• Nie Znaleziono Wyników

Właściwości gleb szuwaru mozgowego Phalaridetum Arundinaceae (Koch 1926) Libb. 1931

N/A
N/A
Protected

Academic year: 2021

Share "Właściwości gleb szuwaru mozgowego Phalaridetum Arundinaceae (Koch 1926) Libb. 1931"

Copied!
10
0
0

Pełen tekst

(1)

ROCZNIKI GLEBOZNAWCZE TOM LXII NR 2 WARSZAWA 2011: 124-133

MIECZYSŁAW GRZELAK1, MONIKA JAKUBUS2, ZBIGNIEW KACZMAREK2

SOIL PROPERTIES OF THE RED CANARY GRASS

ASSOCIATION PHALARIDETUM ARUNDINACEAE

(KOCH 1926) LIBB. 1931

WŁAŚCIWOŚCI GLEB SZUWARU MOZGOWEGO

PHALARIDETUM ARUNDINACEAE (KOCH 1926) LIBB. 1931

•Department of Grassland Science

d epartm ent of Soil Science and land ProtectionUniversity of Life Science in Poznań

A bstract: The goal o f the presented study w as to characterize physical and chem ical properties o f so ils

under the identified canary grass su b-associations (P halaridetum aru n din aceae) in the valleys o f the Warta and N oteć rivers. D ifferent sub-associations were found to occur both on organic soils ( peat soils, peat-m uck soils, m ucky soils); as w ell as on mineral so ils (river alluvial soil) [acc. o f PTG (Polish Society o f Soil Scien ce) 1989]. The basic physical properties o f these so ils exhibit typical values for so ils o f sp ecific origin, m orphology and texture. Values o f basic chem ical properties were low er in mineral soils. Organic so ils were characterized by very high availability o f m acroelem ents.

K ey w o rd s: physical and chem ical properties o f soils, geobotanical diversity, P h alaridetu m aru ndinaceae

association

INTRODUCTION

The red canary grass association Phalaridetum arundinaceae (Koch 1926 n.n.) Libb. belongs to the most common communities of proper rushes occurring in the valleys of the Warta and Noteć rivers. It is included in the Magnocaricion alliance as confirmed by the calculations of the recognized values of the identified syngenetic groups. Within the identified association, the authors distinguished lower units - sub-associations - which allowed them to ascertain the degree of its diversification against the background of site conditions. The occurrence of this grass, its phytosociological variability, economic and fodder as well as use values as well as the multifaceted role that the red canary grass plays in the protection of natural environment was described by many researchers, among others, by: Denisiuk [1967], Szoszkiewicz [1977], Brzeg and Ratyńska [1991], Borysiak [1994], Szoszkiewicz [1995], Grynia and Grzelak [2000], Ratyńska [2001], Grzelak et al. [2002], Grzelak [2004, 2007]. However, there is no information in the available litera­ ture on the subject concerning comprehensive soil science investigations describing both the physical and chemical properties of meadow phytocoenoses, in particular, of the red canary grass association as well as the identified sub-associations.

(2)

Soil properties o f the red canary grass association Phalaridetum Arundinaceae... 125

The goal of the presented study was to characterise physical and chemical properties of soils under the identified canary grass sub-associations (Phalaridetum arundinaceae). These properties exert a huge impact on the development of grass as well as on changes in the species composition and determine both the structure and economic and use value of grasses.

OBJECT AND METHODOLOGY

Floristic investigations in the valleys of the Warta and Noteć rivers were conducted in years 1998 - 2006 with the assistance of the Braun-Blanquet method [1951]. The total of 262 phytosociological surveys was taken of which 89 most representative ones were used in this study. The membership of individual species to syntaxonomic units and plant classification were adopted after Matuszkiewicz [2006], whereas the nomenclature of vascular plants - after Mirek et al. [2002].

Soil investigations were carried out in years 2002-2004 digging soil pits in places representative for the described Phalaridetum arundinaceae sub-associations. Soil mor­ phology was described [PTG 1989]. Samples of intact and disturbed soil structure (V =

100 cm3) were collected from the individual genetic horizons of the seven examined soils for laboratory analyses during which the following properties were determined: soil te­ xture by areometric method [PKN 1998], moisture content - by the dryer-balance me­ thod, volumetric density - using Nitzsch’s vessels, total porosity calculated on the basis of the determination of the density of the solid phase and volumetric density [Mocek at al. 2010], solid phase density - by pycnometric method [Soil Conservation Service 1992], sample crude ash content - gravimetrically on the basis of calcination losses, soil reaction - potentiometrically in the 1 mol • dm-3 KC1 solution. Total nitrogen and organic carbon were determined with the assistance of a Vario Max CNS analyser. The total content of macroelements, following wet burning in a mixture of nitric and perchloric acids [Ostrow­ ska et al. 1991], was determined using the following methods: Ca, K and Na - by flame photometric method, Mg - by the atomic absorption spectrophotometry, P - colorimetri- cally on a Spekol spectrophotometer. Available quantities of macroelements were deter­ mined in an 0.5 mol • dm"3 HC1 employing the methods described above. In order to determine the fertility classes of the examined soils in available macroelements, boundary numbers were used to estimate the content of macro- and microelements in soils [Zalece­ nia nawozowe 1985]. The content of heavy metals was determined with the assistance of the atomic absorption spectrophotometry (AAS) following the mineralisation of the soil material in aqua regia (HC1 : H N 0 3 = 3:1). The enclosed results are averaged values obtained from five replications.

RESULTS AND DISCUSSION

The performed geobotanical investigations and detailed analysis of phytosociological relationships within Phalaridetum arundinaceae association made it possible to distingu­ ish the following seven sub-associations: 1. Phalaridetum arundinaceae typicum, 2. Pha­

laridetum arundinaceae rorippetosum amphibiae subass. nova, 3. Phalaridetum arundi­ naceae glycerietosum maximae, 4. Phalaridetum arundinaceae caricetosum gracilis sub­

ass. nova, 5. Phalaridetum arundinaceae ranunculetosum repentis, 6. Phalaridetum arun­

dinaceae alopecuretosum pratensis and 7. Phalaridetum arundinaceae deschampsietosum caespitosae subass. nova (Table 1). This finds it justification in phytosociological rela­

(3)

126 M. Grzelak, M. Jakubus, Z Kaczmarek

were assigned numbers (1-7) consistent with the soil description (profiles 1-7) on which they occurred. Different Phalaridetum arundinaceae sub-associations were found to occur both on organic soils (profiles 1 , 4 - peat soils of lowland bog; profiles 3 , 7 - peat- muck soils; profile 5 - mucky soil; profile 6 - gyttia soil) as well as on mineral soils (profile 2 - river alluvial soil) [PTG 1989].

The determined moisture content in the examined soils was expressed gravimetrically - in absolute and relative units as well as volumetrically which also shows the degree of filling of pores with water. Regardless of the form of its presentation, the moisture content was strongly diversified which resulted from different thicknesses of organic layers of soils deposited either on moist or irrigated mineral substrate. The greatest quantities of water were found in genetic horizons of organic soils (profiles: 1, 3, 4, 5 and 7) and much less in mineral soils (profiles 2 and 6) appropriately to their lower retention potentials (Table 2).

The solid phase density of individual deposits was strongly diversified due to the differences in the content of the mineral fraction resulting from their origins. Its highest values reaching 2.64-2.66 Mg • m"3 were obtained for mineral formations characterised by high crude ash content ranging from 97.05- 98.41% (profile 2), while the lowest values of 1.61-1.72 Mg • m"3 were recorded for poorly decomposed peats (profile 2). Silting up of organic sediments increased values of the solid phase density. The volume­ tric density and total porosity assumed values typical for soils of similar origin and pro­ perties, which is in agreement with investigation results reported by other researchers concerning physical properties of organic soils [Okruszko 1960, Szuniewicz 1968, Mar­ kowski 1971, Okołowicz 1999, Unicki 2002] as well as mineral soils found in the Warta River valley [Rząsa 1999] (Table 2).

Soil chemical properties are commonly treated as direct indicators of their quality. This is attributed to the fact that they exert a direct influence on microbiological proces­ ses and, together with physico-chemical properties, determine, among others, the possi­ bilities of soils to retain nutrients affecting simultaneously their availability for plants. One of the key factors exerting a major impact on the fertility of soils is their reaction. In the case of the examined soils, the values of this parameter determined in 1 mol KC1 mol • dm"3 ranged from 5.5 (profile 4, depth - 0.2 to 1.60) to 7.7 (profile 6, Aca horizon) (Table 3). The dependence of pH on the C aC 03 content is particularly apparent in the case of soil samples derived from profile 6 which exhibited neutral or alkaline reaction irrespective of the genetic horizon. The reaction of the remaining analysed soils was determined as slightly acid or neutral with a trend towards increased pH together with the depth in the analysed profile (profiles: 3, 5 and 7). Also Bogacz et al. [2004] reported a similar direc­ tion of changes of the examined property.

Profile variability of organic carbon quantities turned out to be less apparent and was found to be more dependent on the sediment rather than the depth. The lowest content of organic carbon (Corg) ranging from 0.58 to 15.00% was determined in the mineral soil profiles (profiles 2 and 6), whereas the highest one - for organic soils (Table 3). Około­ wicz and Sowa [1997] maintain that the level of carbon in peat sediments is strongly correlated with species and type of peat as well as with the silting and mucking processes occurring in them. Observations of the above researchers find their reflection in the quantities of carbon in the examined organic soils. Generally speaking, the content of Corg in the peat horizons was higher in relation to the one shown in muck horizons. However, at the same time, quantitative differences of this component were determined between peat horizons from individual profiles (profiles 1,4 and 5) (Table 3). The content of the discussed element in mucky soils ranged from 7.17% (profile 7, depth from 0 to

(4)

TABLE 1. Synthetic table (combined - shortened) o f the P halaridetum arundinaceae phytosociological diversification into subassociations in river valleys Warta and N otec

Species Subassociacions Phalaridetum arundinaceae

typicum rorippeto-sum am phibiae glycerieto-sum m axim ae, caricetosum gracilis ranuncule­ tosum repentis alopecu reto­ sum p ra te n sis descham p-sietosum ca esp ito sa e Number o f relev's 57 41 58 32 16 26 11

Sp.charact. for the su bassociacion

Phalaris arundinacea P o a pa lu stris V 6975.5 Til 257.9 V 6128.5 III 320.0 V 5423.6 III 210 .0 V 3765.0 II 285.0 V 4 5 25.0 II 120.0 V 4420.5 II 170.0 V 5 0 28.6 II 175.0 Differential species

- su b ass. rorippetosum amphibiae

V 1867.0

R orippa am phibia

- su b ass. glycerietosum maximae

IV 1780.2

G lyceria m axim a

- su b ass. caricetosum gracilis

IV 1465.8

Carex gracilis

- su b ass. ranunculetosum repentis

IV 1286.5

Ranunculus repens

- su b ass. alopecuretosum pratensis

V 2256.0

A lopecurus pra ten sis

- subass deschampsietosum caespitosae

IV 1225.0

D escham psia caespitosae

Number o f species 37 12 14 11 38 41 19 So il p ro p er tie s of the red ca na ry gr as s a ss o ci a tio n P ha la rid etu m A run din ac eae .. . 12 7

(5)

TABLE 2. Basic physical properties in surface and near-surface hhorizons o f the examined soils in the identified subassociations Profile number/ Subassociation Genetic horizon Depth o f sampling [m] Organic formation1 Texture2

Crudeash Natural water content Specyfic density Bulk density Porosity [%] [kg * kg'1]3 [kg • kg'1]4 [m3 • m'3]5 [Mg • m’3] [m3 • nr3] 1 Ow R3tniz 0-0.16 peat 56.68 1.6313 0.6200 0.7378 2.11 1.19 0.79 0 tniz R2 0.16-0.31 peat 59.06 2.4000 0.5834 0.7172 1.95 0.24 0.73 2 A 0-0.32 sand 97.05 0.1242 0.1116 0.1763 2.64 1.42 0.46

br 0.32-0.72 silty clay loam 98.41 0.2114 0.1916 0.3214 2.66 1.52 0.42

3 M 0-0.27 muck 37.94 1.4146 0.5858 0.6112 1.89 0.41 0.78 OM 0.27-0.42 muck 38.84 1.7661 0.6560 0.6888 1.85 0.39 0.77 4 tnnn1R2 0-0.20 peat 36.10 2.4899 0.6673 0.7744 1.82 0.35 0.80 0 ttn2R2 0.2-1.60 peat 19.82 2.5648 0.6887 0.7438 1.61 0.29 0.82 5 p o m 0-0.15 peat 28.87 1.6671 0.6036 0.7002 1.72 0.42 0.74 0.15-0.33 sediment 80.09 1.1311 0.4848 0.5769 2.38 0.51 0.78

6 Aca 0-0.13 silty loam 91.18 0.1244 0.1144 0.1555 2.51 1.25 0.50

AC 0.13-0.18 silty loam 81.31 0.1195 0.1086 0.1804 2.64 1.51 0.43

Cca 0.18-0.56 gythia 68.20 0.4207 0.2206 0.2566 2.38 0.61 0.74

7 M 0-0.26 muck 87.07 1.9439 0.6753 0.6415 2.08 0.33 0.87

Ot h i lR3tnitn 0.26-0.55 peat 38.30 2.9007 0.7962 0.8122 1.93 0.28 0.85

1 - according to Polish Society o f Soil Science [PTG 1989] 2 - according to FAO [Soil survey staff 1951]

3 - water content expressed in absolute percentages by weight (water quantity/weight o f absolutely dry sample) 4 - water content expressed in relative percentages by weight (water quantity/weight o f moist sample) 5 - water content expressed in volume percentages (water quantity : soil volume in natural state)

1 2 8 M. G r z e la k , M. J a k u b u s , Z K a c z m a r e k

(6)

Soil properties o f the red canary grass association Phalaridetum Arundinaceae... 129

0 . 2 6 ) to 3 3 . 5 7 % TABLE 3. Basic chemical properties in surface and and near-surface genetic

(profile 3, depth firom horizons of the examined soils in the identified subassociations 0 to 0 .2 7 ) . On the

other hand, the deter­ mined quantities o f carbon in peats fluc­ tuated from 9 .5 4 %

(profile 1, depth from

0 .1 6 -0 .3 1 ) to 4 3 .8 0 %

(profile 4, depth from 0.2 to 1.26) (Table 3). Total nitrogen reve­ aled a similar quanti­ tative variability to that discussed above. High organic carbon concentrations were accompanied by ade­ quately high content of total nitrogen (Ta­ ble 3) as shown ear­ lier in the peat hori­ zons for which 1.68 to 2 .8 4 % total nitro­ gen content were de­ term ined. On the

other hand, the values of the discussed element in mineral soils were distinctly lower ranging from 0 .4 8 to 1 ,3 8 % (Table 3). On the basis of the determined quantities of carbon and nitrogen, their mutual ratio C:N was calculated. It is believed that the value of this parameter indicates the intensity of biological transformations expressed by the de­ gree of nitrogen availability for plants and decomposition rate of organic matter. In the case of the examined soil material, the lowest C:N values ranging from 8.85 to 11.04 : 1

were determined for the mineral soil (profile 6) (Table 4), whereas in the case of organic soils, this parameter was found to be on a similar level and ranged from 11.34 to 16.61 : 1.

(Table 3). Bogacz et al. [2004] maintain that low C:N values (below 2 0 ) frequently indica­ te soil desiccation, high degree of peat humification and mineralization.

Irrespective of the genetic horizon of the examined sediment, the lowest total content was determined for phosphorus (from 0 .0 7 to 1.73 g • kg"1) and the highest content - for calcium (from 0.31 to 3 3 .3 2 g • kg'1). In addition, it was found that the examined macro­ elements exhibited different directions of quantitative changes in the soil profile. Total quantities of macroelements were affected both by the depth of sample collection and the examined sediment (Table 4). In this regard, data describing fen soils (profiles 2 and 6)

differing from each other by the level of these values are quite characteristic. As evidenced from the results presented in Table 4, the soil designated as profile 2 revealed the smallest total quantities of sodium (0 .1 8 -0 .1 2 g • k g 1), calcium (0 .4 5 -0 .3 1 g • kg'1), magnesium

(0 .7 3 -0 .5 5 g • kg'1) and phosphorus (0.0-0.13 g • kg'1). On the other hand, in the case of samples derived from profile 6, the highest quantities of potassium (0.33-1.07 g • kg"1), sodium (0.3 6 -1.85 g • kg'1), calcium (4 .1 4 -3 3 .3 2 g • kg'1) and magnesium (1 .7 5 -3 .7 2 g • kg'1) were

Profile number/ Subasso­ ciation Genetic horizon* Depth o f sampling [m] pH Organic carbon Total nitrogen C N h2o 1M K C 1 [%] 1 O. R3tnri 0 -0 .1 6 6.9 6.8 21.11 1.69 12.49 C L K *traz 0.16-0.31 5.8 5.6 19.54 1.68 11.62 2 A 0 -0 .3 2 6.4 15.9 1.12 0.09 12.44 B br 0 .3 2 -0 .7 2 6.3 5.9 0.58 0.05 11.6 3 M 0 -0 .2 7 6.1 15.9 33.57 2.03 16.54 OM 0 .2 7 -0 .4 2 6.1 16.6 26.70 2.32 11.50 4 0 )H 1R2train 0 - 0.20 5.7 5.5 2 8 .5 6 2.25 12.96 O . , 2R2train 0 .2 -1 .6 0 5.8 5.5 4 3.80 2 .64 16.60 5 P O » 0 -0.15 6.4 5.8 35.15 2 .8 4 12.38 0.1 5 -0 .3 3 7.1 6.8 8.59 0.76 11.30 6 Aca 0-0.13 7.9 7.8 4.26 0.48 8.85 AC 0.1 3 -0 .1 8 7.0 6.8 9.52 0.86 11.07 jO.l 8 -0 .5 6 7.6 7.4 15.00 1.38 10.86 7 M 0 -0 .2 6 6.6 6.1 7.17 0.58 12.36 0 ^ 1 1 * 3 0 .2 6 -0 .5 5 7.8 17.2 20.18 1.81 11.15 ♦according to Polish Society o f Soil Science [PTG 1989].

(7)

130 M. Grzelak, M. Jakubus, Z Kaczmarek

TABLE 4. Total content o f macroelements in genetic horizon o f soils in the identified subassociations

determined (Table 4). The total contents of macroelements de­ termined for fen soils corrobo­ rate literature data [Orzechow­ ski at al. 2004], especially in the case of phosphorus, sodium, calcium and magnesium. From among the analysed elements, only in the case of potassium, the determined quantities were two times lower than those re­ ported by Orzechowski et al. [2004].

In comparison with the abo- ve-discussed mineral soils, the examined organic soils were cha­ racterised by higher levels of: so­ dium - from 0.34 to 1.01 g -k g '1, phosphorus - from 0.41 to 1.73 g • k g '1 and calcium - from 1.25 to 40.91 g • kg"1 (Table 4). On the other hand, a similar order o f magnitude was determined in the case of magnesium, while for potassium the determined quantity was lower (from 0.08 to 1.42 g • k g'1) in comparison with mineral soils (Table 4). Juxtaposing the obtained total contents of macroelements in the profile of peat soils with the values obtained by Urban et al. [2003], it can be said that the quantities deter­ mined in this study were on a similar level in the case ofppphosphorus and calcium, higher for potassium and magnesium and even two times lower in the case of sodium.

The available phosphorus, potassium and magnesium in the examined soils showed a similar quantitative variability as their equivalent total contents. The quantities of the ava­ ilable phosphorus and magnesium were greater in the case of organic soils, while in mineral soils - the content of the available potassium was higher (Table 5). The obtained values for the available forms of macroelements in fen soils are similar to those reported by Orzechowski et al. [2004] only in the case of phosphorus. The results of our own studies regarding the available potassium and magnesium show up to two times higher quantitative levels in comparison with the contents determined by the above-mentioned researchers. According to boundary numbers [Zalecenia nawozowe 1985], magnesium availability in fen soils was very high (profile 2) and moderate (profile 6) and that of available phosphorus - low (profile 2) to moderate (profile 6). The determined quantities of available macroelements in organic soils allowed to classify them to soils with very high levels of these elements.

The examined soils were also assessed from the point of view of their trace element contents. As in the case of macroelements, also here the total content of metals depended on the genetic horizon and the sediment type. On the basis of the boundary contents of trace elements elaborated by Kabata-Pandias et al. [1993], it was found that the level of these elements in the surface layers of the examined soils corresponded to their natural concen­ trations. Generally speaking, the determined quantities of these metals decreased together

Profile Genetic Depth IK N a Ca M g P number! horizon N ir g -k fT 'l 1 Ohtiuz, R3 0 -0 .1 6 ] 0.97 10.59 13.63 1.15 1.72 tniz 0.16-0.31 10.68 0.47 10.00 1.21 0.78 2 A 0 -0 .3 2 10.52 0.18 0.45 0.73 0.07 Bbr 0 .3 2 -0 .7 2 0.34 0.12 0.31 0.55 0.13 3 M 0 -0 .2 7 10.15 0.90 40.91 1.20 1.73 OM 0 .2 7 -0 .4 2 0.42 0.62 2 5 .3 4 1.16 0.41 4 \0^ 1R2 0 -0 .2 0 0.57 0.68 22.93 1.09 0.63 0 tniin 2 R 2 0 .2 -1 .6 0 10.22 1.01 31.50 0.98 0.72 5 0 -0 .1 5 10.45 0.98 31.3 2 1.14 0.83 0 . 0 .1 5 -0 .3 3 11.42 0.59 5.13 2.28 1.34 6 !A, 0 -0.13 10.33 0.37 22.11 3.72 0.12 1 AC 0 .1 3 -0 .1 8 11.07 0.36 4.14 1.75 0.25 : Cca 0 .1 8 -0 .5 6 0.77 1.85 33.33 2 .46 0.32 I 7 M 0 -0 .2 6 0.23 0.34 3.92 0.81 0.73 | OmhlR3 0 .2 6 -0 .5 5 0.08 0.56 1.21 1.54 0.63 ;

(8)

Soil properties o f the red canary grass association Phalaridetum Arundinaceae... 131

with the depth of sample collection, TABLE 5. Amounts o f available amounts forms o f

although there were exceptions to this macroelements in genetic horizons o f soils in the identified

rule. From among the examined me- subassociations

tals, the tendency to accumulate in lo­ wer soil layers was observed most cle­ arly in the case of lead. This phenome­ non was particularly apparent in the case of profile 1 (29.28 against 36.96 g • kg'1), profile 5 (14.35 against 22.82 g • kg'1) and profile 6 (2.81 against 13.85 g • kg"1) (Table 6). Irrespective of the depth of the soil sample collec­ tion, Co and Cr were characterised by the most consistent values for indivi­ dual sediments. The highest content of trace elements in the examined soils was recorded in the case of zinc (2.48- 61.74) and the lowest - for copper (2.91-12.50 g • kg'1). Generally spe­ aking, organic soils accumulated gre­ ater quantities of copper in compari­ son with mineral soils (profiles 2 and 6). At the same time, the fen soil desi­ gnated as profile 2 exhibited the lowest

TABLE 6 . Total content o f trace elements in surface and near-surface genetic horizons o f the examined soils in the identified subassociations

Profile number Genetic horizon* Depth o f sampling [m]

Content o f trace elements [mg • kg'1]

Cu Zn N i Pb Cr Co 1 0 . R3tmz 0-0 .1 6 11.84 61.74 10.71 29.28 12.04 6.79 0 ^ R2 0.16-0.31 9.95 42.88 11.27 36.96 14.87 6.73 2 A 0 -0.32 5.52 29.89 5.38 7.79 6.33 3.17 Bhr 0 .3 2 -0 .7 2 5.91 22.00 4.78 6.40 8.39 3.46 3 M 0-0 .2 7 10.90 12.45 11.79 12.92 8.60 4 .4 4 OM 0 .2 7 -0 .4 2 12.50 12.45 14.07 4.42 8.31 5.48 4 0 . . 1R2 0 - 0.20 10.37 4.68 9.02 4.02 6.46 3.18 0 ^ 2 X 2 0 .2 -1 .6 0 9.12 7.95 8.63 2.65 5.57 4.06 5 P O . 0-0.15 9.53 13.41 17.20 14.37 7.83 4.87 0 ,m 0 .15-0.33 8.33 54.75 14.02 22.82 21.57 6.65 6 A . 0-0.13 4.30 11.26 19.50 2.81 13.46 17.26 AC 0.1 3 -0 .1 8 4.82 22.12 10.64 5.83 16.60 4.63 Cca 0 .1 8 -0 .5 6 7.38 32.19 14.03 13.85 10.68 10.37 7 M 0 -0 .2 6 5.71 22.65 17.56 12.22 26.05 6.16 0 . . 1 R 3 0 .26-0.55 2.91 2.48 8.61 0.56 7.34 7.24 * according to Polish Society o f Soil Science [PTG 1989].

Profile Genetic Depth K M g P number horizon [m] [mg • kg'1 ] 1 O*,- R3tncr 0 -0 .1 6 2 85.4 545.5 4 2 1 .2 truz 0.16-0.31 2 41.6 606.2 382.3 2 A 0 -0 .3 2 188.4 370.1 37.8 0 .3 2 -0 .7 2 185.1 252.2 85.4 3 M 0 -0 .2 7 89.7 603.9 325.6 OM 0 .2 7 -0 .4 2 151.8 557.5 211.7 4 O th 1R2tmtn 0 - 0.20 2 67.4 587.8 225.9 O mta2R2 0 .2 -1 .6 0 97.7 47 7 .9 221.1 5 0-0 .1 5 129.1 577.6 425.3 o m 0 .15 -0 .3 3 222.5 977.1 441.3 6 Aca 0 -0.13 161.7 1119.7 61.3 AC 0 .1 3 -0 .1 8 638.1 753.2 110.6 Cca 0 .1 8 -0 .5 6 302 .9 962.7 121.3 7 M 0 -0 .2 6 117.9 4 1 4 .2 336.9 O ^ 1R3tnitn 0.2 6 -0 .5 5 84.5 739.3 231.1

(9)

132 M. Grzelak, M. Jakubus, Z Kaczmarek

level of all the examined trace elements. On the other hand, the organic peat soil (profile 1) was characterised by the highest quantities of the majority of the examined elements. The observed trends for the accumulation of metals in organic soils corroborate the common, well-documented opinion of strong binding of trace elements by peats, i.e. materials cha­ racterised by high contents of humic compounds [Burba et al. 2001].

RECAPITULATION

In the valleys of the Warta and Notec rivers Phalaridetum arundinaceae communities can be found both on organic (peat, mucky and gyttia) as well as mineral soils (river alluvial soil). The basic physical properties of these soils exhibit typical values which are characteristic for soils of specific origin, morphology and texture. Generally speaking, values of basic chemical properties were lower in mineral soils. Organic soils were charac­ terised by very high availability of macroelements. The total quantities of macro- and micro­ elements estimated in this study were found to depend on the depth of sample collection and the examined sediment. In general, organic soils showed higher quantities of the determined elements in comparison with mineral soils. Moreover, irrespective of the examined sedi­ ment, the contents of the examined elements decreased with the depth of the soil sample collection, which was particularly apparent in the case of microelements.

S treszczen ie: C elem pracy była charakterystyka w ła ściw o ści fizyczn ych i chem icznych gleb, w sp ó łtw o ­

rzących siedlisko w w yróżnionych siedm iu subassocjacjach szuwaru m ozgow ego P halaridetum aru ndi­

naceae. Przedstawiono wyniki badań fitosocj o logicznych i gleboznaw czych. Stw ierdzono, że w dolinach

rzecznych Warty i N o teci zbiorow iska P halaridetum aru ndinaceae w ystępują zarówno na glebach orga­ n iczn ych (torfow ych, m ułow ych, m urszow ych, gytiow ych), jak i mineralnych (m ady rzeczne). W łaści­ w o ści fizyczn e gleb w ykazały wartości typow e, charakterystyczne dla gleb o określonej genezie, m orfo­ logii i uziam ieniu. W łaściw ości chem iczne były zróżnicow ane, a najniższe ich wartości stw ierdzono w glebach mineralnych. G leby organiczne charakteryzowały się bardzo w y so k ą zasob n ością w przyswajal­ ne makroskładniki. Ilości ogóln e zarówno makro-, jak i m ikroskładników były różnicow ane głęb o k o ścią pobrania próbki glebow ej oraz rodzajem utworu.

REFERENCES

BOGACZ A., ROMANOWSKA B„ RYBKOWSKI P. 2004: Właściwości gleb organicznych Karkonoskiego Parku Narodowego. Opera Corcontica 41: 38-47.

BRAUN-BLANQUET 1951: J. Pflanzensoziologie. 2. Aufl. Wien.

BRZEG A., RATYŃSKA H. 1991: Niejeziome zbiorowiska wodne i bagienne okolic Konina. Pr. Kom. Biol. PTPN 70: 27-102.

BORYSIAK J. 1994: Struktura aluwialnej roślinności lądowej środkowego i dolnego biegu Warty. UAM Po­ znań, 52: 254 pp.

BURBA P., BEER A., LUKANOV J. 2001: Metal distribution and binding in balneological peats and their aqueous extracts. Fresenius J. Anal. Chem. 370: 419-425.

DENISIUK Z. 1967: Wstęp do badań nad zbiorowiskami łąkowymi w dolinie Warty. Prace Kom. Nauk Roln. PTPN 23, 1: 3-35.

GRYNIA M., GRZELAK M. 2000: Ocena aktualnego stanu wysokoplonujących łąk mozgowych w aspekcie wartości paszowej. Mat. Sem. IMUZ-Falenty, 45: 210-216.

GRZELAK M 2004: Zróżnicowanie fitosocjologiczne szuwaru mozgowego Phalaridetum arundinaceae (Koch 1926 n.n.) Libb. 1931 na tle warunków siedliskowych w wybranych dolinach rzecznych Wielkopolski.

Rocz. AR Poznań, Rozpr. Nauk. 354: 138 pp.

GRZELAK M. 2007: Wykształcanie się wariantów w obrębie szuwaru mozgowego Phalaridetum arundinace­

(10)

Soil properties o f the red canary grass association Phalaridetum Arundinaceae... 133

GRZELAK M., GRYNIA M., KRYSZAK J. 2002: Geobotanical evaluation o f reed grass (Phalaridetum arundi-

naceae) meadows occurring in Poznań and Koszalin region. Schrift. Fachhochs. Neubrand. A, 18: 254-261.

ILNICKI P. 2002: Torfowiska i torf. Wyd AR Poznań, 606 pp.

KABATA-PENDIAS A., MOTOWICKA-TERELAK T., PIOTROWSKA M., TERELAK H., WITEK T. 1993: Ocena stopnia zanieczyszczenia gleb i roślin metalami ciężkimi i siarką. IUNG, Puławy: 20 pp. MARKOWSKI S. 1971: Wstępna charakterystyka złóż gytii na Ziemi Szczecińskiej. Zesz. Pr o b i Post. Nauk

R o i 107: 73-84.

MATUSZKIEWICZ W. 2006: Przewodnik do oznaczania zbiorowisk roślinnych Polski. PWN, Warszawa. MIREK Z., PIĘKNOŚ-MIRKOWA H., ZAJĄC A., ZAJĄC M. 2002: Vascular Plants o f Poland. A checklist.

Polish Botanical Studies. Guidebook series 15: 303 pp.

MOCEK A., DRZYMAŁA S. 2010: Geneza, analiza i klasyfikacja gleb. Wyd. AR Poznań: 418 pp.

OKOŁOWICZ M. 1999: Gleby organiczne torfowiska Pożary w Puszczy Kampinoskiej. Rocz. Glebozn. 50, 4: 65-80.

OKOŁOWICZ M., SOWA A. 1997: Gleby torfowo-murszowe rezerwatu Krzywa Góra w Kampinoskim Parku Narodowym. Rocz. Glebozn. 48, 1: 105-121.

OKRUSZKO H. 1960: Gleby murszowe torfowisk dolinowych i ich chemiczne oraz fizyczne właściwości.

Rocz. Nauk Roi., s. F, 76, 1: 5-89.

ORZECHOWSKI M., SMÓLCZYŃSKI S., SOWIŃSKI P. 2004: Zasobność mad żuławskich w makroelementy ogólne i przyswajalne. Annales UMCS, Sec. E, 59, 3: 1065-1071.

OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. 1991: Metody analizy i oceny właściwości gleb i roślin. Inst. Ochr. Śród. Warszawa. 50: 331 pp.

POLSKI KOMITET NORMALIZACYJNY 1998: Polska Norma PN-R-04032: Gleby i utwory mineralne. Pobieranie próbek i oznaczanie składu granulometrycznego, Warszawa.

POLSKIE TOWARZYSTWO GLEBOZNAWCZE 1989: Klasyfikacja uziamienia gleb i gruntów mineralnych - PTG 2008. Rocz. Glebozn. 60, 2: 5-16.

POLSKIE TOWARZYSTWO GLEBOZNAWCZE 1989: Systematyka gleb Polski. Rocz. Glebozn. 40, 3/4: 45-54, Warszawa: 150 pp.

RATYŃSKA H. 2001: Roślinność Przełomu Warty i jej antropogeniczne przemiany. Wyd. ART Bydg.: 466 pp. RZĄSA S., OWCZARZAK W., MOCEK A. 1999: Problemy odwodnieniowej degradacji gleb uprawnych w

rejonach kopalnictwa odkrywkowego na Niżu Środkowopolskim. Wyd. AR. Poznań: 394 pp.

SOIL CONSERVATION SERVICE 1992: Soil Survey laboratory methods manual. Soil Survey. Invest Raport No. 42.,U.S. Dept. Agric., Washington DC.

SOIL SURVEY STAFF. SOIL SURVEY MANUAL 1951: U.S. Dept. Agriculture Handbook, No. 18.

SZOSZKIEWICZ J. 1977: Zbiorowiska roślinne łąk łęgowych w dolinie Warty. cz. A. Zbiorowiska klasy

Phragmitetea i Plantaginetea. Pr. Kom. Nauk Roln. PTPN, 23, 2: 465-501.

SZOSZKIEWICZ K. 1995: Fitosocjologiczna i rolnicza ocena łąk w dolinie Noteci z uwzględnieniem skutków melioracji. Pr. doktor, wyk. w AR Poznań.

SZUNIEWICZ J. 1968: Gleby torfowe RZD Biebrza, ich właściwości fizyko-wodne. Zesz. Probl. Post. Nauk

Roi. 83.

URBAN D., MIKOSZ A.I., MICHALSKA R. 2003: Zawartość makroelementów w glebach i roślinności łąkowej wybranych obiektów torfowiskowych Poleskiego Parku Narodowego. Annales UMCS, Sec. E, 58: 167-175.

ZALECENIA NAWOZOWE. 1985: Liczby graniczne do wyceny zawartości w glebach makro- i mikroelemen­ tów. IUNG, Puławy, s. P, 28: 34 pp.

Dr hab. Mieczysław Grzelak Department o f Grassland Science

University o f Life Science in Poznan ul. Wojska Polskiego 38/42,

60-627 Poznan tel. 61 848-7423, fax 61 848-7424

Cytaty

Powiązane dokumenty

Natomiast w warun- kach laboratoryjnych szybkość zużycia noża czy noży (trwałość) najefektywniej można wyznaczyć poprzez ubytek masy w stosunku do urobionej przez nóż czy

Kontrola przyjęcia spawów opiera się na inspekcji ultradźwiękowej oraz testach mechanicznych próbek szyn, regularnie w trakcie procesu zgrzewania.. Kon- troli dokonuje się

I nie można się dziwić – historia Profesora na tej ścieżce splatała się dokładnie z historią Instytutu, który przez długie lata był symbolem tygla

Podczas nauczania balansu na wózku inwalidzkim należy zwrócić uwagę na rozkład mas układu człowiek-wózek; zredukowanie stabilności statycznej wózka powinno umożliwić jego

Zbiory Muzeum Adama Mickiewicza dotyczyły początkowo przede wszystkim Romantyzmu, zabytki piśmiennictwa literatury staropolskiej znajdują się głównie w Bibliotekach: Narodowej

W odcinkami badanych taśm i znajdujący- związku z tym w Laboratorium Kryminali- Badania przeprowadzono we wrześ- mi się na nich odbitkami linii papilarnych stycznym

Nazwa Góra Liwecka (a także Liwecka Paryja) wydaje się być powiązana z oronimem Liwocz oznaczającym najwyższy szczyt (562 m n.p.m.) w Paśmie Liwocza i Brzanki, stanowiący wyraźną

Zbigniew Becker