• Nie Znaleziono Wyników

Wave effects on deformable bodies

N/A
N/A
Protected

Academic year: 2021

Share "Wave effects on deformable bodies"

Copied!
13
0
0

Pełen tekst

(1)

E L S E V I E R

Printed in Great Britain. A l l rights reserved 0141-1187/94/$07.00

J . N. Newman

Department of Ocean Engineermg, MIT, Cambridge, Massacliusetts 02139, USA

The linearized frequency-domain analysis o f wave radiation and diffraction by a three-dimensional body i n a fixed mean position is extended to a variety of deformable body motions. These include continuous structural deflections, and also discontinuous motions which can be used to represent multiple interacting bodies. A general methodology is adopted with the body deflection defined by an expansion i n arbitrary modal shape functions, and the response i n each mode is obtained as a logical extension o f the usual analysis f o r rigid-body modes. Illustrative computations are presented f o r the bending of a freely-floating barge, and of a vertical column with cantilever support at the bottom. For these structural deflections the use of orthogonal polynomials is emphasized, as an alternative to the more conventional use o f natural modes. Also presented are computations for the motions of two rigid barges connected by a hinge joint, and for a finite array o f images used to approximate wall effects on a cylinder i n a channel. Results f r o m the latter problem are compared with more analytical solutions, and it is shown that practical results can be obtained f o r the first-order hydrodynamic force coefficients using only a few images.

1 I N T R O D U C T I O N

W a v e - i n d u c e d m o t i o n s o f ships a n d o f f s h o r e p l a t f o r m s are u s u a l l y described b y six r i g i d - b o d y modes i n c l u d i n g t r a n s l a t i o n s (surge, sway, heave) p a r a l l e l t o the Cartesian axes, a n d r o t a d o n s ( r o l l , p i t c h , y a w ) a b o u t these axes. A d d i t i o n a l 'generalized' modes o f m o t i o n are s i g n i f i c a n t i n v a r i o u s a p p l i c a t i o n s i n c l u d i n g c o n t i n u o u s s t r u c t u r a l deflections, d i s c o n t i n u o u s deflections o f m u l t i - c o m p o n e n t bodies w i t h m e c h a n i c a l j o i n t s , a n d the i n t e r a c t i o n s o f separate bodies. These a p p l i c a t i o n s are q u i t e d i f f e r e n t i n a p r a c t i c a l context, b u t s i m i l a r m a t h e m a t i c a l l y . T h u s i t is convenient t o analyze t h e m f r o m a single generalized a p p r o a c h . W a v e - i n d u c e d s t r u c t u r a l loads are i m p o r t a n t f o r m a n y p r a c t i c a l a p p l i c a t i o n s , b u t i n m o s t cases the s t r u c t u r a l a n d h y d r o d y n a m i c analyses are p e r f o r m e d separately. T h i s is a p p r o p r i a t e f o r s t i f f structures, where the eigenfrequencies o f elastic deflections are substan-t i a l l y h i g h e r substan-t h a n substan-the frequencies o f substan-the firssubstan-t-order w a v e loads. I n these circumstances the analysis o f w a v e r a d i a t i o n a n d d i f f r a c t i o n can be p e r f o r m e d neglecting the s t r u c t u r a l modes, a n d the h y d r o d y n a m i c analysis o f these m o d e s can be restricted t o the e v a l u a t i o n o f the c o r r e s p o n d i n g added-mass coefficients u s i n g a s i m p l i f i e d h i g h - f r e q u e n c y a p p r o x i m a t i o n o f the free-surface effect. O n the o t h e r h a n d , i n a p p l i c a t i o n s where the eigen-frequencies o f elastic deflections f a l l w i t h i n the s p e c t r u m o f first-order wave loads, the t w o p r o b l e m s m u s t be

c o u p l e d t o account f o r wave r a d i a t i o n i n the analysis o f the s t r u c t u r a l modes.

I n s t r u c t u r a l analysis i t is c o m m o n t o define a special set o f natural m o d e shapes, w h i c h c o r r e s p o n d t o the a c t u a l elastic deflections o f the b o d y i n a specified p h y s i c a l c o n t e x t . T h i s is d i f f i c u l t f o r h y d r o e l a s t i c p r o b l e m s , w h e r e the m o d e shapes are affected b y the h y d r o d y n a m i c pressure field a n d c a n n o t be specified i n advance. T h i s d i f f i c u l t y can be a v o i d e d i f the s t r u c t u r a l d e f l e c d o n is represented instead b y a s u p e r p o s i t i o n o f simpler mathematical m o d e shapes w h i c h are s u f f i c i e n t l y general a n d c o m p l e t e t o represent the p h y s i c a l m o t i o n . F o r example, the s t r u c t u r a l deflections o f a floating slender ship can be expressed b y the free u n d a m p e d ' w e t ' b e n d i n g m o d e s o f the h u l l i n water, b y the ' d r y ' modes o f the same structure i n air, as r e c o m m e n d e d b y B i s h o p a n d P r i c e , ' o r m o r e s i m p l y the o r t h o g o n a l modes o f a u n i f o r m beam, as s h o w n b y G r a n . ^ A n even s i m p l e r representation can be developed i n terms o f o r t h o g o n a l p o l y n o m i a l s , despite the f a c t t h a t these l a c k a p h y s i c a l basis a n d d o n o t satisfy the a p p r o p r i a t e free-end b o u n d a r y c o n d i t i o n s .

A n a l o g o u s o p t i o n s exist i n d e f i n i n g the modes f o r d i s c o n t i n u o u s d e f l e c t i o n o f m u l t i p l e bodies. T h e usual d e f i n i t i o n o f each m o d e is w i t h one b o d y p e r f o r m i n g a u n i t a m p l i t u d e o f m o t i o n a n d the others fixed. I f N separate bodies osciflate i n d e p e n d e n t l y , w i t h six degrees o f m o t i o n f o r each b o d y , the ensemble has a t o t a l o f 6N degrees o f f r e e d o m . T h e i n d i v i d u a l bodies, a n d modes o f

(2)

48 J. N. Newman

m o t i o n , can be denoted b y a p a i r o f c o r r e s p o n d i n g indices, d e n o t i n g f o r example the a m p l i t u d e o f m o t i o n f o r b o d y n i n m o d e j b y the s y m b o l . H o w e v e r this is an a w k w a r d n o t a t i o n w h i c h obscures the a n a l o g y w i t h other a p p l i c a t i o n s . I t is m o r e convenient t o consider a single ' g l o b a l b o d y ' , d e f i n e d g e o m e t r i c a l l y b y the ensemble o f N separate bodies. F o r this example there are a t o t a l o f 6N modes o f the g l o b a l b o d y , o r m o r e i f the i n d i v i d u a l bodies are d e f o r m a b l e .

A n y specified d i s t r i b u d o n o f n o r m a l v e l o c i t y o n the ( g l o b a l ) b o d y surface is considered t o be a ' m o d e ' i n the present w o r k . T h e d e c o m p o s i d o n o f c o m p l i c a t e d b o d y m o t i o n s i n t o separate modes is j u s t i f i e d b y linear s u p e r p o s i t i o n , p r o v i d e d suitable m o d a l f u n c t i o n s are i n c l u d e d . The a p p r o p r i a t e d e f i n i t i o n o f each m o d e is n o n - u n i q u e , a n d subject t o choice. I n specific applica-t i o n s applica-the choice o f modes c a n be based o n physical considerations, a n d c o m p u t a t i o n a l efficiency.

T h e case o f t w o rigid bodies j o i n e d b y a hinge o r p i n j o i n t is a simple example, applicable t o a p a i r o f floating barges j o i n e d together b y an e q u i v a l e n t m o o r i n g arrangement. T h e hinge c o n s t r a i n t reduces the t o t a l n u m b e r o f degrees o f f r e e d o m f r o m t w e l v e t o seven, i n c l u d i n g six r i g i d modes o f the g l o b a l b o d y plus one a n g u l a r d e f l e c t i o n o f the hinge. S o l v i n g the l a t t e r p r o b l e m d i r e c t l y avoids the unnecessary s o l u t i o n f o r five e x t r a r a d i a t i o n potentials, a n d p e r m i t s the equations o f m o t i o n t o be solved i n a consistent m a n n e r w i t h o u t i m p o s i n g ad hoc constraints.

S i m i l a r considerations a p p l y i f the m e t h o d o f images is used t o analyse the m o t i o n s o f a single b o d y near a v e r t i c a l w a l l , or i f a finite n u m b e r o f images are used to a p p r o x i m a t e the effects o f t w o p a r a l l e l w a l l s i n a wave c h a n n e l . I f the t o t a l n u m b e r o f images is / , the general p r o b l e m f o r = ƒ + 1 separate bodies i n v o l v e s 6N r i g i d - b o d y m o t i o n s , b u t i n the u s u a l a p p l i c a t i o n the m o t i o n o f each image is either the same o r opposite t o t h a t o f the a c t u a l b o d y . S o l v i n g the l a t t e r p r o b l e m d i r e c t l y , w i t h a p p r o p r i a t e d e f i n i t i o n s o f the n o r m a l v e l o c i t y o n each image, reduces the t o t a l n u m b e r o f r a d i a t i o n potentials b y the f a c t o r \ / N .

Section 2 f o r m u l a t e s the linear h y d r o d y n a m i c analysis f o r a g l o b a l b o d y w i t h a r b i t r a r y specified modes o f m o t i o n . T h i s analysis leads t o s t r a i g h t f o r w a r d extensions o f the u s u a l addedmass, d a m p i n g , a n d e x c i t i n g -f o r c e coe-f-ficients -f o r a rigid b o d y . Special a t t e n t i o n is r e q u i r e d f o r the h y d r o s t a t i c coefficients, f o l l o w i n g the analysis i n Ref. 3. I l l u s t r a t i v e a p p l i c a t i o n s are then described i n Sections 3 - 6 .

F o r each o f the above applications the h y d r o d y n a m i c analysis is p e r f o r m e d using the three-dimensional r a d i a t i o n / d i f f r a c t i o n code W A M I T , based o n the b o u n d a r y - e l e m e n t ' p a n e l ' m e t h o d . F u r t h e r detafls r e g a r d i n g this code are given i n R e f s 4 - 7 . T o p r o v i d e a c o m p u t a t i o n a l basis f o r a n a l y z i n g the general p r o b l e m o f a b o d y w i t h a r b i t r a r y specified modes, t h e p r o g r a m has been extended so t h a t the user can specify the

f u n c t i o n a l f o r m o f generalized modes i n a d d i t i o n t o the six c o n v e n t i o n a l rigid-body m o t i o n s . P r o v i s i o n is m a d e t o specify e x t e r n a l mass, d a m p i n g , a n d stiffness matrices w i t h coefficients c o r r e s p o n d i n g t o each o f the modes o f m o t i o n . F o r each o f the applications described b e l o w , discretizations w i t h increasing numbers o f panels have been used t o v e r i f y numerical convergence. F o r example, i n the analysis o f the vertical c o l u m n i n Section 4, t w o discretizations ( w i t h N = 512,2048) t o t a l panels o n the c o l u m n are employed, a n d the results compared; the m a x i m u m relative difference observed i n the m o d a l amplitudes is 2 % . A s s u m i n g the numerical errors are p r o p o r t i o n a l t o \ / N , as i n Ref. 7, i t f o l l o w s that the results presented, based o n the finer discretization, are accurate w i t h i n 0-5%. Similar convergence tests a n d e r r o r estimates have been made f o r all o f the results presented.

2 F O R M U L A T I O N A N D F I R S T - O R D E R P R E S S U R E F O R C E

T i m e h a r m o n i c m o t i o n s o f s m a l l a m p l i t u d e are c o n -sidered, w i t h the c o m p l e x f a c t o r e'"' a p p l i e d t o a l l first-order o s c i l l a t o r y quantities. T h e b o u n d a r y c o n d i t i o n s o n the b o d y a n d free surface are linearized, a n d p o t e n t i a l flow is assumed. Cartesian coordinates are d e f i n e d w i t h z = 0 as the plane o f the u n d i s t u r b e d f r e e surface a n d z = -h as the b o t t o m . W i t h i n the fluid d o m a i n is a b o d y ( o r ensemble o f bodies) w i t h w e t t e d surface Sf,. T h e b o d y m a y be floating, submerged, o r b o t t o m - m o u n t e d .

Six c o n v e n t i o n a l r i g i d - b o d y m o t i o n s (surge, sway, heave, r o l l , p i t c h , y a w ) are d e n o t e d b y t h e indices 7 = 1 , 2 , 3 , 4 , 5 , 6 , respectively. T h e same n o t a t i o n is extended t o other modes o f b o d y d e f o r m a t i o n (7 = 7 , 8 , . . . , / ) . E a c h m o d e m a y be d e f i n e d b y a vector 'shape f u n c t i o n ' S j ( x ) w i t h Cartesian c o m p o -nents uj,vj,wj. F o r r i g i d - b o d y t r a n s l a t i o n ( 7 = 1 , 2 , 3 ) the shape f u n c t i o n Sj(x) is a u n i t vector i n the c o r r e s p o n d i n g d i r e c t i o n , a n d f o r rigid-body r o t a t i o n s (7 = 4 , 5 , 6 ) a b o u t the o r i g i n x = 0, S^(x) = Sy_3 x x . T h e displacement o f an a r b i t r a r y p o i n t w i t h i n the b o d y , due t o m o t i o n i n the 7 t h m o d e w i t h c o m p l e x a m p l i t u d e ( j , is represented b y the p r o d u c t ^jSj{x). T h e vector S^- is assumed t o be c o n t i n u o u s a n d d i f f e r e n t i a b l e near the b o d y surface S/,, w i t h divergence Dj = V • Sj. T h e divergence is zero f o r each r i g i d - b o d y m o d e . T h e n o r m a l c o m p o n e n t o f Sj o n S/, is expressed i n the f o r m

nj = Sj-n = Ujn:, + Vjny + Wjn, (2.1) T h e u n i t n o r m a l vector n p o i n t s o u t o f the fluid d o m a i n

a n d i n t o the b o d y .

T h e fluid v e l o c i t y field is represented b y the g r a d i e n t o f the v e l o c i t y p o t e n t i a l ^ , governed b y Laplace's e q u a t i o n i n the fluid d o m a i n

(3)

A p p r o p r i a t e b o u n d a r y c o n d i t i o n s o n the free surface a n d b o t t o m are dz K(j) = 0, o n z = 0 o n = -h (2.3) (2.4) H e r e , K = to^/g, were g is tlie acceleration o f g r a v i t y . T h e v e l o c i t y p o t e n t i a l o f the i n c i d e n t wave is d e f i n e d b y

igA cosh [/c(z + /;)] ^_ik(^,o,0+y sin/3)

(2.5) w cosh kh

where the w a v e n u m b e r k is the positive real r o o t o f the dispersion r e l a t i o n

.2 U> g

k t a n h kh (2.6)

a n d f3 is the angle between the d i r e c t i o n o f p r o p a g a t i o n o f the i n c i d e n t wave a n d the positive x axis.

T h e v e l o c i t y p o t e n t i a l <f> can be expressed i n the f o r m

4> = <I>R + 4>D (2-7)

where

't>D = 4>i + <f>s (2-8) is the d i f f r a c t i o n p o t e n t i a l , (ps is the scattering

c o m p o n e n t representing the disturbance o f the i n c i d e n t wave b y the fixed b o d y , a n d

J

^R = Y.^j't>j (2-9) is the r a d i a t i o n p o t e n t i a l due t o the b o d y ' s m o t i o n s . I n

each m o d e , (pj is the c o r r e s p o n d i n g u n i t - a m p l i t u d e r a d i a t i o n p o t e n t i a l .

O n the u n d i s t u r b e d p o s i t i o n o f the b o d y b o u n d a r y , the r a d i a t i o n and d i f f r a c t i o n potentials are subject t o the c o n d i t i o n s 0 ^ = '""^-d<pD dn 0 (2.10) (2.11) T h e b o u n d a r y v a l u e p r o b l e m is c o m p l e t e d b y i m p o s -i n g a r a d -i a t -i o n c o n d -i t -i o n o f o u t g o -i n g waves, f o r the p o t e n t i a l s (p^ a n d (pj. C o r r e s p o n d i n g t o each m o d e o f m o t i o n , generaUzed first-order pressure forces are defined i n the f o r m

pni dS 'iu)(p + gz)nidS (2.12)

H e r e p is the fluid pressure, w h i c h is evaluated i n the last f o r m o f (2.12) f r o m the Hnearized B e r n o u f l i e q u a t i o n .

T h e c o n t r i b u t i o n t o (2.12) f r o m the t e r m /w0 involves a t r i v i a l extension o f the c o r r e s p o n d i n g r i g i d - b o d y analysis. A f t e r s u b s t i t u t i n g (2.10) f o r t h e c o m p o n e n t s o f the r a d i a t i o n p o t e n t i a l , added-mass and d a m p i n g

matrices are defined i n the f o r m ÜJ aij - iujbij -lup

Pjn^dS-(2.13) S i m i l a r l y , the generalized wave-exciting f o r c e is

Xi = —iujp So

hriidS: , - dS

So dn

(2.14) T h e indices i a n d j can take o n any values w i t h i n the ranges o f the r i g i d - b o d y modes ( 1 - 6 ) a n d extended modes ( 7 , 8 , . . . ) . Green's t h e o r e m c a n be a p p l i e d t o (2.13) t o establish r e c i p r o c i t y , a n d t o (2.14) t o derive the H a s k i n d relations between the generalized e x c i t i n g f o r c e a n d the c o r r e s p o n d i n g r a d i a t i o n p o t e n t i a l .

T h e d e f o r m a t i o n o f the b o d y geometry m u s t be considered i n d e r i v i n g the c o n t r i b u t i o n t o the general-ized f o r c e (2.12) f r o m the h y d r o s t a t i c pressure -pgz, since this pressure is o f order one. Three surfaces o f i n t e g r a t i o n are defined as f o f l o w s : the i n i t i a l w e t t e d surface o f the b o d y p r i o r t o the m o d a l displacement Sj is denoted as Sg; the c o r r e s p o n d i n g d e f o r m e d surface a f t e r the n o r m a l displacement i n the m o d e j is denoted as Sg; a n d the closed surface E is defined i n c l u d i n g Sq, Sg, a n d the p o r t i o n o f the plane z = 0 l y i n g between these t w o open surfaces i f they intersect the free surface. O n S the n o r m a l vector is d e f i n e d i n a consistent m a n n e r , t o p o i n t o u t o f the enclosed v o l u m e p.

W i t h these d e f i n i t i o n s , the change i n the h y d r o s t a t i c generalized f o r c e c o m p o n e n t Fj due t o a u n i t displace-m e n t o f the b o d y i n displace-m o d e j is defined b y the displace-m a t r i x

ztZj dS - pg znt dS = pg znj dS (2.15) U s i n g (2.1) a n d the divergence t h e o r e m

pg zSj -ndS = pg V - ( z S , ) d F (2.16) F o r s m a l l d e f o r m a t i o n s the v o l u m e f is t h i n , a n d the last i n t e g r a l c a n be a p p r o x i m a t e d t o first o r d e r as the surface i n t e g r a l o f the p r o d u c t o f the i n t e g r a n d a n d the distance Hj between the t w o b o u n d a r y surfaces a n d S^. T h u s

pg njW • (zS,) dS = pg nj{Wi + zDi) dS (2.17) H e r e the generalized f o r c e is d e f i n e d i n a fixed reference f r a m e , a n d o n l y the h y d r o s t a t i c pressure is considered. A s a result, (2.17) includes some c o n t r i b u t i o n s w h i c h n o r m a l l y are n o t considered, such as the r o l l (or p i t c h ) m o m e n t due t o a sway ( o r surge) displacement, b o t h o f w h i c h are equal t o the displaced b o d y v o l u m e times the m o m e n t a r m associated w i t h the c o r r e s p o n d i n g dis-placement. N o r m a l l y , f o r a f r e e l y - f l o a t i n g b o d y , these

(4)

30 J. N. Newman

c o n t r i b u t i o n s are balanced b y the g r a v i t a d o n a l f o r c e due t o the b o d y mass. I n the generalized analysis o f a d e f o r m a b l e b o d y the c o r r e s p o n d i n g mass f o r c e m u s t be evaluated separately, f o r each m o d e , depending o n the m o d e shape a n d mass d i s t r i b u d o n . T h e coefficients (2.17) depend n o t o n l y o n the n o r m a l displacement (2.1), b u t also o n the divergence D ; a n d the v e r t i c a l c o m p o n e n t o f S,-. I n general the h y d r o s t a d c m a t r i x (2.17) is n o t symmetric.^

3 B E N D I N G O F A S L E N D E R B A R G E

A s the first example o f s t r u c t u r a l deflections, we consider a ship freely floating i n head seas. T h e ship is assumed to be a slender beam, w i t h v e r t i c a l displace-m e n t R e ( ^ ( x ) e ' " ' ) along the l e n g t h . T h e s t r u c t u r a l d e f l e c t i o n is governed b y the beam e q u a t i o n '

-o?m£, + {Eia' = Z[x) (3.1)

where m{x) is the d i s t r i b u t i o n o f mass, a n d primes denote d i f f e r e n t i a t i o n w i t h respect t o x. T h e p r o d u c t o f the m o d u l u s o f elasticity E a n d m o m e n t o f i n e r t i a I is the stiffness f a c t o r EI. Z{x) is the l o c a l pressure f o r c e a c t i n g o n a v e r t i c a l section o f the ship. Since b o t h ends o f the ship are free, the a p p r o p r i a t e b o u n d a r y c o n d i -tions are

0, ( £ / O ' = 0, f o r A- = ± L / 2 (3.2) where L is the ship's length, a n d the o r i g i n is at the m i d s h i p section.

T h e d e f l e c t i o n i m a y be expanded i n an a p p r o p r i a t e set o f modes, i n the f o r m

(3.3)

where the (complex) a m p l i t u d e o f each m o d e is u n k n o w n . A d o p t i n g the m e t h o d o f w e i g h t e d residuals (3.1) is m u l t i p l i e d b y / ( x ) a n d i n t e g r a t e d a l o n g the l e n g t h , t o give the system o f equations

f L / 2 j J —L/2 Mx)Z{x)dx (L/2 -L/2 •L/2 . -L/2

These can be r e w r i t t e n i n the f o r m L/2 -L/2

fi{x)Z{x)dx

(3.4)

(3.5)

where the coefficients o n the l e f t - h a n d side are the mass m a t r i x L/2 -L/2 mfi{x)fj{x)dx (3.6) a n d the stiffness m a t r i x (L/2 Cij = tL/2 EIf/'{x)fj"{x)dx J-L/2 (3.7) T h e stiffness m a t r i x (3.7) is derived b y i n t e g r a t i n g the c o r r e s p o n d i n g t e r m i n (3.4) twice b y parts, a n d i n v o k i n g the b o u n d a r y c o n d i t i o n s (3.2). B o t h (3.6) a n d (3.7) are symmetric matrices.

T h e i n t e g r a l o n the r i g h t - h a n d side o f (3.4) includes c o n t r i b u t i o n s t o the linearized pressure f o r c e Z ( x ) f r o m the d i f f r a c t i o n a n d r a d i a t i o n p r o b l e m s , as described i n Section 2. S u b s t i t u t i n g ( 2 . 1 3 - 2 . 1 5 ) , a n d m o v i n g the r a d i a t i o n coefficients t o the l e f t side o f (3.4), gives a c o n v e n t i o n a l set o f equations o f m o t i o n

E + ^ i j ) + i'^bij + C,j + Cy] = Xi (3.8) J

Pertinent modes o f m o t i o n i n head seas include surge, heave, p i t c h , a n d the s t r u c t u r a l deffection.

T w o d i f f e r e n t sets o f m o d e f u n c t i o n s w i l l be used f o r this case. T h e first are the n a t u r a l modes f o r b e n d i n g o f a u n i f o r m beam w i t h free ends, given by^

ƒ 1 / c o s / t 2 y 9 ^ c o s h / t 2 j ^ ^•^ 2 \ cos K2J cosh K2j (3.9) _ 1 fsinK2j+ig ^ sinhK2y+ig'^ 2 V s i n K 2 y + i smhK2j+iy Here the n o r m a l i z e d c o o r d i n a t e is q = 2x/L, a n d J = 1 , 2 , . . . . T h e degenerate f u n c t i o n s fg = 1 a n d f \ = q

correspond t o the heave a n d p i t c h modes respectively. T h e f a c t o r s KJ are the positive real roots o f the e q u a t i o n

( - 1 ) - ' ' t a n K y - f t a n h K ^ - = 0 (3.10) T h e first f o u r r o o t s are K2 = 2-3650, Ks = 7-0686 « 3 = 3-9266, « 4 = 5-4978, N o t e t h a t f j { x ) is an even o r o d d f u n c t i o n o f x a c c o r d i n g as j is even or o d d . T h e first f o u r b e n d i n g modes are s h o w n as the s o l i d lines i n F i g . 1.

These f u n c t i o n s are o r t h o g o n a l , w i t h the n o r m a h z e d values f j { \ ) = \, a n d the i n t e g r a t e d values

r l

fi{q)fM)^^ = \^ii for 0 ' > 2 ) o r ( 7 > 2 )

(3.11) where the K r o e n e c k e r delta is equal t o 1 w h e n ; = j, otherwise zero. Assuming a u n i f o r m mass distribution, m is a constant and the mass m a t r i x is diagonal, w i t h the values

(L/2 fi{2x/L)fj{2x/L)dx Mij m L/2 1 - 1 fi{q)fj{q)M = \M6ij (3.12)

(5)

1.00 0.50 0.00 -0.50 -1.00 -1.00

Fig. 1. Natural modes (3.9) (solid lines) and Legendre polynomial modes (dashed lines). The normalized coordinate

q is equal to ± 1 at the ends o f the ship.

T h e stiffness m a t r i x is s i m p l i f i e d i n this case b y n o t i n g t h a t i f EI is constant, a n d the i n d i v i d u a l modes (3.9) s a t i s f y the b o u n d a r y c o n d i t i o n s (3.2), the i n t e g r a n d o f (3.7) can be w r i t t e n instead i n the o r i g i n a l f o r m o f (3.4) as the p r o d u c t fifj-""^ where the second f a c t o r is the f o u r t h derivative. F r o m the d i f f e r e n t i a l e q u a t i o n

a n d t h e o r t h o g o n a l i t y r e l a t i o n (3.11) i t f o l l o w s t h a t

Cij = 4{EI/L')KUi, (3.13)

T h e alternative m o d a l f u n c t i o n s a p p l i e d to this p r o b l e m are the Legendre p o l y n o m i a l s Pi{q), w h i c h are p l o t t e d f o r c o m p a r i s o n i n F i g . 1. These are simpler m a t h e m a t i c a l l y t h a n the n a t u r a l modes (3.9), b u t the o f f d i a g o n a l elements o f t h e stiffness m a t r i x are n o n -zero f o r even values o f m + n.

A s a specific example, a rectangular barge is considered w i t h l e n g t h L = 80 m , b e a m B = 10 m , a n d d r a f t T = 5m. T h e t o t a l mass M is d i s t r i b u t e d u n i f o r m l y t h r o u g h o u t the v o l u m e , u p t o a 'deck' 5 m above the free surface. A constant sdffness f a c t o r S E / / / = 0 - l M s ~ ^ is assumed. T h e water d e p t h is i n f i n i t e .

T a b l e 1 compares the response i n each o f eight b e n d i n g modes at a wave p e r i o d o f 8 s, u s i n g the t w o a l t e r n a t i v e m o d e shapes. T h e effectiveness o f each is i n d i c a t e d b y the m a g n i t u d e s o f the c o r r e s p o n d i n g a m p l i t u d e s a n d b y t h e convergence o f the sums w h i c h represent the t o t a l m a g n i t u d e o f the b e n d i n g m o t i o n at the b o w {q = 1). T h e ' c o n v e r g e d ' values o f these t w o sums agree t o f o u r s i g n i f i c a n t figures, c o n f i r m i n g t h a t the Legendre p o l y n o m i a l s are a p p l i c -able t o this p r o b l e m even t h o u g h they d o n o t satisfy the b o u n d a r y c o n d i t i o n s (3.1). H o w e v e r the n a t u r a l modes

Table 1. Amplitude of each mode and sum (total deflection at the bow) based on the natural free-free beam modes (3.9) and on the

Legendre polynomials, for the wave period 8 s

Mode, j Natural modes Legendre modes

Sum Sum 2 0-173821 0-173821 0-193646 0-193646 3 0-010693 0-173545 0-013896 0-193324 4 0000051 0-173494 0-021882 0-171505 5 0-000133 0-173517 0-003925 0-171512 6 0-000011 0-173528 0-002072 0-173581 7 0-000069 0-173534 0-000541 0-173568 8 0-000003 0-173537 0-000051 0-173517 9 0-000028 0-173540 0-000002 0-173517

(3.9) p r o v i d e a m o r e effective expansion. F o r example, the results u s i n g one o r t w o n a t u r a l modes give three o r f o u r decimals accuracy, respectively, i n the deflected a m p l i t u d e at the b o w . B y c o m p a r i s o n , five Legendre modes are r e q u i r e d t o achieve the same p r e c i s i o n .

A d d i t i o n a l c o m p u t a t i o n s have been p e r f o r m e d using Chebyshev p o l y n o m i a l s f o r the m o d e f u n c d o n s . T h e r e is n o s i g n i f i c a n t change i n the rate o f convergence relative t o the Legendre p o l y n o m i a l s . A n advantage o f the Legendre modes, f o r a u n i f o r m mass d i s t r i b u t i o n , is t h a t the mass m a t r i x (3.12) is d i a g o n a l . F o r the Chebyshev modes there is c o u p l i n g i n the mass m a t r i x between a l l even o r o d d modes, i n c l u d i n g c o u p l i n g o f heave o r p i t c h w i t h t h e c o r r e s p o n d i n g s y m m e t r i c o r a n t i s y m m e t r i c b e n d i n g modes.

C o m p u t e d values o f the response-amphtude o p e r a t o r s i n heave, p i t c h , a n d the first t w o b e n d i n g m o d e s are s h o w n i n F i g . 2 f o r the range o f wave periods between 5 a n d 12 s. T h e r i g i d - b o d y modes o f heave a n d p i t c h d o m i n a t e the t o t a l v e r t i c a l m o t i o n s . F o r other values o f the stiffness f a c t o r the b e n d i n g - m o d e a m p h t u d e s are m o d i f i e d , a p p r o x i m a t e l y i n inverse p r o p o r t i o n t o EI. 2.00 PITCH HEAVE "5.00" "6.00''''V.'ÓÖ ••8,00 '''9\oÖ'''ïó'.Oo''ïi.oÖ''Ï2.bo PERIOD

Fig. 2. Vertical amplitude at the bow due to heave, pitch, and the first two bending modes.

(6)

52 / . N. Newman

These results are based o n a d i s c r e t i z a t i o n w i t h 2304 panels o n the submerged p o r t i o n o f the barge. A t o t a l o f 64 l o n g i t u d i n a l , 16 transverse, a n d 8 v e r t i c a l s u b d i v i -sions are used, w i t h cosine w e i g h t - f a c t o r s t o p r o v i d e finer spacing near the corners a n d the free surface. Convergence tests c o m p a r i n g these results w i t h a relatively coarse d i s c r e t i z a t i o n (576 panels) i n d i c a t e a n accuracy o n the o r d e r o f 1 % f o r the results i n T a b l e 1 a n d F i g . 2.

4 B E N D I N G O F A V E R T I C A L C O L U M N

T h e second example used t o i l l u s t r a t e the analysis o f s t r u c t u r a l deflections is a slender v e r t i c a l c o l u m n w i t h its free u p p e r end at the plane o f the free surface z = 0, a n d w i t h c l a m p e d s u p p o r t at the b o t t o m z = -h. F o r s i m p h c i t y i t is assumed t h a t the c o l u m n is s t r u c t u r a l l y u n i f o r m a l o n g its l e n g t h , w i t h a c o n s t a n t stiffness f a c t o r EI. A u n i f o r m d i s t r i b u t i o n o f mass m is assumed a l o n g the c o l u m n , a n d a c o n c e n t r a t e d mass nio is placed at the free surface z = 0 t o account f o r the 'superstructure'.

R e g u l a r i n c i d e n t waves o f f r e q u e n c y to are assumed, causing a h o r i z o n t a l d e f l e c t i o n R e ( ^ ( z ) e ' " ' ) o f the c o l u m n . T h e b e a m e q u a t i o n (3.1) is applicable, w i t h the c o o r d i n a t e x replaced b y z a n d the h o r i z o n t a l pressure f o r c e X'{z) o n the r i g h t - h a n d side. H o w e v e r the b o u n d a r y c o n d i t i o n s are d i f f e r e n t i n this case.

A p p r o p r i a t e b o u n d a r y c o n d i t i o n s at the b o t t o m are

C = 0, ^' = 0 at -h (4.1)

A t the upper end, where there is no b e n d i n g m o m e n t a n d a concentrated i n e r t i a l l o a d

e" = 0, EI^" -o?mo^ at 0 (4.2) A p p l y i n g the m e t h o d o f w e i g h t e d residuals, as i n (3.3¬ 3.8), gives the Hnear system

E</-[-'^'(«'7 + ^u) + '^bij + Cij] = Xi (4.3) where the mass m a t r i x and stiffness m a t r i x are defined b y

Mij = m " fi{z)fj{z)dz + m^mfj{Q) (4.4) J -h

EI f l \ z ) f ! \ z ) A z

H e r e (4.5) is derived i n a m a n n e r s i m i l a r t o (3.7) b y p a r t i a l i n t e g r a t i o n , a n d the second b o u n d a r y c o n d i t i o n (4.2) results i n an extra c o n t r i b u t i o n t o the mass m a t r i x (4.4). Since the d e f l e c t i o n is h o r i z o n t a l , a n d depends o n l y o n the v e r t i c a l c o o r d i n a t e , there is n o c o n t r i b u t i o n f r o m the h y d r o s t a t i c m a t r i x (2.17).

A n a p p r o p r i a t e set o f o r t h o g o n a l p o l y n o m i a l s y;(z) (y = 1 , 2 , 3 , . . . ) can be d e f i n e d to represent the

d e f l e c t i o n , i n the f o r m f j { z ) = q^P;.M, {q=l+z/h) (4.6) 1.00 0.50 0.00 -0.50 H -1.00 0.00 1.00

Fig. 3. Mode functions (4.6) f o r ( = 1,2,3,4. The normalized coordinate q is zero at the bottom and 1 at the free surface. Here the n o r m a l i z e d v e r t i c a l c o o r d i n a t e q increases f r o m zero at the b o t t o m to 1 at the free surface, Pj is a p o l y n o m i a l o f degree n, a n d the f a c t o r q^ is i n t r o d u c e d t o satisfy the b o u n d a r y c o n d i t i o n s (4.1). T h e p o l y n o -mials Pf{q) can be derived f r o m the Jacobi p o l y n o m i a l s Pj"'^\2q- 1).^ T h e o r t h o g o n a l i z a t i o n r e l a t i o n implies t h a t a = 0 a n d /? = 4. T h e first f o u r members are

Po = 1 Pt =6q-5 Pz = 2 8 ^ ^ - 4 2 ^ + 1 5 P3 = nOq^ - 252q^ + 168^ - 35 M o r e generally h m ! ( « - m ) ! ( 4 + « - m ) ! ^ (4.7) These p o l y n o m i a l s are n o r m a l i z e d w i t h P * ( l ) = 1. T h e c o r r e s p o n d i n g o r t h o g o n a l i t y r e l a t i o n is (4.5) ^^Pnq)P;iq)q'dq 2i + 5 (4.8) T h e first f o u r f u n c t i o n s (4.6) are p l o t t e d i n F i g . 3. E a c h m o d e shape is p r o p o r t i o n a l to q^ = {l+z/h)^ near the b o t t o m , a n d equal to 1 at the free surface. F o r intermediate depths they oscillate w i t h {J - 1) zeros, w i t h i n a range o f a p p r o x i m a t e l y ± 1 / 2 except close t o the free surface where the a m p l i t u d e increases t o 1. I n the n o t a t i o n o f M e i r o v i t c h , ' the m o d a l f u n c t i o n s (4.6) are admissible since they satisfy the geometric b o u n d a r y c o n d i t i o n s (4.1).

W i t h the m o d a l f u n c t i o n s defined b y (4.6) the mass m a t r i x (4.4) c a n be evaluated. A f t e r u s i n g the

(7)

1 able 2. Coefficients Qj of the stiffness matrix (4.5); each entry Table 3. Amplitude of each mode in this table should be multiplied by the factor El/h^

Period Mode 1 Mode 2 Mode 3 Mode 4

/' J=l 7 = 2 7 = 3 ; = 4 5-0 0-04813 0-00423 0-00010 0-00002 1 4 16 32 52 6 0 0-29934 0-02551 0-00041 0-00007 2 16 172 380 640 6-5 1-14505 0-09698 0-00135 0-00024 7356 12496 7-0 0-44875 0-03795 0-00046 0-00008 3 32 380 5 5 8-0 0-22035 0-01875 0-00019 0-00004 52 640 12496 220652 9-0 0-16106 0-01391 0-00014 0-00004 4 52 640 5 35 100 0-13055 0-01151 0-00013 0-00004 (4.9) o r t h o g o n a l i t y r e l a t i o n (4.8)

A l l elements o f the stiffness m a t r i x (4.5) are non-zero r a t i o n a l f r a c t i o n s . T a b l e 2 gives the elements o f this m a t r i x f o r (iJ) < 4.

A s a n i l l u s t r a t i o n , consider a vertical c i r c u l a r c y l i n d e r o f r a d i u s 10 m , i n water o f d e p t h 200 m . T h e d i s t r i b u t e d mass a l o n g the l e n g t h o f the c y l i n d e r is assumed t o be h a l f o f its displaced mass. A concentrated mass mo e q u a l t o the t o t a l displaced mass (twice the d i s t r i b u t e d mass) is located at the free surface. T h e stiffness o f the cylinder is chosen such t h a t the r a t i o El/h^ = 0-41 mo s~'^; this results i n a resonance o f the first b e n d i n g m o d e at a wave p e r i o d o f 6-5 s.

C o m p u t a t i o n s have been p e r f o r m e d i n c l u d i n g the first eight modes (4.6), at a sequence o f wave periods between 5 a n d 10 s. T h e ampUtudes o f the first a n d second modes are p l o t t e d i n F i g . 4. T h e a m p l i t u d e s o f the h i g h e r modes are t o o small t o indicate i n this figure. A l s o s h o w n i n F i g . 4 is the t o t a l response at the u p p e r end o f the c o l u m n . T h e first a n d second modes generally are o u t o f phase. A s a result, the t o t a l response is a b o u t 1 0 % less t h a n the a m p h t u d e o f the first m o d e .

T h e m o s t i m p o r t a n t feature i n F i g . 4 is the h i g h l y

-Fig. 4. Amplitudes of the first bending mode (short dashed curve), second mode (long dashed curve), and the total response o f the vertical column at the upper end (solid curve).

t u n e d resonance at 6-5 s, w i t h a m a x i m u m h o r i z o n t a l d e f i e c t i o n at the free surface s l i g h t l y greater t h a n the i n c i d e n t wave a m p l i t u d e . T h e o n l y d a m p i n g w h i c h is i n c l u d e d here is t h a t due t o linear wave r a d i a t i o n , w h i c h at resonance is 2-6% o f the c r i t i c a l d a m p i n g . T h e occurrence o f this resonance can be a t t r i b u t e d t o the f a c t t h a t the wave e x c i t a t i o n , a n d d a m p i n g are c o n f i n e d t o a relatively s m a l l p a r t o f the c o l u m n near the free surface. T h i s is i n c o n t r a s t t o the floating barge i n Section 3, where the entire vessel is near the free surface. T a b l e 3 shows the c o m p u t e d amphtudes o f the first f o u r modes at representative wave periods, c o n f i r m i n g the r a p i d convergence o f the m o d a l expansion.

I t s h o u l d be n o t e d t h a t i n the n u m e r i c a l a p p r o a c h f o l l o w e d , the b o u n d a r y c o n d i t i o n s (4.2) are n o t e x p l i c i t l y i m p o s e d as constraints o n the s o l u t i o n . Instead t h e y are u t i l i z e d o n l y i n the weaker c o n t e x t o f the end c o n d i t i o n s i n the p a r t i a l i n t e g r a t i o n w h i c h yields the mass a n d stiffness matrices ( 4 . 4 - 4 . 5 ) . One can v e r i f y n u m e r i c a l l y t h a t the b o u n d a r y c o n d i t i o n s (4.2) are i n f a c t satisfied b y the n u m e r i c a l s o l u t i o n , b u t the relatively slow convergence o f higher derivatives hinders this c o n f i r m a t i o n . F o r example, c o m p u t e d values o f |C"(0)| decrease f r o m a m a x i m u m o f 0-005 to 0-0004 w h e n the n u m b e r o f modes is increased f r o m f o u r t o eight. E v e n w i t h eight modes i n c l u d e d , the t w o sides o f the second b o u n d a r y c o n d i t i o n (4.2) d i f f e r i n the t h i r d s i g n i f i c a n t figure ( i n the second s i g n i f i c a n t figure f o r the lowest wave p e r i o d ) .

I t is interesting t o c o m p a r e the use o f n a t u r a l modes w i t h the m e t h o d a d o p t e d here, based o n the o r t h o g o n a l p o l y n o m i a l modes (4.6). N a t u r a l modes c o u l d be used, as i n Section 3, a c c o u n t i n g f o r the b o u n d a r y c o n d i t i o n s (4.2) at the u p p e r end o f the c o l u m n . Since the second c o n d i t i o n (4.2) w o u l d o n l y be satisfied at the corre-s p o n d i n g eigenfrequency f o r each m o d e , thicorre-s a p p r o a c h w o u l d n o t o f f e r any c o m p u t a t i o n a l advantage relative t o the simpler p o l y n o m i a l modes used here.

T h e c o m p u t a t i o n s s h o w n here are based o n a d i s c r e t i z a t i o n o f the c o l u m n w i t h a t o t a l o f 2048 panels, c o r r e s p o n d i n g t o 128 panels u n i f o r m l y spaced a r o u n d the circumference a n d 64 v e r t i c a l subdivisions between the free surface a n d b o t t o m . T h e v e r t i c a l spacing uses a cosine w e i g h t f a c t o r t o give a finer s u b d i v i s i o n near the free surface a n d a relatively coarse spacing near the b o t t o m . A s n o t e d i n Section 1, a c o m p a r i s o n w i t h c o m p u t a t i o n s using A ' ^ = 5 1 2 panels

(8)

54 / . N. Newman 40m 10m 40m 10m 5ni 5m

Fig. 5. Configuration o f tlie hinged barges. shows differences o n the order o f 2 % , i n d i c a t i n g t h a t the

accuracy o f the resuhs presented here w i t h N = 2048 is a p p r o x i m a t e l y 0-5%.

F o r this special case, where the b o d y is a v e r t i c a l c i r c u l a r c y l i n d e r o f constant r a d i u s e x t e n d i n g f r o m the b o t t o m t o the free surface, the h y d r o d y n a m i c analysis c o u l d be p e r f o r m e d m o r e d i r e c t l y u s i n g H a v e l o c k ' s ' ° o r t h o g o n a l e i g e n f u n c t i o n expansion. T h e p a n e l m e t h o d used here has the advantage t h a t i t is applicable t o any p r a c t i c a l b o d y o f a r b i t r a r y three-dimensional f o r m .

I n a p p l i c a t i o n s where the stiffness f a c t o r EI and mass d i s t r i b u t i o n m are n o n - u n i f o r m , t h e i r f u n c t i o n a l dependence o n z m u s t be i n c l u d e d i n the integrals ( 4 . 4 - 4 . 5 ) . T h i s m a y require n u m e r i c a l e v a l u a t i o n o f these integrals, a n d w i l l result i n non-zero o f f - d i a g o n a l elements o f the mass m a t r i x , b u t no f u n d a m e n t a l d i f f i c u l t i e s are envisaged.

5 M O T I O N S O F A H I N G E D B A R G E

I f separate r i g i d vessels are connected mechanically, the r e s u l t i n g modes o f m o t i o n o f the g l o b a l b o d y i n c l u d e b o t h r i g i d modes o f the ensemble a n d d i s c o n t i n u o u s relative m o t i o n s between the separate vessels. A s a n example we consider t w o r e c t a n g u l a r barges, each o f w h i c h is 40 m l o n g b y 10 m beam a n d 5 m d r a f t , connected end-to-end b y a simple hinge w i t h a gap o f 10 m separating the t w o barges ( F i g . 5). T h e hinge axis is located a t the o r i g i n ( x = 0, z = 0 ) , m i d w a y between the t w o barges i n the plane o f the f r e e surface. E a c h barge is assumed t o be i n static e q u i l i b r i u m , w i t h u n i f o r m mass d i s t r i b u t i o n t h r o u g h o u t its length, beam, a n d vertically i n the range ( - 5 < z < 5 m ) . T h e w a t e r d e p t h is assumed t o be i n f i n i t e .

I n c i d e n t head waves are considered, w i t h resultant m o t i o n s i n surge ( ^ i ) , heave (^3), p i t c h (,^5), a n d i n the a d d i t i o n a l h i n g e d m o d e (^7). T h e first three modes are d e f i n e d c o n v e n t i o n a l l y , w i t h heave the v e r t i c a l m o t i o n at the hinge p o i n t a n d p i t c h the average a n g u l a r p o s i t i o n o f the t w o barges. I n the h i n g e d m o d e the r i g h t - h a n d a n d l e f t - h a n d barges are p i t c h e d a b o u t the y axis to angles ± ^ 7 , respectively. Since the g e o m e t r y is s y m m e t r i c a b o u t the hinge axis, a n d the displacement i n this m o d e is s y m m e t r i c , there is no c o u p l i n g w i t h surge o r p i t c h , a n d the l a t t e r modes are n o t affected b y the hinge d e f l e c t i o n .

T h e response-amplitude operators f o r heave and the hinge d e f l e c t i o n are s h o w n i n F i g . 6. These t w o modes are d y n a m i c a l l y similar, a n d t h e i r phase angles ( n o t s h o w n ) are p r a c t i c a l l y i d e n t i c a l . Since a p o s i t i v e hinge d e f l e c t i o n i m p l i e s negative v e r t i c a l m o t i o n at the outer

ends o f the barges, there is substantial c a n c e f l a t i o n resulting f r o m these t w o modes. T o illustrate this p o i n t , the heave a m p h t u d e at the m i d s h i p p o s i t i o n o f each barge (x = ± 2 5 m ) is also s h o w n i n F i g . 6.

A l s o s h o w n b y the dashed line i n F i g . 6 is the heave a m p l i t u d e o f the same p a i r o f barges w h e n the hinge is r i g i d (^7 = 0 ) . Except f o r a s m a f l s h i f t o f the peak w a v e p e r i o d a n d a m p l i t u d e , this response is p r a c t i c a l l y i d e n t i c a l to the heave response o f the h i n g e d barges as measured at t h e i r m i d s h i p sections. A t a wave p e r i o d o f 8 s, c o r r e s p o n d i n g to a w a v e l e n g t h o f 100 m , there is p r a c t i c a l l y n o heave m o t i o n o f the r i g i d c o n f i g u r a t i o n , or o f the h i n g e d c o n f i g u r a t i o n at the m i d s h i p sections. T h e results s h o w n i n F i g . 6 are based o n a descretization w i t h 2460 panels o n b o t h barges, u s i n g 32 l o n g i t u d i n a l subdivisions o n each barge, 16 trans-verse subdivisions a n d 8 v e r t i c a l subdivisions. S y m m e t r y a b o u t the planes x = 0 a n d y = 0 p e r m i t the s o l u t i o n s f o r c a n o n i c a l s y m m e t r i c a n d a n t i s y m m e t r i c p o t e n t i a l s , i n one q u a d r a n t consisting o f one side o f one barge. T h u s the t o t a l n u m b e r o f u n k n o w n s i n each c a n o n i c a l s u b - p r o b l e m is reduced to 640. Cosine spacing is used t o give smaller panels near the corners o f the barge a n d near the free surface. C o m p a r i s o n w i t h the resuhs f o r a

3.00 n

5.00 6.00 7.00 8.00 9,00 10.00 11.00 12.00

PERIOD

Fig. 6. Amplitudes of the symmetric modes of the hinged barge. Heave ( ^ 3 ) is normalized by the incident wave amplitude A and angular deflection i n the hinged mode ( ^ 7 ) is normalized by the wave slope KA. The lower solid curve shows the heave amplitude at the midship section o f each separate barge, and the dashed line shows the heave amplitude o f the same pair o f barges with a rigid connection instead o f a

(9)

coarse discretization u s i n g a t o t a l o f 640 panels shows m a x i m u m differences i n the range 1-5%. T h i s implies a n accuracy o f 1 % o r better f o r the results p l o t t e d i n F i g . 6.

I n s u m m a r y , the v e r t i c a l m o t i o n s o f the h i n g e d a n d r i g i d c o n f i g u r a t i o n s are p r a c t i c a l l y i d e n t i c a l at the m i d s h i p sections o f each barge, b u t substantially greater f o r the h i n g e d c o n f i g u r a t i o n at the hinge axis ( b y a f a c t o r o f a b o u t f o u r at resonance).

6 W A L L E F F E C T S I N A C H A N N E L

W a v e interactions w i t h a b o d y i n a channel o f r e c t a n g u l a r cross-section m a y be analyzed b y the m e t h o d o f images. T o i l l u s t r a t e this type o f p r o b l e m w e consider the case o f a v e r t i c a l c i r c u l a r c y l i n d e r o f finite d r a f t , centered i n a rectangular channel. T h i s p r o b l e m has been studied b y Y e u n g a n d S p h a i e r ' ' a n d also b y L i n t o n a n d E v a n s ; i n b o t h o f these w o r k s the g e o m e t r y o f the b o d y is restricted, b u t the images are accounted f o r i n a m o r e a n a l y t i c m a n n e r . H e r e we e m p l o y a finite n u m b e r o f image bodies, a n d study the convergence as this n u m b e r is increased. A s s u m i n g this p r o c e d u r e can be carried o u t successfully, i t offers the possibiHty o f p e r f o r m i n g c o m p u t a t i o n s f o r m o r e general b o d y shapes i n a channel.

T o p e r m i t c o m p a r i s o n w i t h the results i n the above references, the dimensions are chosen such t h a t

T = 2a,d = 2a, a n d h= 10a, where a is the c y l i n d e r

r a d i u s , T its d r a f t , d the channel h a l f - w i d t h , and h the channel d e p t h .

A single array o f image c y l i n d e r s is r e q u i r e d , w i t h the axes aX y = ±2nd {n= 1,2,2,... ,N). T h u s there is a t o t a l o f 27V^ + 1 cylinders i n c l u d i n g the c e n t r a l b o d y a n d its images o n b o t h sides. T h e c o m p u t a t i o n s are p e r f o r m e d w i t h A ' ' = 0 , 1 , 2 , 4 , 8 , c o r r e s p o n d i n g to arrays w i t h 1,3,5,9,17 cyhnders. E a c h c y l i n d e r is discretized i n a n i d e n t i c a l m a n n e r , w i t h 32 a z i m u t h a l s u b d i v i s i o n s , 8 v e r t i c a l subdivisions o n the side, a n d 8 r a d i a l subdivisions o n the b o t t o m , g i v i n g a t o t a l o f 512 panels o n each c y l i n d e r a n d u p t o 8704 panels f o r the largest a r r a y w i t h 17 separate bodies. Since the geometry is s y m m e t r i c a b o u t x = 0 a n d y = 0, the n u m b e r o f u n k n o w n s is reduced b y a f a c t o r o f f o u r . T h e c o n f i g u r a t i o n w i t h A'^ = 2 is s h o w n i n F i g . 7.

S i n g u l a r features m u s t be expected as a result o f the c h a n n e l w a l l s . T h e simplest o f these are the c u t - o f f frequencies, w h i c h f o r s y m m e t r i c p r o p a g a t i n g waves occur at kd = n, 2-K, 2>-K,..., c o r r e s p o n d i n g t o A : a = 1 - 5 7 , 3 ' 1 4 , 4 - 7 1 , . . . . F o r a n t i s y m m e t r i c waves,

kd = 7 r / 2 , 3 7 r / 2 , . . . , c o r r e s p o n d i n g t o ka = = 0 - 7 9 ,

2 - 3 6 , . . . . H e r e the relevant plane o f s y m m e t r y is the c h a n n e l centerplane, hence f o r a b o d y w i t h geometric s y m m e t r y a b o u t this plane the modes o f surge, heave a n d p i t c h a n d the d i f f r a c t i o n p r o b l e m are s y m m e t r i c whereas the modes o f sway, r o l l a n d y a w are a n t i

-Fig. 7. Perspective o f the vertical cylinder and f o u r images showing the discretization with 512 panels on each body. The channel walls are indicated by the straight lines, i n the plane o f

the free surface.

s y m m e t r i c . I n a d d i t i o n t o the c u t - o f f frequencies, L i n t o n a n d Evans'•^ have s h o w n t h a t a n a n t i s y m m e t r i c t r a p p e d wave exists at kd= 1-41, c o r r e s p o n d i n g t o ka = 0-70.

I r r e g u l a r frequencies also m u s t be a n t i c i p a t e d i n the present c o m p u t a t i o n s , w h i c h are based o n the s o l u t i o n o f a b o u n d a r y - i n t e g r a l e q u a t i o n using the free-surface Green's f u n c t i o n . T h e i r r e g u l a r frequencies w h i c h a f f e c t the heave f o r c e c o r r e s p o n d t o the zeros o f the Bessel f u n c t i o n Jo{ka), o c c u r i n g a t fca = 2 - 4 0 , 5 - 5 2 , . . . . F o r surge a n d sway, the zeros o f Ji{ka) are r e l e v a n t , o c c u r r i n g at A:fl = 3 ' 8 3 , 7 - 0 2 , . . . . M e t h o d s exist t o r e m o v e the effects o f the i r r e g u l a r frequencies, as described b y Lee a n d Sclavounos,'^ b u t t h e present results are s h o w n w i t h o u t this c o r r e c t i o n t o i l l u s t r a t e the r e s u l t i n g n u m e r i c a l errors.

F i g u r e 8 shows the surge exciting f o r c e ( p i t c h is s i m i l a r ) . T h e c o m p u t a t i o n s f o r the five d i f f e r e n t arrays are i n d i c a t e d b y dashed lines o f increasing l e n g t h , a n d the results o f Y e u n g a n d Sphaier are s h o w n b y the s o h d line. T h e w a l l effects are relatively s m a l l , a n d t h e results depend o n l y w e a k l y o n the n u m b e r o f images.

4.00 n

0,00 I J I I I I I I I I I I I I I I I I I I I 11 I I M I M M

0.00 1.00 2.00 3.00 4.00 5.00

1 a

Fig. 8. Surge exciting force f o r the cylinder in a channel. The dashed lines o f increasing length denote arrays w i t h 1,3,5,9, arid 17 bodies. The solid line is reproduced f r o m Yeung and Sphaier."

(10)

56 / . T V . Newman

0.00 1.00 2,00 3,00

Fig. 9. Heave exciting force f o r tiie cylinder in a channel. (See Fig. 8 f o r details.)

I n c r e a s i n g the n u m b e r o f images tends t o i m p r o v e the c o m p a r i s o n w i t h the results o f Y e u n g & Sphaier, a n d the m o s t apparent difference occurs i n the v i c i n i t y o f ka = TT, c o r r e s p o n d i n g t o the second c u t - o f f f r e q u e n c y f o r the channel. A weaker singular f e a t u r e is apparent i n the v i c i n i t y o f ka = 4-7, near the t h i r d s y m m e t r i c c u t - o f f f r e q u e n c y . The resuhs near the f i r s t c u t - o f f f r e q u e n c y are r e m a r k a b l y u n i f o r m . F i g u r e 9 shows the c o r r e s p o n d i n g results f o r the heave e x c i t i n g f o r c e , where the w a l l effects are m i n o r . A v e r y small ' h u m p ' is apparent at the first i r r e g u l a r f r e q u e n c y {ka = 2-40). ( B o t h e x c i d n g forces are c o m p u t e d u s i n g the H a s k i n d reladons, w i t h the i n t e g r a d o n carried o u t over the b o d y surface.)

T h e added-mass a n d d a m p i n g coefficients i n surge, sway, a n d heave are s h o w n i n Figs 1 0 - 1 5 . F o r surge

5.00 -| 4.00 H 3.00 i 2.00 H 1.00 d 0.00 1 I I I I I M M 0.00 1.00 2.00 3.00 4.00 5.00 t o

Fig. 11. Surge damping coefficient for the cylinder i n a channel. (See Fig. 8 f o r details.)

(Figs 10 a n d 11) the p r i n c i p a l feature occurs near the first s y m m e t r i c cut-off" f r e q u e n c y ka= 1-57. T h e r e is no c o r r e s p o n d i n g feature apparent at /ca = 4 . 7 1 . F o r sway a m u c h stronger feature is present near the t r a p p e d - w a v e f r e q u e n c y /cfl = 0-70, a n d first a n t i s y m m e t r i c c u t - o f f f r e q u e n c y ka = 079. W h e n the channel walls are accounted f o r exactly, the sway d a m p i n g is zero b e l o w the first c u t - o f f frequency. T h e finite arrays d e m o n s t r a t e Stokes' p h e n o m e n o n , o s c i l l a t i n g a b o u t zero i n an a t t e m p t t o m i m i c the sharp c u t - o f f . A weaker f e a t u r e is apparent at the second and t h i r d c u t - o f f frequencies ka = 2-36,3-92. T h e heave added mass a n d d a m p i n g d o n o t e x h i b i t such d i s t i n c t i v e features. T h e r e is a substantial increase i n the h i g h - f r e q u e n c y a d d e d mass due t o the c h a n n e l walls, b u t even the a r r a y w i t h t w o

7.00 6.00 ^ 5.00 H 4.00 3.00 2.00 1.00 h i

Dk

/ \ \

I ) 1 M I I I I M I I I M M 1 M I M 0.Ó0 1.00 2.00 3.00 4.00 5,00 10.00 5.00 -\ 0.00 -5.00 -10.00

;:\.'

'i I l l I, 0.00 I M iU M1.00 2.00 I M M M M M I M i l3.00 4.00 5.00 M I M I M ] M

Fig. 10. Surge added-mass coefficient f o r the cylinder i n a channel. (See Fig. 8 f o r details.)

Fig. 12. Sway added-mass coefficient for the cylinder i n a channel (See Fig. 8 for details.)

(11)

20.00 15.00 10.00 H 5.00 0.00 1

il

rn .-I 'I 0.00 1.00 2.00 M I I I I I I I 3.00 2.00 1.50 1.00 0.50 0.00 I I I \ \ W 4.00 5.00 I I I ] M I I I I I I I I I I I I I I I I I I I I I I I M I I I I I I I I I I I 0.Ó0 0.20 0.40 0.60 0.80 1.00

Fig. 13. Sway damping coefficient for tlie cylinder i n a channel. (See Fig. 8 f o r details.)

images gives a close a p p r o x i m a t i o n t o the added mass i n this regime. F o r l o w frequencies the added mass a n d d a m p i n g are i n f l u e n c e d s i g n i f i c a n t l y b y the walls, a n d the d i f f e r e n t arrays show substantial differences. T h e l o w - f r e q u e n c y l i m i t o f the added mass is u n b o u n d e d due t o the w a l l s , as i n the case o f a t w o - d i m e n s i o n a l b o d y . E x c e p t i n the l o w - f r e q u e n c y regime there is g o o d agreement between the present results a n d the m o r e exact c o m p u t a t i o n s o f L i n t o n a n d Evans.

These results indicate t h a t the role o f the c u t - o f f frequencies varies f o r d i f f e r e n t f o r c e coefficients. T h i s is an o b v i o u s c o n c l u s i o n f o r d i f f e r e n t modes, f o r example between surge a n d sway, b u t a c o m p a r i s o n o f d i f f e r e n t coefficients f o r the surge m o d e reveals a m o r e subtle

2.50

2.00

1.50

1.00

0.00 1.00 2.00 3.00 4.00 5.00

Fig. 14. Heave added-mass coefficient for the cylinder i n a channel. The dashed lines of increasing length denote arrays with 1,3,5,9, and 17 bodies. The solid line is reproduced f r o m

Linton and Evans.

Fig. 15. Heave damping coefficient for the cylinder in a channel. (See Fig. 14 f o r details.)

d i s t i n c t i o n . A s n o t e d above, the e x c i t i n g f o r c e s h o w n i n F i g . 8 is r e m a r k a b l y u n i f o r m at the first c u t - o f f f r e q u e n c y , w i t h a substantial i r r e g u l a r f e a t u r e at the second c u t - o f f f r e q u e n c y , whereas the added mass a n d d a m p i n g (Figs 10 a n d 11) are precisely the opposite. T o a t t e m p t t o e x p l a i n this difference, i t m a y be n o t e d t h a t the pressure f o r c e due t o a free wave w h i c h is s y m m e t r i c a l a b o u t the centerplane j = 0, a n d subject t o c u t - o f f i n a channel w i t h walls at y = ±d, is p r o p o r t i o n a l t o the i n t e g r a l

tl-IT

cos 6 sin {k^a cos 9) cos {kyü sin 9) d9

H e r e kl + kj :k\ky=n7:/d{n= 1,2,3,...), and 9 denotes the p o l a r angle a r o u n d the c y l i n d e r . W i t h respect t o the added mass a n d d a m p i n g , one w o u l d expect t h a t the d i s c o n t i n u i t y near the n t h c u t - o f f f r e q u e n c y m i g h t be q u a l i t a t i v e l y p r o p o r t i o n a l t o this i n t e g r a l , whereas the H a s k i n d e x c i t i n g f o r c e w o u l d c o n t a i n an e x t r a w e i g h t f a c t o r cos(/cacos6') associated w i t h the i n c i d e n t - w a v e p o t e n t i a l . T h u s one m i g h t anticipate t h a t the differences i n i r r e g u l a r i t y near the first t w o c u t - o f f frequencies m i g h be associated w i t h d i f f e r e n t relative m a g n i t u d e s o f these integrals. T h i s is b o r n e o u t b y c o m p u t a t i o n s , i n s o f a r as the i n t e g r a l f o r the added mass a n d d a m p i n g is a b o u t f o u r times greater t h a n f o r the H a s k i n d e x c i t i n g f o r c e at the first i r r e g u l a r f r e q u e n c y , a n d a b o u t f o u r times smaller at the second. N o t e h o w e v e r t h a t a l l o f these integrals v a n i s h at the c u t - o f f frequencies, i n p r o p o r t i o n t o the f a c t o r kxO. T h u s the p o s s i b i l i t y remains t h a t this is n o t a complete e x p l a n a t i o n o f the above differences.

One c o m p u t a t i o n a l p r o b l e m w h i c h s h o u l d be recog-nized is t h a t the t o t a l n u m b e r o f panels, a n d u n k n o w n s , is p r o p o r t i o n a l t o the n u m b e r o f image bodies. F o r the largest array, w i t h 17 separate bodies a n d 512 panels o n

(12)

58 / . N. Newman

each b o d y , a t o t a l o f 8704 panels are used. E x p l o i d n g the geometric s y m m e t r y o f this c o n f i g u r a t i o n reduces the t o t a l n u m b e r o f u n k n o w n s t o 2176. One p o s s i b i l i t y w h i c h has n o t been explored is to decrease the n u m b e r o f panels o n the images as the distance f r o m the central b o d y increases. I n this m a n n e r i t m a y be possible t o reduce substantially the t o t a l n u m b e r o f panels, w i t h o u t d e g r a d i n g the accuracy o f the c o m p u t e d forces o n the b o d y itself.

T h e use o f a t r u n c a t e d image a r r a y w i t h a finite n u m b e r o f image bodies has been c r i t i c i z e d i n the m o r e a n a l y t i c w o r k o f L i n t o n a n d Evans, due to the i n c o r r e c t f o r m o f the resulting s o l u t i o n i n the f a r field. H o w e v e r f o r c o m p u t a t i o n s o f the first-order f o r c e coefficients a c t i n g o n a b o d y i n a channel, a n d f o r other l o c a l flow parameters, the e r r o r i n the f a r field seems i r r e l e v a n t . T h e present resuhs suggest t h a t p r a c t i c a l c o m p u t a t i o n s c a n i n f a c t be p e r f o r m e d w i t h a r e l a t i v e l y s m a l l n u m b e r o f images, except f o r the singular features w h i c h occur near c u t - o f f frequencies. T h e significance o f these singular features is reduced i n practice b y i m p e r f e c t w a f l refiections, a n d b y transient effects w h i c h attenuate the resonant reflections.

T w o issues w h i c h have n o t been addressed here are the effects o f channel wafls o n the l o c a l pressure field a n d o n the second-order m e a n d r i f t f o r c e . M c l v e r ' ' * ' ' ^ has n o t e d t h a t these quantities are affected s t r o n g l y by w a l l effects. T h e requirement o f large n u m b e r s o f panels m a y be a significant b a r r i e r f o r c o m p u t a t i o n s o f the m e a n d r i f t f o r c e at the relatively large wavenumbers s h o w n i n Figs 1 0 - 1 5 .

7 D I S C U S S I O N

T h i s paper extends the m e t h o d o l o g y o f three-dimens-i o n a l r a d three-dimens-i a t three-dimens-i o n a n d d three-dimens-i f l f r a c t three-dimens-i o n based o n the panel m e t h o d o f c o m p u t a t i o n t o the analysis o f various d e f o r m a b l e b o d y m o t i o n s . T h e c o n t i n u o u s deflections w h i c h are i l l u s t r a t e d f o r the v e r t i c a l c o l u m n a n d floating barge are t y p i c a l o f s t r u c t u r a l deflections. T h e discon-t i n u o u s m o discon-t i o n s o f discon-the h i n g e d barge a n d a r r a y o f cylinders are examples where the p h y s i c a l a p p h c a t i o n is q u i t e d i f f e r e n t . T h e specific examples used f o r i l l u s t r a -tion are g e o m e t r i c a l l y simple, b u t the c o m p u t a t i o n a l a p p r o a c h is applicable to m o r e general bodies.

F o r s t r u c t u r a l deflections the p r a c t i c a l i m p o r t a n c e o f a c o m p l e t e h y d r o d y n a m i c analysis depends o n the p a r t i c u l a r a p p l i c a t i o n . F o r relatively stiff" f r e e l y - f l o a t i n g bodies, i n c l u d i n g c o n v e n t i o n a l ships, the frequencies o f h u h v i b r a t i o n s are substantiafly higher t h a n those o f first-order wave e x c i t a t i o n , a n d the a m p h t u d e s o f these m o t i o n s are m u c h smaller t h a n the r i g i d - b o d y modes. T h u s the h y d r o d y n a m i c a n d s t r u c t u r a l analyses can be c a r r i e d o u t separately. H o w e v e r this s i m p l i f i e d proce-d u r e is n o t a p p r o p r i a t e i f the b o proce-d y is m o r e flexible. T h e slender barge analysed i n Section 3 illustrates the

m e t h o d o l o g y w h i c h c a n be used i n such cases. F o r the slender v e r t i c a l c o l u m n treated i n Section 4, a h i g h l y -t u n e d resonan-t b e n d i n g deflec-tion occurs w i -t h i n -the range o f s i g n i f i c a n t wave energy, increasing the i m p o r t a n c e o f the s t r u c t u r a l d e f l e c t i o n . A s the develop-m e n t o f o f f s h o r e p l a t f o r develop-m s extends i n t o deeper waters this type o f p r o b l e m m a y become particularly i m p o r t a n t .

One p o i n t emphasized i n b o t h o f these examples is the f e a s i b i f l t y o f using m a t h e m a t i c a l m o d e shapes w h i c h d i f f e r f r o m the m o r e c o n v e n t i o n a l p h y s i c a l modes o f the b o d y . The v e r t i c a l c o l u m n is an example where the use o f o r t h o g o n a l p o l y n o m i a l s is p a r t i c u l a r l y effective, a n d where the c o r r e s p o n d i n g n a t u r a l modes w o u l d be relatively c o m p l i c a t e d due to the concentrated mass at the free surface. Conversely, the floating barge fllustrates the relative efficiency o f using n a t u r a l modes o f a b e a m w i t h free ends, a l t h o u g h the use o f o r t h o g o n a l p o l y n o m i a l s also is feasible.

I t is c u s t o m a r y i n engineering applications t o p e r f o r m a d y n a m i c analysis o f the specific structure, i g n o r i n g the effects o f the s u r r o u n d i n g fluid to determine the con-esponding n a t u r a l ' d r y ' modes. I n the case o f a ship, f o r example, these w o u l d be the actual physical modes o f free v i b r a t i o n o f the huU, at different eigenfrequencies, accounting f o r the distributions o f structural stiffness and mass t h r o u g h o u t the ship a n d neglecting a l l h y d r o -dynamic a n d hydrostatic pressure forces. F o r cases where the stiffness a n d mass are substantially continuous, such an approach seems unnecessarily comphcated b y c o m -parison w i t h the alternatives o f representing the wave-induced deflections i n terms o f either the n a t u r a l modes (3.9) f o r a simple u n i f o r m beam, o r appropriate o r t h o g o n a l p o l y n o m i a l s .

T h e h i n g e d barge, w h i c h is considered i n Section 5, illustrates the m e t h o d o l o g y f o r s t u d y i n g m u l t i p l e bodies w i t h mechanical constraints. T h i s type o f p r o b l e m c o u l d be analysed i n a m o r e general manner b y c o n s i d e r i n g each separate b o d y to have six independent degrees o f f r e e d o m , and i m p o s i n g the c o n s t r a i n t i n a special post-processor. T h u s the f o u r relevant modes o f surge, heave, p i t c h , a n d hinge d e f l e c t i o n f o r the h i n g e d barge w o u l d be represented b y six modes (surge, heave a n d p h c h f o r each separate b o d y ) , a n d t w o constraints w o u l d be i m p o s e d stating t h a t the h o r i z o n t a l a n d v e r t i c a l m o t i o n at the hinge p o i n t is the same f o r b o t h barges. Such a procedure is a w k w a r d f r o m the c o m p u t a t i o n a l stand-p o i n t , since the r a d i a t i o n stand-p o t e n t i a l o f the extra modes must be evaluated, a n d the constraints are i m p o s e d i n an ad hoc m a n n e r . T h e present a p p r o a c h avoids these c o m p l i c a t i o n s .

T h e p r o b l e m o f w a l l effects o n a c y l i n d e r , treated i n Section 6, is another a p p l i c a t i o n o f d i s c o n t i n u o u s modes. I n this case generalized modes are used t o represent the a p p r o p r i a t e m o t i o n s o f each image b o d y , so as t o satisfy the b o u n d a r y c o n d i t i o n s o n the w a l l s . T h i s p r o b l e m also c o u l d be treated w i t h i n d e p e n d e n t modes o f each image b o d y , b u t the r e l a t i v e l y large

(13)

n u m b e r o f images and c o r r e s p o n d i n g independent modes w o u l d substantially increase the c o m p u t a t i o n a l b u r d e n . A C K N O W L E D G E M E N T S T h i s w o r k was p e r f o r m e d as p a r t o f the J o i n t I n d u s t r y P r o j e c t ' W a v e effects o n o f f s h o r e structures', s u p p o r t e d b y the C h e v r o n O i l F i e l d Research C o m p a n y , C o n o c o N o r w a y , M o b i l O i l C o m p a n y , the N a t i o n a l Research C o u n c i l o f Canada, N o r s k H y d r o , O f f s h o r e T e c h n o l o g y Research Center, Petrobras, Saga P e t r o l e u m , the Shell D e v e l o p m e n t C o m p a n y , S t a t o i l , a n d D e t N o r s k e V e r i t a s Research. T a b u l a r d a t a files f o r the solid curves s h o w n i n Figs 9 a n d 10 were k i n d l y p r o v i d e d b y the a u t h o r s o f Refs 11 a n d 12.

R E F E R E N C E S

1. Bishop, R. E. D . & Price, W . G., Hydroelasticity of ships, Cambridge University Press, Cambridge, 1979.

2. Gran, S. A . , Course in Ocean Engineering, Elsevier, Amsterdam, 1992.

3. Newman, J. N . , Deformable floating bodies. 8th Interna-tional Workshop on Water Waves and Eloating Bodies, St John's, Newfoundland, 1993.

4. Korsmeyer, F. T., Lee, C.-H., Newman, J. N . & Sclavounos, P. D . , The analysis of wave interactions with tension leg platforms. Proc. Conference on Offshore Mechanics and Artie Engineering, Houston, 1988.

5. Newman, J. N . & Sclavounos, P. D . , Thc computation of wave loads on large offshore structures. Proc. Conference on die Behaviour of Offshore Structures, Trondheim, 1988.

6. Lee, C.-H., Newman, J. N . , K i m , M . - H . & Yue, D . K . P., The computation of second-order wave loads. Proc. Offshore Mechanics and Arctic Engineering Conference, Stavanger, 1991.

7. Newman, J. N . & Lee, C.-H., Sensitivity of wave loads to the discretization of bodies. Proc. Conference on the Behaviour of Offslwre Structures, London, 1992.

8. Abramowitz, M . & Stegun, I . A . , Handbook of Mathema-tical Functions, US Government Printing Office, Washing-ton, D C 1964.

9. Meirovitch, L . , Analytical Methods in Vibrations, Macmil-lan. New Y o r k , 1967.

10. Havelock, T. H . , Forced surface-waves on water. Philoso-phical Magazine, 8 (1929) 569-76.

11. Yeung, R. W . & Sphaier, S. H . , Wave-interference effects on a truncated cylinder i n a channel. J. Engineering Mathematics, 23 (1989) 95-117.

12. Linton, C. M . & Evans, D . V., The radiation and scattering of surface waves by a vertical circular cylinder in a channel. Phil. Trans. Roy. Soc. Lond., A, 338 (1992) 325-57.

13. Lee, C.-H. & Sclavounos, P. D . , Removing the irregular frequencies f r o m integral equations i n wave-body interac-tions. / . Fluid Mech. 207 (1989) 393-418.

14. Mclver, P., The wave field around a vertical cylinder i n a channel. 7th International Workshop on Water Waves and Floating Bodies, V a l de Reuil, France, 1992.

15. Mclver, P., Recovery o f open-sea results f r o m narrow tank tests. 8th International Workshop on Water Waves and Floating Bodies, St John's, Newfoundland, 1993.

Cytaty

Powiązane dokumenty

Tak więc mamy tu krótki artykuł Ireny i Fryderyka Joliot- Curie Pierre Curie i drogi rozwoju współczesnej nauki, cztery prace upamięt- niające stulecie śmierci Gaussa, dwa artykuły

With a given form of the growth curve G (⋅ ) , the total loss reserve is pre- dicted using the model of the ultimate loss Y in in the origin year i and the pat- tern of the

The IMP and PMP are the primary indicators of the co-innovation effort, while the break-even time, time-to-market and change in market share are all related to

squamous metaplasia of urothelium, cystitis cystica, urodynamic examination, dysfunction of lower urinary tract,

También puede usarse en su lugar la voz malla, más acorde con el sistema gráfi co español, y frecuente en países como Chile y la Argentina para designar tanto la prenda de baño

Since the vertical quasi-stiffness in the part of the countermovement phase between the lowest value of the ground reaction force and the lowest location of COM is

[r]

[r]