• Nie Znaleziono Wyników

thehyperbolic space Umbilical routes along geodesics and hypercycles in Differential Geometry and its Applications

N/A
N/A
Protected

Academic year: 2021

Share "thehyperbolic space Umbilical routes along geodesics and hypercycles in Differential Geometry and its Applications"

Copied!
12
0
0

Pełen tekst

(1)

the hyperbolic space

Maciej Czarnecki

WydziałMatematykiiInformatyki,KatedraGeometrii,UniwersytetŁódzki,Łódź,Poland

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received25June2018 Receivedinrevisedform21 November2018

Availableonlinexxxx

CommunicatedbyE.Garcia-Rio

MSC:

53C12 53A30 53A35

Keywords:

Foliation Umbilical Hypercycle Geodesic Umbilicalroute

Givenageodesiclineγ inthehyperbolicspaceHn weformulatea necessaryand sufficient condition for a function along this geodesic which measure the mean curvatureoftotallyumbilicalleavesofafoliationorthogonaltoγ.Thenweextend theresulttoγ beingahypercyclei.e.ageodesiconahypersurfaceequidistantfrom thetotallygeodesicone.

©2019ElsevierB.V.Allrightsreserved.

0. Introduction

In the geometric theory of foliations, a question on foliations with totally umbilical leaves comes just after that ontotally geodesic foliations. Thelast onefor compact or finite volume manifolds hasdefinite and negative answer (see [8] for some history). In [13] Langevin and Walczak proved that on a closed manifoldofconstantnon-zerocurvaturethere arenototallyumbilicalfoliations.Foropenmanifoldsthere are geometrical classifications of totally geodesic foliations in the hyperbolic space by Ferus ([10]) and Browne([4]).

The question on totally umbilicalroutes along curves inthe real hyperbolic space Hn was formulated in [8]. In [1] we announced a solution for geodesics, now extended to transversals which are horocycles or hypercycles. More general result was obtained by the author and Langevin – see Remark 4.3 for a mention.

E-mailaddress:maczar@math.uni.lodz.pl.

https://doi.org/10.1016/j.difgeo.2019.02.001 0926-2245/©2019ElsevierB.V.Allrightsreserved.

(2)

ThemostgeneralresultofthepaperisTheorem3.1givingnecessaryandsufficientconditionforafunction alongarc-lengthparametrizedhypercycletogeneratetotallyumbilicalfoliations.Namely,ifthehypercycle has (constant) geodesic curvature cos ϕ then this condition states that the mean curvature of leaves h starts with at least−sin ϕ, ends with at mostsin ϕ andbetween itsmodified hyperbolic arcus tangentis a(sin ϕ)-Lipschitzfunction.The conditionismorevisible incase ofageodesictransversal(Theorem 2.2):

ath◦ h is1-Lipschitz.Respectiveinequalitiesfordifferentiableh appear inTheorem3.5 andTheorem 2.6.

Thelastoneformulatesash≥ h2− 1 andshowsthatclosetoleavesofsmallmeancurvaturethereismore roomforchangeofh.

1. Umbilicalhypersurfacesofthe hyperbolicspace

Umbilicity is a standard notion in Riemannian geometry and one of the easiest which is conformally invariant.

A point on a submanifold of aRiemannian manifold is called umbilical if all eigenvalues of the shape operator at this point are equal. Inthis casethe mean curvature at the points is this common value (or its opposite,dependingonorientation).Consequently, asubmanifoldistotally umbilical ifconsists onlyof umbilicalpointsandatotally umbilicalfoliation onaRiemannianmanifoldisafoliationwithalltheleaves totallyumbilical.

For the real n-dimensionalhyperbolic space Hn consider its half-spacemodel i.e. theset Πn,+ ={x Rn | xn> 0} endowed withtheRiemannianmetric

g(X, Y )x= 1 x2nX, Y  where .,. denotesthestandardEuclidean innerproduct.

Thehyperbolic distanceinthehalf-spaceisgivenbytheformula(cf.[2])

d(x, y) = 2 ath

ˆx − ˆy2+ (xn− yn)2

ˆx − ˆy2+ (xn+ yn)2 where x = (xˆ 1,. . . ,xn−1) andanalogouslyfory.Here

ath = (tanh)−1 : t→ ln

1 + t 1− t. IntheparticularcaseΠ2,+⊂ C,

d(z, w) = 2 ath

z− w z− ¯w

,

especiallyd(ai,bi)=lnabfora,b> 0.

Everyisometryofthehalf-spacemodelisaconformaldiffeomorphismΠn,+ ontoitselfi.e.acomposition ofahorizontaltranslation,adilation,aninversioninasphereorthogonaltotheidealboundaryoridentity, and anorthogonaltransformationinthefirstn− 1 variables(cf. [2]).

Inparticular, foranytwogeodesiclinesthere isanisometrysendingonetoanother.

Hn isanHadamardmanifoldsointhepurelymetricway(cf.[3])wecoulddefinetheidealboundaryand horospheres.Inthehalf-spacemodel,theidealboundary isatopological(n−1) sphere

Rn−1× {0}

∪{∞}.

A horosphere isaspheretangenttoRn−1× {0} (withouttangencypoint)orahyperplane paralleltoit.

(3)

Fig. 1. Hyperspheres and horospheres.

Totallygeodesichypersurfaces areopenhemi-spheresoropenhalf-hyperplanesorthogonaltoRn−1×{0}.

Aconnectedcomponentofasetequidistantfrom atotallygeodesic hypersurfaceiscalledahypersphere.In thehalf-spacemodel,ahypersphereisapartofasphereorhyperplanetransverselyintersectingRn−1× {0}

includedinΠn,+.(SeeFig.1.)

A horosphere has natural orientation inside it. For a hypersphere S we induce its orientation from orientationofthecorrespondingtotallygeodesichypersurfaceS0 fromwhichS isequidistantinsuchaway thatahyperballbounded byS sharestheidealboundarywiththehyperbolichalf-spaceboundedbyS0. Definition1.1.Weusethecommonnamegeneralizedhypersphere foracomplete hypersurfaceinHnwhich iseitherhorosphere,hypersphereoratotallygeodesichypersurfaceandattachto suchageneralizedhyper- sphere itsangleofintersection withtheidealboundary.

Thusahorosphereis0-or-π-hypersphere(dependingonitsend)whileatotallygeodesichypersurfaceis a π2-hypersphere.

Proposition 1.2.Let ageneralizedhypersphere beorientedinside (i.e. “down” inthehalf-space model)and makesexternal angleβ withtheidealboundary.Then itsmeancurvature isconstant andequals−cos β.

Ahorosphere of end∞ is ofconstant meancurvature 1.

Proof. UsingChristoffelsymbols for aconformal changeofRiemannianmetric([9])onecancalculatethe secondfundamentalform forhyperplanesinΠn,+.

AssumethatthehypersphereisrepresentedbyapartofhyperplaneS makingangleβ with Rn−1× {0}

andv itsunitnormalvector i.e.v = (v1,. . . ,vn)⊥ S andv= 1. Thenobviouslyvn =±cos β.

Lużyńczyk in [14] observed that the shape operator of S ∩ Πn,+ is simply vn· Id so with the given orientationh=−cos β. 2

Proposition1.3.AconnectedcompleteunboundedhypersurfaceofHnistotallyumbilicaliffitisageneralized hypersphere.

Proof. Itisclassical(cf.[16])thatanytotallyumbilicalhypersurfaceofRn iscontainedinasphereor ina hyperplane.

The half-spacemodel ofHn is conformallyequivalent to Rn. Conformal diffeomorphisms preserve um- bilicityhenceallconnectedcompletetotallyumbilicalhypersurfacesinthehalf-spacemodelarenonempty intersections ofΠn+byasphereor ahyperplane.

Amongthem there aremetricsphereswhich arebounded so anyunboundedcomplete umbilicalhyper- surface is the cross-section of a sphere or hyperplane not disjoint with ideal boundary i.e. a generalized hypersphere.Moredetailedexplanationcanbe foundin[5]. 2

(4)

Definition 1.4. A ϕ-hypercycle is ageodesic line onaϕ-hypersphere, ϕ∈ [0,π]. In thehalf-spacemodela ϕ-hypercycle isacross-sectionofaϕ-hyperspherewitha2-dimensionalplanethroughitscenterorsimply open raymakingangleϕ withtheidealboundary.

Example 1.5. A generalized ϕ-hypercycle has constant geodesic curvature equal |cos ϕ| (cf. [6]). In Π2,+

hypercycles (atthesametimehyperspheres,n= 2)are

1. geodesic = π2)of ideal ends 0 and ∞ being positive imaginary half-axis iR+ parametrized by arc- lengthast→ iet;

2. ϕ-hypercycle Eϕ = eR+, ϕ  0,π2

, of ideal ends 0 and ∞ parametrized by arc-length as t →

et sin ϕ+iϕ;

3. horocycle(ϕ= π)withtheidealend∞ having arc-lengthparametrizationst→ t+ ia witha> 0.

2. Umbilicalroutesalonggeodesics

In thissection we shallstudy totally umbilicalfoliationsofHn orthogonalto agiven geodesicline.We shall provide a Lipschitz-type condition (Theorem 2.2) and a differentiable condition (Theorem 2.6) for changeofthemeancurvatureofleavesalongthegeodesic.

Definition 2.1. Let γ : R→ Hn be an arc-lengthparametrized curve. Wesay thata realfunction h is an umbilical route along γ if the family (Lt) of generalized hyperspheres orthogonal to γ and having mean curvature h(t) atγ(t) couldbe extendedtoatotallyumbilicalfoliationofHn.

Incodimension1 therealhyperbolic spaceistheonlycarryingnon-trivial umbilical routes.

Inanopenballthereisnofoliationtangenttotheboundaryandtotallyumbilicalcompletehypersurfaces inotherconstantcurvaturespaces,Rn andSn,arefullspheresorhyperplanes.Ontheotherhand,anytwo nonparallel hyperplanesinRn intersect.Thus inSn there isno umbilicalroute andinRn theonly oneis constantlyequal0 alongastraightline.

In nonconstant curvature even very regular symmetric spaces like the complex hyperbolic space CHn havenototallyumbilicalhypersurfaces.

We start with a very simple case of umbilical route along a geodesic where the situation is clear and formulaearepredictable.

Theorem 2.2. Let F be a transversely C0 codimension 1 totally umbilical foliation of Hn orthogonal to an arc-length parametrized geodesic line γ. If for any t ∈ R the mean curvature of the leaf (taken with orientation oppositetoγ)throughγ(t) ish(t) then |h|≤ 1 and therearet,t+∈ [−∞,+∞] suchthat

(i) h|(−∞,t]≡ −1,

(ii) the function (ath◦ h)|(t,t+) is 1-Lipschitz, (iii) h|[t+,+∞)≡ 1.

(1)

Conversely,if h:R→ [−1,1] is acontinuous functionsatisfying (1) thenh isan umbilicalroutealong any geodesic linein Hn.

Fortheproofwe needelementarylemmas.

Lemma2.3.Lets> 0,β ∈ [0,π) andC beacircleofcenterC∈ C andradiusR orthogonaltotheimaginary axis iR at pointi· s andmakingexternal angleβ withtherealaxis.

(5)

Fig. 2. Hypercycles orthogonal to a geodesic.

Then

R = s

1 + cos β, C = i s cos β 1 + cos β andthepoint(s)of theintersection C ∩ R areoftheform

a± =±s tanβ 2.

Proof. SinceC isorthogonalto iR itscenterC∈ iR andC = s− R (Fig.2). Atapointa∈ C ∩ R radius isperpendicularto thetangent.Ifβ isacute(other casesaresimilar)then 0aC =π2 − β and

s− R

R = sinπ 2− β

which implies R = s 1 + cos β. ThuswehaveC and

a =±R sin β = ±s sin β

1 + cos β =±s tanβ

2. 2

Lemma2.4.Let0< s1< s212∈ [0,π) andC1,C2⊂ C becirclesorthogonaltotheimaginaryaxisiR at pointsis1,is2 andmeeting thereal axisR atangles β12,respectively.

ThenC1 andC2 do notintersect in theupper half-planeΠ2,+ iff cotβ22

cotβ21 s2 s1

providedthat β12∈ (0,π) or β1= β2= 0.

Proof. For agiven C1 whichintersectsR transversally 1 > 0)theonly situationof C1∩ C2∩ Π2,+=∅ is thata2 ≤ a1 anda1+≤ a2+. HenceweobtaintheinequalitybyLemma2.3. 2

Corollary 2.5. LetS bea hyperspherewhich isof constant distanceδ from atotally geodesic hypersurface.

If β∈ 0,π2

issuchthat themeancurvature ofS is equalto−cos β thencos β = tanh δ.

Proof. Afterahorizontaltranslation andadilation (bothare hyperbolic isometries)we mayassumethat S is containedinaspherecenteredontheimaginary axis andintersects this axisat pointis, s> 1,while

(6)

the corresponding totally geodesichypersurfacemeets iR atthe pointi. Then by definitionof hyperbolic distance inΠn,+ wehaveδ = ln s.

Now wehaveequalityinLemma2.4 andthesecondangleis π2 so eδ= cotβ2.Hence

δ = ln cotβ

2 = ln1 + cos β

sin β = ln 1 + cos β

1− cos2β = ath(cos β).

In[11] we couldfindthisformulaintheequivalent formcot β = sinh δ. 2 Now wearepreparedfor

ProofofTheorem2.2. AgeodesicsphereinHn cannotserveasaleafofacodimension1 foliationbecause itsinteriorhasnonzeroEulercharacteristicandcarriesnofoliationtangenttotheboundary.Thustheonly possible leavesoftotallyumbilicalfoliationsonHn aregeneralizedhyperspheresand infact|h|≤ 1.

To prove (i) observe that if some leaf Lγ(t) is a horosphere “centered” at the begin γ(−∞) then all precedingleavesmustbehorospheresofthesame“centre”–thereisnoroomforotheridealboundary.This argument worksinproofof(iii)as well.

We useaconformaltransformation ofΠn,+ whichisthen hyperbolic isometryto putthegeodesic γ as then-thhalf-axis

An,+={x1= . . . = xn−1 = 0, xn > 0}

oriented“up”.Anygeneralizedsphererepresentingageneralizedhypersphereorthogonaltoγ hasitscenter ontheAn,+.

Consider sectionof Πn,+ by any2-dimensional plane P containingthen-th axis and orthogonalto the idealboundary.ThenP∩Πn,+isisometrictoΠ2,+andF ∩P isgeneralizedhypercyclefoliationorthogonal to γ = P∩ An,+.

In Π2,+ weparametrizethegeodesic γ byarc-length,namely γ(t)= iet. Fixt1 and forany t2> t1 use criterionfromLemma2.4tohaveLγ(t1)∩Lγ(t2)=∅.ByProposition1.2themeancurvatureofLγ(ti)equals h(ti)=−cos β(ti),i= 1,2,thus

et2

et1 cotβ(t22) cotβ(t21) =

1−h(t2) 1−(h(t2))2

1−h(t1) 1−(h(t1))2

=

 1+h(t2) 1−h(t2)

−1

 1+h(t1) 1−h(t1)

−1 = e−ath(h(t2)) e−ath(h(t1))

whichisexactly(ii).

Now assumethat h iscontinuous, bounded by 1 andsatisfy (1). Conditions (i) and (iii) imply proper foliationinsidethelastofinitialhorospheresandthefirstoffinishingones.From(ii)weknowthatgeneralized hyperspheresofgiven meancurvaturearepairwisedisjoint.

Since everyleaf dividesHn into two hyperbolic half-spacesand h iscontinuous, there is aleafthrough everypointbetweeninitialandfinishinghorospheresandfamilyofhypersphereswithgivenh alongγ covers alltheHn. 2

If weassumethatafoliationis transverselydifferentiable thenthe conditiononumbilicalroute iseven simpler.

Theorem2.6.Forfunctionh ofmeancurvatureofleavesofatransverselyC1totallyumbilicalcodimension 1 foliationofHnalongarc-lengthparametrizedgeodesic(transversalorientation oppositetothegeodesic)there are t,t+∈ [−∞,+∞] such that

(7)

Fig. 3. “Rising sun” foliation inH2of common ends 0 and∞.

(i) h|(−∞,t]≡ −1, (ii) h ≥ h2− 1, (iii) h|[t+,+∞)≡ 1.

(2)

Conversely, if h : R → [−1,1] is a C1-function satisfying (2) then h is an umbilical route along any geodesic lineinHn.

Proof. Forany ε> 0 (1)(ii)gives

−ath(h(t + ε))− ath(h(t))

ε ≤ 1

Aslimitinε→ 0 weobtain

h

1− h2 ≥ −1. 2

Remark2.7.Thecondition(2)(ii)onthederivativeofh couldbereformulatedintermsofintersectionangle as

β≥ − sin β.

Example2.8.

1. Totallygeodesicfoliationwithh≡ 0 isrepresentedbyconcentricspheres.

2. Horosphericalfoliationwithh≡ −1 isrepresentedbyspherestangentatonepoint.

3. A function h = tanh is extremal for estimation (2)(ii). A foliation defined by h is represented by sphereshaving an(n− 2)-dimensionalsphere⊂ Rn−1× {0}∪ {∞} incommon.Thisisso-calledpencil of spheres definedbylinearcombinationsofequations oftwointersectingspheres.

Indimension2 such afoliationlookslike “risingsun”(Fig. 3).

Proposition 2.9. For a given (even non-discrete) family of generalized hyperspheres pairwise disjoint and orthogonaltoagivengeodesic thereisatotally umbilicalfoliationofwholeHn containingthesehypercycles asleaves.

Proof. Let γ be an arc-length parametrized geodesicline inHn and (Ltα)α∈A be afamily of generalized hypersphereswhicharepairwisedisjoint.AssumethatLtα containsγ(tα) andhasmeancurvatureequalto h(tα).

(8)

We shall construct an umbilical route along γ. First add to the set X = {tα | α ∈ A} set X of its accumulation points. In X define values of h as limits. Observe thatfunction h on X∪ X is such that ath◦ h is1-Lipschitz.Thiscomesfrom disjointnessofthefamilyandLemma2.3.

The set R\ (X ∪ X) is open so it is a unionof disjoint open intervals. On everyof its closure define h as linearfunction. If the interval is infinite then h is constant. Hence we obtaina continuous function h:R→ [−1,1] suchthatthefunctionath◦ h is1-Lipschitz.

In fact, if interval [a,b] such that(a,b) ⊂ R\ (X ∪ X) thenwe useconvexity of ath if h(a),h(b) ≥ 0 (respectively, convexity of −ath if h(a),h(b) ≤ 0). Otherwise, there is c ∈ [a,b] such that h(c) = 0 and theargumentaboveworksforintervals[a,c] and[c,b] byaddingtotallygeodesichypersurfaceas Lc tothe family.

BytheTheorem2.2functionh isthenumbilicalroutealongγ. 2

Remark2.10.Theaboveconstruction couldbemodifiedtoobtainasmoothumbilicalrouteifthefamilyof hyperspheresisdiscrete.

On theother hand, omittingassumption onorthogonality tosome geodesicline makes Proposition2.9 false.Itis enoughtotaketwo disjoint totallygeodesichypersurfacesand athirdwhich isdisjoint butnot separatingthem.

3. Umbilicalroutesalonghypercycles

Now weshall consider totallyumbilicalfoliationsorthogonal toahypercycle. Similarlyto thecaseof a geodesic weshall provide aLipschitz-typeand differential condition.Theyare somethingtechnical butin termsofintersectionangle(Remark3.6)inequalityiseasiertoapply.

Theorem3.1.Let0< ϕ<π2.AssumethatF isatransverselyC0codimension1 totallyumbilicalfoliationof Hn orthogonaltoanarc-lengthparametrizedϕ-hypercycle γ.Ifforanyt∈ R themeancurvatureoftheleaf (takenwithorientation oppositetoγ)throughγ(t) ish(t) then|h|≤ sin ϕ andtherearet,t+∈ [−∞,+∞]

such that

(i) h|(−∞,t] ≡ − sin ϕ,

(ii) t→ ln sin ϕ− h(t) h(t) cos ϕ +

1− (h(t))2 sin ϕ is a (sin ϕ)-Lipschitz function on (t, t+), (iii) h|[t+,+∞)≡ sin ϕ.

(3)

Conversely,if h:R→ [−sin ϕ,sin ϕ] isacontinuousfunctionsatisfying (3) thenh isan umbilicalroute along any ϕ-hypercycle inHn.

Weshallmodify Lemmas2.3and 2.4.DenotebyEϕ theopenrayeR+⊂ C.

Lemma 3.2. Let ϕ∈ 0,π2

,s> 0, β ∈ [0,π),and β = π2 + ϕ. Assumethat C ⊂ C isa circleof centerC and radiusR meetingorthogonally Eϕ atonlyone pointse andmeeting therealaxis R atangleβ.

Then β∈ π

2 − ϕ,π2+ ϕ ,

R = s sin ϕ

sin ϕ + cos β, C = s cos ϕ cos β

sin ϕ + cos β + is sin ϕ cos β sin ϕ + cos β and thepoint(s)of theintersectionC ∩ R areof theform

a= s cos(ϕ± β) sin ϕ + cos β.

(9)

Fig. 4. Hypercycles orthogonal to a hypercycle.

Proof. SinceC ⊥ Eϕ,C = ce forsomec∈ R (Fig.4). Thus

R =ce− se=|s − c| = s − c

becauseifc= s+ R then(s+ 2R)ewouldbethesecondpointofintersectionEϕ∩ C.ThetoppointofC is

C + iR = (s− R)e+ iR = (s− R) cos ϕ + i(s sin ϕ + (1 − sin ϕ)R).

ShiftinghorizontallybytherealpartofC totheleft wereducethesituationtoLemma2.3.Now

R = s sin ϕ + (1− sin ϕ)R 1 + cos β hence

R = s sin ϕ

sin ϕ + cos β and C = (s− R)e hencetherealandimaginarypartofC are

C = s cos ϕ cos β

sin ϕ + cos β, C = s sin ϕ cos β sin ϕ + cos β Moreover,C intersectstherealaxis atpoints

C ± (C + R) tanβ

2 = s cos ϕ cos β sin ϕ + cos β

±

s sin ϕ cos β

sin ϕ + cos β + s sin ϕ sin ϕ + cos β

 sin β 1 + cos β

= s cos(ϕ∓ β) sin ϕ + cos β.

ObservethatC cutsEϕ atonlyonepointiff|C|≤ R i.e.|cos β|≤ sin ϕ so π2− ϕ≤ β < π2 + ϕ.Butthis meansthattheleft andrighthandpointsofC ∩ R arerespectively

(10)

a= s cos(ϕ + β)

sin ϕ + cos β ≤ 0, a+= s cos(ϕ− β)

sin ϕ + cos β > 0. 2 Lemma 3.3. Let ϕ∈

0,π2

, 0< s1< s2,and β12 π

2− ϕ,π2 + ϕ

.Assume that C1,C2 ⊂ C are circles orthogonal toEϕ atpointss1e,s2e andmeetingthereal axis R atanglesβ12,respectively.

Then C1 and C2 donot intersect intheupperhalf-planeΠ2,+ iff

sin ϕ+cos β2

cos(ϕ+β2) sin ϕ+cos β1

cos(ϕ+β1)

≤s2 s1

.

Proof. Under these assumptions circles C1 and C2 do not intersect in Π2,+ iff C1 is inside C2 (including internaltangency)ortheyintersectonthesideof−s1enot“toohigh”i.e.upperintersectionpointisstill underoronR.

SincecentersofC1andC2 lieonthelinespanned byEϕ,pointsC1∩ C2aresymmetricinthisline.Thus iftheleftoneisunderthereal axisthenthesameistruefortheright one.

This impliesthatthesecond conditionisequivalent to therequestthattheleft handpoint ofC1∩ R is to therightofthelefthandpointofC2∩ R.NowitisenoughtouseLemma3.2. 2

Remark3.4. If β = π2 + ϕ the role ofcircle meetingR atthis angle playsastraightline and theirunique common pointis cos βs .

If C1 issuchaline thenC2 hasnoroomto bend andmust aline parallel toC1.Similarly,ifC2 is aline meetingR atangle π2 − ϕ thenC1 C2.

Proof of Theorem 3.1. As in the proof of Theorem 2.2 we conclude that the only possible leaves are generalizedhypercycles.EveryofthemisdiffeomorphictoRn−1anddividesHnintotwopartsdiffeomorphic to Rn.FromthetopologicalpointofviewthefoliationisaproductRn−1× R soanytransversalmeetsany leafat mostonce.

LikeinTheorem2.2wereducethesituationtothedimension2 withAn,+beingthegeodesicfromwhich theϕ-hypercycleisequidistant.Lemma3.2implies|h|≤ sin ϕ.(i)and(iii)areexplainedinRemark3.4.

To prove(ii)recallthatEϕhasarc-lengthparametrization γ(t) = et sin ϕ+iϕ, t∈ R and use Lemma3.3.Infact,forgivent1< t2wehave

et2−t1sin ϕ

= et2sin ϕ et1sin ϕ

sin ϕ−h(t2)

−h(t2) cos ϕ

1−(h(t2))2 sin ϕ sin ϕ−h(t1)

−h(t1) cos ϕ−

1−(h(t1))2 sin ϕ

Now applyinglogarithmto bothsidesweseethatthefunction

t→ ln sin ϕ− h(t) h(t) cos ϕ +

1− (h(t))2 sin ϕ is (sin ϕ)-Lipschitz.

For theconverse, argument from Theorem 2.2 works similarly but the foliation orthogonal to one hy- percycle does not fillall the Hn. Anyway leaves of such afoliation have alimit (on both sides) which is anumbilicalhypersurface.Adomain boundedbyahyperspherecanbe easilyfoliatedaddingleavesofthe samemeancurvature(Fig. 5). 2

(11)

Fig. 5. Extension of umbilical foliation orthogonal to a hypercycle.

Differentiationof(3)(ii)leadsto

Theorem3.5.Thefunctionh ofmeancurvatureofleavesoftotallyumbilicaltransversallyC1codimension 1 foliation of Hn along arc-length parametrized ϕ-hypercycle satisfies |h| ≤ sin ϕ and there are t,t+ [−∞,+∞] such that

(i) h|(−∞,t]≡ − sin ϕ, (ii) h(t)≥ (h(t)−sin ϕ)

h(t) cos ϕ+

1−(h(t))2 sin ϕ

1−(h(t))2 1−h sin ϕ+

1−(h(t))2cos ϕ on (t, t+), (iii) h|[t+,+∞)≡ sin ϕ.

(4)

Conversely,if h:R→ [−sin ϕ,sin ϕ] isaC1-function satisfying (4) thenh is an umbilical route along any ϕ-hypercycle inHn.

Remark3.6.TheconditionfromTheorem3.5 looksshorterintermsofintersectionangle

β (sin ϕ + cos β) cos(ϕ + β) 1 + sin(ϕ + β) . Indeed,itisenoughtoreformulateinequality

sin ϕ + cos β

− cos(ϕ + β)



≤ sin ϕ.

AnyhorocyclecouldbetransformedintoalineparalleltoRn−1× {0} byinversioncenteredattheendof thehorocycle.Thusanysphereorthogonaltoitintersectsthehorocycleintwopoints.Theonlygeneralized hyperspheres orthogonal to the horocycle and meetingit once are 0-hyperspheres represented byvertical hyperplanes.This motivatesthefollowing

Corollary3.7. The onlyumbilicalroute along ahorocycleish≡ 0.

Example3.8.

1. Afamilyofdisjointtotallygeodesichypersurfacesorthogonaltoahypercycleatanyofitspointfoliates wholetheHn.

(12)

2. Constantcurvaturefoliationwithh≡ sin ϕ isrepresentedbyparallelhyperplaneswhichareorthogonal to(cos ϕ)-hypercycles.

3. Meancurvatureofleavesofafoliationbyconcentricspheres(withthecenteroutsideofΠn,+)orthogonal to someϕ-hypercyclevaries over (−sin ϕ,sin ϕ) along thehypercycle butonremaining domain ofHn couldincludeevenhorospheres.

4. Finalremarks

4.1.In[10] Ferusclassified totallygeodesiccodimension1 foliationsofHnasthosewithorthogonaltransver- salofgeodesiccurvature≤ 1.

At any point of such a curve in Hn one can find a generalized hypercycle in contact of order 2. If curvature of orthogonal transversal exceeded 1 then even totally geodesic leaves would intersect.In such sense,itsuffices toconsider onlygeneralizedhypercycles forlocal studyoftotallyumbilicalfoliations.

4.2.Ifkg(p) and kn(p) denoterespectivelythenormof thesecondfundamentalform oftheleafthroughp and geodesiccurvatureofanorthogonaltransversalthenkg2+ kn2 ≤ 1 incaseoftotallyumbilicalfoliations along hypercycles.

Thisisaveryspecialcaseof Hadamardfoliations(cf.[7])forwhichthisestimationisprobablyalsotrue.

4.3.TotallyumbilicalfoliationsofHncouldbedescribedinapurelyconformalway.Infact,theidealbound- ary and totally umbilicalleaves are represented by generalized spheres and the mean curvature depends onlyonangleof intersection.

This motivates descriptionofsuch objectsinthe spaceof spheres–deSitter spacewhich isquadricin the Lorentz space (a comprehensive study of this theory can be found in [12] and [15]). The author and Langevin gave alocal classificationbased on boosted time cones inthe de Sitterspace and deduce some global factsoncurvatureoforthogonaltransversals.

4.4.Inthepaperwerestrictedtohypercyclicorthogonaltransversalsasthemostsimilartototallyumbilical higher-dimensionalsubmanifolds.

We could define abi-umbilicalfoliation as totallyumbilical foliationwith a/allorthogonal transversals being totallyumbilical.Theclassificationofbi-umbilical foliationsonHn maybeofsomeinterestevenfor codimension2 inH4.

References

[1]M. Badura, M. Czarnecki, Recent progress ingeometric foliations theory, in: Foliations 2012, World Scientific, 2013, pp. 9–21.

[2]R.Benedetti,C.Petronio,LecturesonHyperbolicGeometry,Springer,1992.

[3]M.Bridson,A.Haefliger,MetricSpacesofNon-positiveCurvature,Springer,1999.

[4]H.Browne,CodimensiononetotallygeodesicfoliationsofHn,TohokuMath.J.36(1984)315–340.

[5]Th.Cecil,P.Ryan,GeometryofHypersurfaces,Springer,2015.

[6]M.Czarnecki,OnthecurvatureofcirclesandcurvesinHn,Demonstr.Math.34 (1)(2001)181–186.

[7]M.Czarnecki,HadamardfoliationsofHn,Differ.Geom.Appl.20 (3)(2004)357–365.

[8]M.Czarnecki,P.G.Walczak,Extrinsicgeometryoffoliations,in:Foliations2005,WorldScientific,2006,pp. 149–167.

[9]M.P.doCarmo,RiemannianGeometry,Springer,1992.

[10]D.Ferus,Onisometricimmersionsbetweenhyperbolicspaces,Math.Ann.205(1973)193–200.

[11]W.Goldman,ComplexHyperbolicGeometry,OxfordUniversityPress,1999.

[12]U.Hertrich-Jeromin,IntroductiontoMöbiusDifferentialGeometry,CambridgeUniversityPress,2003.

[13]R.Langevin,P.G.Walczak,Conformalgeometryoffoliations,Geom.Dedic.132(2008)135–178.

[14]M.Lużyńczyk,DifferentialGeometryoftheHyperbolicSpace,MScthesis,UniwersytetŁódzki,2009(inPolish).

[15]J.O’Hara,EnergyofKnotsandConformalGeometry,WorldScientific,2003.

[16]M.Spivak,AComprehensiveIntroductiontoDifferentialGeometry,vol. 4,PublishorPerish,1999.

Cytaty

Powiązane dokumenty

ANNALES SOCIETATIS MATHEMAT1CAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XX!V (1984) ROCZNIK1 POLSK1EGO TOWARZYSTWA MATEMATYCZNEGOH. Séria I: PRACE MATEMATYCZNE

Apply this method to minimal codimension (equal 4) totally geodesic foliations of the quaternionic hyperbolic space. Acknowledgement: Great thanks for Szymon Walczak for the

A complex geodesic is the projectivization of a vector space in C n+1 spanned by two linearly indpent negative vectors.. It is isometric to real hyperbolic plane

By considering a broader class of isometric immersions, Abe and Haas [2] showed that given a dif- ferentiable lamination on H n (−1) there is a family of isometric immersions of H

Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and

Hence, the theory of Lipschitz mappings between semimetric spaces cannot yield more information than the theory of Lip- schitz mappings between metric spaces.. This is the reason

Definition 4.2. Consider the Γ-semigroup S of Example 2.3. Let S be the set of all integers of the form 4n+1 and Γ be the set of all integers of the form 4n+3 where n is an integer.

The purpose of this paper is to give some pinching theorems with respect to the scalar curvature of 4-dimensional conformally flat (concircularly flat, quasi-conformally flat)