by h av in g a m acro sco p ic fra c tio n of th e fo u r-v o lu m e c o n c e n tra te d a t a single s p a tia l slice co rre sp o n d in g to som e tim e t (in th e sense t h a t a lm o st all {4,1} a n d {1,4} fou r-sim plices h ave fo u r v ertic es a t th is s p a tia l slice).

T h is is ac co m p an ied by th e a p p e a ra n c e of tw o sin g u la r v ertic es lo c a te d a t tim e s t ± 1 an d s h a re d by a m acro sco p ic n u m b e r of fou r-sim p lices in a tria n g u la tio n . As a co nseq uen ce, in p h a se B —3 a n d -O4 sh o u ld b e of o rd e r one. In p h a se C th e re is n o such d e g e n era cy an d for larg e N

41

b o th —3 a n d — 4 sh o u ld a p p ro a c h zero. T h e b e h a v io r o f th e se tw o o rd e r p a ra m e te rs is p re se n te d in figure 7 .

3We are currently working on the numerical algorithm which would enable tunneling between both sides of the hysteresis region in a single Monte Carlo run and thus enable to define a more precise position of the transition point.

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(12)

F i g u r e 6 . T he o rd e r-p a ram e te rs O i and O2 as a function of N 41 a t th e en d p o in ts of th e hysteresis.

T he colors correspond to th e convention used in figure 2 .

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(13)

F i g u r e 7. T he o rd er-p aram eters ° 3/n41 an d ° 4/n41 as a function of NN4 1 a t th e e n d p o in ts of th e hysteresis. T h e colors correspond to th e convention used in figure 2 .

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(14)

4 C o n c lu sio n and d isc u ssio n

In th e p re se n t a rtic le we m a d e a d e ta ile d s tu d y of th e p h a se tra n s itio n o b serv ed b etw een th e p h a se C a n d th e p h a se B a t th e v alu e of th e dim en sio n less g ra v ita tio n a l co u p lin g c o n s ta n t K0 = 4.0. T h e tra n s itio n a p p e a rs to b e lo c a te d close to A = 0. T h e id e n tific a tio n o f th is region, a n d th e p o ssib ility t h a t o ne c a n m ove all th e w ay to th e trip le p o in ts of th e p h a se d ia g ra m , sta y in g e n tire ly insid e th e “p h y sical” C ph ase, is a goo d new s for th e re n o rm a liz a tio n g ro u p p ro g ra m s ta r te d in [54] (a n d te m p o ra rily p u t on hold by th e discovery of th e b ifu rc a tio n p h ase ). T h e re n o rm a liz a tio n g ro u p an aly sis is p ro b a b ly th e cle a n e st w ay to co n n e c t C D T la ttic e g ra v ity a p p ro a c h to a s y m p to tic safety. T h e an aly sis o f th e re lev an t co u p lin g c o n s ta n t regio n w as m a d e p o ssib le by sw itch in g from sp h eric al s p a tia l to p o lo g y to to ro id a l s p a tia l topology. In th is first s tu d y of th e in te re stin g regio n we p o sitio n e d ourselves in th e m id d le of th e B -C p h a se tra n s itio n line, b etw e en th e tw o trip le e n d p o in ts a n d from th e an a ly sis of th e M o n te C arlo d a t a we co n c lu d e t h a t th e tra n s itio n is m o st likely of first o rd e r. Since e n d p o in ts of p h a se tra n s itio n lines o fte n a re o f h ig h er o rd e r, th e trip le p o in ts m ig h t well b e of second o rd e r a n d on e o f th e m cou ld th e n serve as a U V fixed p o in t for a q u a n tu m th e o ry of g ravity. W e a re ac tiv e ly p u rsu in g th is line o f research.

L e t us en d by som e re m a rk s a b o u t o u r q u a n tu m g ra v ity m od el, view ed as a s ta tis tic a l sy ste m o f fo u r-d im e n sio n a l g eo m etries. D e sp ite th e a lm o st triv ia l a c tio n ( 1.3) , th e m odel h as a n am az in g ly rich p h a se s tru c tu re , w ith fo u r d ifferent p h ase s, each c h a ra c te riz e d by v ery d ifferent d o m in a tin g g eo m etries. In a d d itio n , som e o f th e p h a se tra n s itio n s hav e q u ite u n u s u a l c h a ra c te ristic s . T h e tra n s itio n b etw e en p h a se B a n d th e b ifu rc a tio n p h a se is a second o rd e r tra n s itio n [44], b u t superficially, for a fin ite volum e, it looked like a first o rd e r tra n s itio n . H ow ever, an a ly z in g th e b e h a v io r as a fu n c tio n of th e in cre asin g la ttic e volum e th e first o rd e r n a tu r e fa d ed away. M oving to w a rd s la rg e r v alues o f K 0, i.e. to w a rd s th e reg ion we h ave b ee n in v e stig a tin g in th is a rtic le , th e tra n s itio n b ec a m e m o re a n d m o re like a first o rd e r tra n s itio n . W ith th e sp h eric al s p a tia l to p o lo g y used in [44] on e co uld n o t get to th e region in v e stig a te d in th e p re s e n t artic le , b u t it is n a tu r a l to c o n je c tu re t h a t passin g th e trip le p o in t m oving from th e b ifu rc a tio n -B line to th e C-B line, th e tra n s itio n ch ang es from second o rd e r to first o rd e r. H ow ever, th is first o rd e r tra n s itio n is still so m ew h a t u n u su a l. F irstly , it h as k ep t th e c h a ra c te ris tic s o f th e second o rd e r b ifu rc a tio n -B tra n s itio n t h a t th e fin ite size b e h a v io r of th e p se u d o -c ritic a l p o in ts, g iven by eqs. ( 2 .2) a n d (2 .3 ) have n o n -triv ia l e x p o n e n ts 7. Secondly, th e h y stere sis g a p goes to zero w ith in cre asin g volum e, w hich is a n o n -s ta n d a rd b e h a v io r in th e case o f a first o rd e r tra n s itio n . H ow ever, th e ju m p s o f th e o rd e r p a ra m e te rs seem v olum e in d e p e n d e n t a n d t h a t is th e m a in re a so n t h a t we classify th e tra n s itio n as b ein g a first o rd e r tra n s itio n . T h e large fin ite size effects we observ e m ig h t be re la te d to th e global chan g es o f d o m in a n t co n fig u ratio n s w hich ta k e place betw e en p h a se C a n d p h a se B , an d th e se g lo bal re a rra n g e m e n ts m ig h t, for fin ite volum es, h ave a d ifferen t “p h a se -sp a c e ” in th e case o f sp h eric al a n d to ro id a l top olog ies. T h a t m ig h t e x p la in w h y o u r M o n te C arlo a lg o rith m c a n access th e B -C tra n s itio n on ly in th e case of to ro id a l topology. T h e s ta tis tic a l th e o ry o f g eo m etrie s is a fa sc in a tin g a re a w h ich is alm o st u n ex p lo re d for sp a c e tim e d im en sio n s la rg e r th a n tw o.

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(15)

A c k n o w le d g m e n ts

D N w ould like to th a n k R e n a te R oll th e fru itfu l d iscussio ns a n d h o s p ita lity d u rin g his sta y a t R a d b o u d U n iv e rsity in N ijm eg en. J G S acknow ledges s u p p o rt from th e g ra n t U M O -2 0 1 6 /2 3 /S T 2 /0 0 2 8 9 from th e N a tio n a l Science ce n tre , P o la n d . J A acknow ledges s u p p o rt from th e D a n is h R e se a rc h C o un cil g ra n t Q u a n tu m G eo m etry, g ra n t 7014-00066B . A G a n d D N acknow ledges s u p p o rt by th e N a tio n a l S cience C e n tre , P o la n d , u n d e r g ra n t no. 2 0 1 5 /1 7 /D /S T 2 /0 3 4 7 9 .

O p e n A c c e s s . T h is a rtic le is d is trib u te d u n d e r th e te rm s o f th e C re a tiv e C o m m o ns A ttr ib u tio n L icense ( C C -B Y 4.0) , w hich p e rm its an y use, d is trib u tio n a n d re p ro d u c tio n in a n y m ed iu m , p ro v id ed th e o rig in al a u th o r(s ) a n d so urce are c re d ite d .

R e fer e n c es

[1] S. W einberg, Ultraviolet divergences in quantum theories o f gravitation, in General relativity:

E in ste in centenary survey, S.W . H aw king and W . Israel eds., C am bridge U niversity Press, C am bridge, U .K . (1979), pg. 790 [i nSPIRE].

[2] M. R eu ter, N onperturbative evolution equation fo r quantum gravity, P hys. Rev. D 5 7 (1998) 971 [h e p -th /9 6 0 5 0 3 0 ] [i nSPIRE].

[3] A. Codello, R. P ercacci and C. R ahm ede, Investigating the ultraviolet properties o f gravity w ith a W ilsonian renorm alization group equation, A nnals Phys. 3 2 4 (2009) 414

[a r X iv :0 8 0 5 .2 9 0 9 ] [i nSPIRE].

[4] M. R e u te r an d F. Saueressig, F unctional renorm alization group equations, asym ptotic safety and quantum E in ste in gravity, in G eom etric and topological m ethods fo r quantum field theory, C am bridge U niversity P re ss, C am bridge, U .K . (2010), pg. 288 [a r X iv :0 7 0 8 .1 3 1 7 ] [i nSPIRE].

[5] M. N iederm aier a n d M. R eu ter, The asym ptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5 [i nSPIRE].

[6] D .F. L itim , F ixed points o f quantum gravity, Phys. Rev. Lett. 9 2 (2004) 201301 [h e p -th /0 3 1 2 1 1 4 ] [i nSPIRE].

[7] F. D avid, P la n a r diagrams, tw o-dim ensional lattice gravity and surface models, Nucl. Phys.

B 2 5 7 (1985) 45 [i nSPIRE].

[8] A. Billoire an d F. D avid, M icrocanonical sim ulations o f random ly triangulated planar random surfaces, Phys. Lett. B 1 6 8 (1986) 279 [i nSPIRE].

[9] J. A m bjprn, B. D urh u u s an d J. Frohlich, Diseases o f triangulated random surface models and possible cures, Nucl. Phys. B 2 5 7 (1985) 433 [i nSPIRE].

[10] J. A m bjprn, B. D urhuus, J. Frohlich an d P. O rland, The appearance o f critical dim ensions in regulated string theories, Nucl. Phys. B 2 7 0 (1986) 457 [i nSPIRE].

[11] V.A. K azakov, A.A. M igdal an d I.K . K ostov, Critical properties o f random ly triangulated planar random surfaces, Phys. Lett. B 1 5 7 (1985) 295 [i nSPIRE].

[12] D.V. B oulatov, V.A. K azakov, I.K . K ostov an d A.A. M igdal, A nalytical and num erical study o f the m odel o f dynam ically triangulated random surfaces, Nucl. P hys. B 2 7 5 (1986) 641 [i nSPIRE].

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(16)

[13] V.A. K azakov, The appearance o f m a tte r fields fro m quantum flu ctu a tio n s o f 2D gravity, Mod. Phys. Lett. A 4 (1989) 2125 [i nSPIRE].

[14] J. A m b jp rn an d Yu. M. M akeenko, Properties o f loop equations fo r the H erm itea n m a trix model and fo r tw o-dim ensional quantum gravity, Mod. Phys. Lett. A 5 (1990) 1753 [i nSPIRE].

[15] J. A m b j0rn, J. Jurkiew icz a n d Yu. M. M akeenko, M ultiloop correlators fo r tw o-dim ensional quantum gravity, P hys. Lett. B 2 5 1 (1990) 517 [i nSPIRE].

[16] J. A m b j0rn, L. Chekhov, C .F. K ristjan sen a n d Yu. M akeenko, M a trix m odel calculations beyond the spherical lim it, Nucl. P hys. B 4 0 4 (1993) 127 [Erratum ibid. B 4 4 9 (1995) 681]

[h e p -th /9 3 0 2 0 1 4 ] [i nSPIRE].

[17] V .G . K nizhnik, A.M . Polyakov an d A.B. Zam olodchikov, Fractal structure o f 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [i nSPIRE].

[18] F. D avid, C onform al field theories coupled to 2D gravity in the conform al gauge, Mod. Phys.

Lett. A 3 (1988) 1651 [i nSPIRE].

[19] J. D istler a n d H. K aw ai, C onform al field theory and 2D quantum gravity, Nucl. Phys. B 321 (1989) 509 [i nSPIRE].

[20] J. A m b j0rn an d S. V arsted, Three-dim ensional sim plicial quantum gravity, Nucl. P hys. B 3 7 3 (1992) 557 [i nSPIRE].

[21] J. A m b j0rn an d S. V arsted, E ntropy estim ate in three-dim ensional sim plicial quantum gravity, Phys. Lett. B 2 6 6 (1991) 285 [i nSPIRE].

[22] J. A m b j0rn, D.V. B oulatov, A. Krzyw icki an d S. V arsted, The vacuum in three-dim ensional sim plicial quantum gravity, Phys. Lett. B 2 7 6 (1992) 432 [i nSPIRE].

[23] M .E. A gishtein a n d A.A. M igdal, T hree-dim ensional quantum gravity as dynam ical

triangulation, Mod. Phys. Lett. A 6 (1991) 1863 [Erratum ibid. A 6 (1991) 2555] [i nSPIRE].

[24] D.V. B oulatov an d A. K rzywicki, O n the phase diagram o f three-dim ensional sim plicial quantum gravity, Mod. P hys. Lett. A 6 (1991) 3005 [i nSPIRE].

[25] J. A m b j0rn an d J. Jurkiew icz, F our-dim ensional sim plicial quantum gravity, Phys. Lett. B 2 7 8 (1992) 42 [i nSPIRE].

[26] J. A m b j0rn an d J. Jurkiew icz, Scaling in fo u r-d im e n sio n a l quantum gravity, Nucl. Phys. B 4 5 1 (1995) 643 [h e p - th /9 5 0 3 0 0 6 ] [i nSPIRE].

[27] M .E. A gishtein an d A.A. M igdal, S im u la tio n s o ffo u r-d im e n sio n a l sim plicial quantum gravity, Mod. Phys. Lett. A 7 (1992) 1039 [i nSPIRE].

[28] P. B ialas, Z. B u rd a, A. K rzyw icki a n d B. P etersson, Focusing on the fixed p o in t o f 4D sim plicial gravity, Nucl. Phys. B 4 7 2 (1996) 293 [h e p - la t/9 6 0 1 0 2 4 ] [i nSPIRE].

[29] S. C atte ra ll, R. R enken and J.B . K ogut, Singular structure in 4D sim plicial gravity, Phys.

Lett. B 4 1 6 (1998) 274 [h e p - la t/9 7 0 9 0 0 7 ] [i nSPIRE].

[30] J. A m b j0rn, L. G laser, A. G orlich an d J. Jurkiew icz, E uclidian 4d quantum gravity w ith a non-trivial measure term , JH E P 10 (2013) 100 [a r X iv :1 3 0 7 .2 2 7 0 ] [i nSPIRE].

[31] J. L aiho an d D. C oum be, Evidence fo r a sym ptotic safety fro m lattice quantum gravity, Phys.

Rev. Lett. 1 0 7 (2011) 161301 [a r X iv :1 1 0 4 .5 5 0 5 ] [i nSPIRE].

[32] D. C oum be a n d J. Laiho, Exploring Euclidean dynam ical triangulations w ith a non-trivial measure term , JH E P 0 4 (2015) 028 [a rX iv :1 4 0 1 .3 2 9 9 ] [i nSPIRE].

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(17)

[33] J. Laiho, S. B assler, D. C oum be, D. D u an d J .T . N eelakanta, Lattice quantum gravity and asym ptotic sa fety, P hys. Rev. D 9 6 (2017) 064015 [a r X iv :1 6 0 4 .0 2 7 4 5 ] [i nSPIRE].

[34] T. Regge, General relativity w ithout coordinates, N uovo Cim. 19 (1961) 558 [i nSPIRE].

[35] J. A m b j0rn, A. G orlich, J. Jurkiew icz an d R. Loll, Nonperturbative quantum gravity, Phys.

Rept. 5 1 9 (2012) 127 [a r X iv :1 2 0 3 .3 5 9 1 ] [i nSPIRE].

[36] R. Loll, Q uantum gravity fro m causal dynam ical triangulations: a review, a rX iv :1 9 0 5 .0 8 6 6 9 [i nSPIRE].

[37] J. A m b j0rn, J. Jurkiew icz a n d R. Loll, D ynam ically triangulating L orentzian quantum gravity, Nucl. Phys. B 6 1 0 (2001) 347 [h e p -th /0 1 0 5 2 6 7 ] [i nSPIRE].

[38] J. A m bj0rn, J. Jurkiew icz an d R. Loll, A nonperturbative L orentzian pa th integral fo r gravity, Phys. Rev. Lett. 8 5 (2000) 924 [h e p - th /0 0 0 2 0 5 0 ] [i nSPIRE].

[39] J. A m b j0rn, J. Jurkiew icz an d R. Loll, R econstructing the universe, P hys. Rev. D 72 (2005) 064014 [h e p - th /0 5 0 5 1 5 4 ] [i nSPIRE].

[40] J. A m b j0rn, J. Jurkiew icz a n d R. Loll, Em ergence o f a 4D world fro m causal quantum gravity, Phys. Rev. Lett. 9 3 (2004) 131301 [h e p - th /0 4 0 4 1 5 6 ] [i nSPIRE].

[41] J. A m b j0rn, J. Jurkiew icz an d R. Loll, Spectral d im en sio n o f the universe, Phys. Rev. Lett.

9 5 (2005) 171301 [h e p -th /0 5 0 5 1 1 3 ] [i nSPIRE].

[42] J. A m b j0rn, A. G orlich, J. Jurkiew icz an d R. Loll, The nonperturbative quantum de S itte r universe, P hys. Rev. D 78 (2008) 063544 [a r X iv :0 8 0 7 .4 4 8 1 ] [i nSPIRE].

[43] J. A m b j0rn, A. G orlich, J. Jurkiew icz an d R. Loll, P lanckian birth o f the quantum de S itte r universe, P hys. Rev. Lett. 1 0 0 (2008) 091304 [a r X iv :0 7 1 2 .2 4 8 5 ] [i nSPIRE].

[44] J. A m b j0rn, S. Jo rd an , J. Jurkiew icz an d R. Loll, Second- and first-o rd er phase transitions in CD T, Phys. Rev. D 8 5 (2012) 124044 [a r X iv :1 2 0 5 .1 2 2 9 ] [i nSPIRE].

[45] J. A m b j0rn, S. Jo rd an , J. Jurkiew icz an d R. Loll, A second-order phase tra n sitio n in CD T, Phys. Rev. Lett. 1 0 7 (2011) 211303 [a r X iv :1 1 0 8 .3 9 3 2 ] [i nSPIRE].

[46] J. A m b j0rn, J. Jurkiew icz a n d R. Loll, Sem iclassical universe fro m fir s t principles, Phys.

Lett. B 6 0 7 (2005) 205 [h e p -th /0 4 1 1 1 5 2 ] [i nSPIRE].

[47] J. A m b j0rn, A. G orlich, J. Jurkiew icz, R. Loll, J. G izb ert-S tu d n ick i an d T. Trzesniewski, The sem iclassical lim it o f causal dynam ical triangulations, Nucl. Phys. B 8 4 9 (2011) 144 [a r X iv :1 1 0 2 .3 9 2 9 ] [i nSPIRE].

[48] J. A m b j0rn, J. G izbert-S tudnicki, A. G orlich an d J. Jurkiew icz, The transfer m a trix in fo u r-d im e n sio n a l C D T, JH E P 0 9 (2012) 017 [a r X iv :1 2 0 5 .3 7 9 1 ] [i nSPIRE].

[49] J. A m bj0rn, J. G izbert-S tudnicki, A. G orlich and J. Jurkiew icz, The effective action in 4-dim C D T. The transfer m a trix approach, JH E P 0 6 (2014) 034 [a r X iv :1 4 0 3 .5 9 4 0 ] [i nSPIRE].

[50] J. A m b j0rn, D.N. C oum be, J. G izb ert-S tu d n ick i an d J. Jurkiew icz, Signature change o f the m etric in C D T quantum gravity?, JH E P 0 8 (2015) 033 [a r X iv :1 5 0 3 .0 8 5 8 0 ] [i nSPIRE].

[51] D.N. C oum be, J. G izb ert-S tu d n ick i and J. Jurkiew icz, Exploring the new phase tra n sitio n o f CD T, JH E P 0 2 (2016) 144 [a r X iv :1 5 1 0 .0 8 6 7 2 ] [i nSPIRE].

[52] J. A m b j0rn, J. G izbert-S tudnicki, A. G orlich, J. Jurkiew icz, N. K litg a a rd an d R. Loll, C haracteristics o f the new phase in C D T, Eur. Phys. J. C 77 (2017) 152

[a r X iv :1 6 1 0 .0 5 2 4 5 ] [i nSPIRE].

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

(18)

[53] J. A m b j0rn, D. C oum be, J. G izbert-S tudnicki, A. G orlich an d J. Jurkiew icz, N ew

higher-order transition in causal dynam ical triangulations, P hys. Rev. D 9 5 (2017) 124029 [a r X iv :1 7 0 4 .0 4 3 7 3 ] [i nSPIRE].

[54] J. A m b j0rn, A. G orlich, J. Jurkiew icz, A. K reienbuehl an d R. Loll, R en o rm a liza tio n group flow in CD T, Class. Q uant. Grav. 31 (2014) 165003 [a r X iv :1 4 0 5 .4 5 8 5 ] [i nSPIRE].

[55] J. A m b j0rn, Z. Drogosz, J. G izbert-S tudnicki, A. G orlich, J. Jurkiew icz an d D. N em eth, Im pact o f topology in causal dynam ical triangulations quantum gravity, P hys. Rev. D 94 (2016) 044010 [a rX iv :1 6 0 4 .0 8 7 8 6 ] [i nSPIRE].

[56] J. A m b j0rn, J. G izbert-S tudnicki, A. G orlich, K. G rosvenor an d J. Jurkiew icz, F our-dim ensional C D T w ith toroidal topology, Nucl. Phys. B 9 2 2 (2017) 226

[a r X iv :1 7 0 5 .0 7 6 5 3 ] [i nSPIRE].

[57] J. A m b j0rn, J. G izbert-S tudnicki, A. G orlich, J. Jurkiew icz and D. N em eth, The phase structure o f causal dynam ical triangulations w ith toroidal spatial topology, JH E P 0 6 (2018) 111 [a r X iv :1 8 0 2 .1 0 4 3 4 ] [i nSPIRE].

[58] J. A m b j0rn, D. C oum be, J. G izbert-S tudnicki, A. G orlich an d J. Jurkiew icz, Critical phen o m en a in causal dynam ical triangulations, a rX iv :1 9 0 4 .0 5 7 5 5 [i nSPIRE].

J H E P 0 7 ( 2 0 1 9 ) 1 6 6

Cytaty

Powiązane dokumenty

ODŚWIEŻANIA NIE NAPRAWIA TEGO PROBLEMU , DLATEGO TEŻ STOSUJE SIĘ METODĘ INTERPOLACJI OBRAZÓW.. Jasność – wyrażana w ANSI lumenach, wyraża całkowitą ilość

Key words: ’EXeovoa, painting, icon, Our Lady, Mother o f God, Eleousa, Tender­ ness or Showing Mercy,. Inform acja

Przede wszystkim jednak zastanawiam się, czy rok 1968 (o, tu właśnie nasuwa mi się problem : jak uczyć o wydarzeniach m arco­ wych — oto jest pytanie...), choć niewątpliwie

Other non-intrusive measurement techniques are heat transfer (hot-film) methods , which use the Reynolds analogy to derive wall-shear stresses out of the measured local

An appropriate choice of interaction amplitude makes Spin-foam models a discretised version of a theory with the action equivalent to the action of Loop Quantum Gravity - thus

These are not individual speeds of the vehicle, but they are the average speed per lane for the aggregation interval, and hence show the influence of the driving conditions on the

Requirements as regards permissible temperature of ex- ternal surface of components of the whole driving system is one of the most important conditions, which are necessary to be

1) The macroregional anomaly observed in the studied area is only to a small extent determined by the effect of sedimentary rocks. The great gravity minimum