• Nie Znaleziono Wyników

Numerical study of wheel-rail impact contact solutions at an insulated rail joint

N/A
N/A
Protected

Academic year: 2021

Share "Numerical study of wheel-rail impact contact solutions at an insulated rail joint"

Copied!
15
0
0

Pełen tekst

(1)

Delft University of Technology

Numerical study of wheel-rail impact contact solutions at an insulated rail joint

Yang, Zhen; Boogaard, Anthonie; Wei, Zilong; Liu, Jinzhao; Dollevoet, Rolf; Li, Zili

DOI

10.1016/j.ijmecsci.2018.02.025

Publication date

2018

Document Version

Final published version

Published in

International Journal of Mechanical Sciences

Citation (APA)

Yang, Z., Boogaard, A., Wei, Z., Liu, J., Dollevoet, R., & Li, Z. (2018). Numerical study of wheel-rail impact

contact solutions at an insulated rail joint. International Journal of Mechanical Sciences, 138–139, 310-322.

https://doi.org/10.1016/j.ijmecsci.2018.02.025

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

International Journal of Mechanical Sciences 138–139 (2018) 310–322

ContentslistsavailableatScienceDirect

International

Journal

of

Mechanical

Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

Numerical

study

of

wheel-rail

impact

contact

solutions

at

an

insulated

rail

joint

Zhen

Yang

a,b

,

Anthonie

Boogaard

a

,

Zilong

Wei

a

,

Jinzhao

Liu

c

,

Rolf

Dollevoet

a

,

Zili

Li

a,∗

a Delft University of Technology, Section of Railway Engineering, Stevinweg 1, Delft, 2628 CN, the Netherlands b MOE Key Laboratory of High-Speed Railway Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China c Infrastructure Inspection Research Institute, China Academy of Railway Sciences, Beijing, China

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Insulated rail joint (IRJ) Explicit FEM

Wheel-rail impact contact Transient solution Wave

a

b

s

t

r

a

c

t

Thispaperpresentsananalysisofthetransientcontactsolutionsofwheel-railfrictionalrollingimpactscalculated byanexplicitfiniteelementmodelofthewheel-insulatedrailjoint(IRJ)dynamicinteraction.Theabilityofthe modeltosimulatethedynamicbehaviorofanIRJhasbeenvalidatedagainstacomprehensivefieldmeasurement inarecentpaper(Yangetal.,2018).Inadditiontothemeasuredrailheadgeometryandbi-linearelastoplastic materialmodelusedinYangetal.(2018),thisstudyadoptsanominalrailheadgeometryandanelasticmaterial modelforthesimulationstoprovideanoverallunderstandingofthetransientcontactbehaviorofwheel-IRJ impacts.Eachsimulationcalculatestheevolutionofthecontactpatcharea,stressmagnitudeanddirection, micro-slipdistribution,andrailheadnodalvibrationvelocityinthevicinityofthejointduringthewheel-IRJ impacts.Thesimulationsapplysmallcomputationalandoutputtimestepstocapturethehigh-frequencydynamic effectsatthewheel-IRJimpactcontact.Regularwavepatternsthatindicatewavegeneration,propagationand reflectionareproducedbythesimulations;thishasrarelybeenreportedinpreviousresearch.Thesimulated wavesreflectcontinuumvibrationsexcitedbywheel-railfrictionalrollingandindicatethatthesimulatedimpact contactsolutionsarereliable.

© 2018ElsevierLtd.Allrightsreserved.

1. Introduction

Arecentpaper[1]establishedanexplicitfiniteelement(FE) wheel-insulated railjoint (IRJ) dynamic interactionmodeltocalculate the high-frequencyimpactvibrationandnoisegeneratedbyatypicalIRJ intheDutchrailwaynetwork.Thedynamicbehaviorofthewheel-IRJ systemreproduced bytheexplicitFE modelwas validatedagainsta comprehensivehammertestandapass-bymeasurement.Thispaper ap-pliesthevalidateddynamicinteractionmodeltoinvestigatethecontact characteristicsofwheel-IRJimpacts.

Because thefiniteelement method (FEM) is ableto handle non-linearmaterialpropertiesandarbitrarydiscontinuouscontact geome-tries,ithasbeen widely appliedtostudywheel-railcontactandthe subsequenttrackdeteriorationatIRJs.A3DFEanalysisperformedby ChenandKaung[2]indicatedthatthetraditionalHertziancontact the-ory[3]isinadequateforpredictingwheel-railcontactpressure distri-butionsaroundIRJs.ChenandChen[4]establisheda2DFEmodelto studytheeffectsofanIRJonthewheel-railcontactstressdistributions underpartialslipconditionsandsuggestedthatCarter’ theory [5]is nolongereffectiveforpredictingthetangentialstressdistributionsof

Correspondingauthor.

E-mailaddress:Z.Li@tudelft.nl(Z.Li).

wheel-railcontactatIRJs.Wenetal.[6]appliedanexplicitFEMfor thecontact-impactstressanalysisatrailjointregions,andthismodel canaccountfordynamiceffects.TheexplicitFEmodelwasthen devel-opedbyCaietal.[7]tocalculatethedynamicimpactforce,stresses andstrainsimposedwhenawheelpassesanIRJwithaheight differ-ence.SandstromandEkberg[8]employeda3DelastoplasticFEMmodel topredicttheplasticdeformationandfatigueresultingfromwheel-IRJ impacts bycapturingtheaccumulationof plasticstrain. Mandaland Dhanasekar[9]proposeda sub-modelingFEstrategy toexamine the ratchetingfailureofIRJs,andthesamestrategywasadoptedby Man-dal[10]tostudytheinfluencesofend-postmaterialsonrailhead dete-riorationatIRJs.Zongetal.[11]appliedanimplicit-explicitFEmodel tosimulaterail/wheel dynamiccontactimpact andrailhead damage inthevicinityofIRJ.ZongandDhanasekar[12,13]employedgenetic algorithmscoupledwithFEMstoreduceimpactstressthroughshape optimizationofrailheadatjoints.Onthebasisofthecoupledgenetic algorithmandaparametricFEM,ZongandDhanasekar[14]also devel-opedanewdesignofIRJ;thedesignreliedonembeddinggappedrails withinonesleepertoprovidesufficientrigiditytotherailends,andmay eliminateanumberofcomponentsofIRJandtheirassociatedmodesof failure.

https://doi.org/10.1016/j.ijmecsci.2018.02.025

Received 14 November 2017; Received in revised form 26 January 2018; Accepted 10 February 2018 Available online 12 February 2018

(4)

Althoughmanyresearchersbelievethatdynamiceffectsplaycertain rolesduringwheel-railimpacts[4,6–8,10,15,16],quasi-static wheel-railcontactisstillgenerallyassumedintheFEmodels[2,4,8–10]. Tran-sientsolutionsthatcanreflectdynamiceffectsinthewheel-railimpact contacthaverarelybeenstudied,whichmaybebecausewell-accepted methods[3,5,17–19]capableofresolvingcommonwheel-railcontact problemsaregenerallybased onthequasi-staticcontactassumption, andthedynamiceffectsduringcontactarethereforenotnecessarily con-sideredinmanysituations.Furthermore,nodirectexperimental meth-odsforaccuratelymeasuringthetransientcontactsolutionsare avail-able[20];therefore,althoughthetransientcontactsolutionshave al-readybeencalculated,accurateexperimentalvalidationscannotbe per-formed.

Reasonable transient wheel-rail contact solutions have been ob-tainedbyexplicitFEMsandusedtostudythecompression-shift-rolling contact[21],non-steady-statetransitionfromsingle-pointtotwo-point contact[22],anddynamiccrackingbehavior[20].Thisstudyalso cal-culatesthetransientsolutionsofwheel-IRJimpactcontactbyemploying anexplicitFEM.BecausetheexplicitFEMfullycouplesthecalculationof wheel/raildynamicresponseswiththecalculationofwheel-railcontact, thevalidityofthetransientimpactcontactsolutionssimulatedinthis papermaybeconfirmedbyseparatelyvalidatingthequasi-steady con-tactsolutionsandwheel/raildynamicresponses.Quasi-staticfrictional rollingcontactsolutionscalculatedbytheexplicitFEMincluding con-tactarea,pressure,surfaceshearstressandmicro-sliphavebeenshown tobeaccurateviacomparisonswithHertzianandCONTACTsolutions

[23,24],whereasthesimulatedstructuraldynamicresponsesto wheel-IRJimpacthavebeenvalidatedbyacomprehensivefieldmeasurement in[1].Inaddition,bypresentingtherailsurfacevibratingvelocities cal-culatedatconsecutivetimesteps,regularwavepatternswereobserved inthisstudy,whichprovidemoreevidenceforthereliabilityofthe re-sults.

ComparedwiththeimplicitFEM,theexplicitintegrationschemeis morerobust inhandlingdifficultcontactproblemsbecauseitavoids theconvergencedifficultiescausedby demandingcontactconditions

[25]andtheregularizationofthefrictionlawrequiredtotreatthe no-slipconditionintheadhesionarea[26].Moreover,thecomputational efficiencyis significantlyimprovedwhenconsidering high-frequency dynamics.Thisstudycalculatedtheevolutionofthecontactpatcharea, stressmagnitude anddirection,micro-slip distributionsandrailhead nodalvibrationvelocitiesinthevicinityofthejointusingsmalltime stepstocapturethehigh-frequencydynamiceffectsduringthe wheel-IRJimpact.

2. Wheel-IRJimpactcontactmodel

A3DexplicitFE wheel-IRJdynamicinteractionmodelwas estab-lishedinthisstudytosimulatethewheel-railimpactatatypicalIRJ intheDutchrailwaynetwork.Detaileddescriptionsofthemodelcan befoundin[1].InformationonthetargetIRJandFEmodelrelevant tocalculatingthetransientsolutionsofwheel-IRJimpactcontactare givenhere.Fig.1showstheinsituconditionofthetargetIRJselected forthestudy,anditislocatedintheAmsterdam-Utrechttrunklineof theDutchrailwaynetwork.UIC54railswithaninclinationof1/40are supportedbyNS90sleepersevery0.6mexceptintheproximityofthe IRJ,whereapairofadjacenttimbersleeperswithadistanceof0.24m isemployedtoreducethedeflectionofthejointandabsorbthe vibra-tionscausedbywheel-IRJimpacts.Aclose-upviewofthetargetIRJin

Fig.1(b)showsthattheIRJdoesnotpresentvisibledeteriorationbut showsanasymmetricrunningbandwithrespecttothejoint;in addi-tion,abroaderrunningband andabrighterspotcan beseenonthe railheadjustafterthejointalongthetrafficdirection,whichiswhere thewheel-IRJimpactsareexpectedtooccur.

Fig.2showsthe3DFEwheel-IRJdynamicinteractionmodel estab-lishedin[1].This modeliscomposedofa10-m-longhalf-trackwith anIRJinthemiddleandahalf-wheelsetwiththesprungmassofthe

car bodyandbogie.Thewheel,rails,andsleepersweremodeled us-inghexahedralelements.TheexplicitFEwheel-railinteractionanalysis adoptedtheone-pointquadratureschemeforthesakeofcomputational efficiency,which,however,leadedto‘hourglass’ modesforhexahedral elements.AnorthogonalFlanagan-Belytschkohourglasscontrolscheme

[27]wasthususedtoavoidtheundesirablehourglassmodesfrom grow-inglargeanddestroyingsolutions.Thewheelgeometrycorrespondsto thatofapassengercarwheeloftheDutchrailwaywiththestandard profileofS1002.Becausethevalueofelasticmodulusoftheend-post (insulationlayerbetween tworailends)is muchlowerthanthoseof therailsandthepresenceofairgap(showninFig.1(b))mayresultin freerail-end[28],theend-postlayerwasomittedinthemodeland sim-plifiedasagap.TheIRJwitha6-mmgapwasmodeledindetailwith thenominalgeometryandfinemeshes.Non-uniformmeshingwasused, andregulardiscretizationwithameshsizeof1mmwasallocatedatthe initialwheel-railcontactareaandwithinthe0.2-m-longsolutionzone aroundthejoint(Fig.2(b)).Freeboundarieswereusedontherailends atthejoint,whereasnon-reflectingboundariesweredefinedatthefar endsoftherails.

BecausetheexplicitFEMislessefficientthantheimplicitFEMfor staticequilibriumanalyses,animplicit-explicitsequentialapproachwas appliedinthisstudytominimizeboththesolutiontimeandthedynamic effectsinducedbytheinitializationofwheel-railinteractionanalysis. Theimplicit-explicit sequentialapproachinvolvesperformingan im-plicitstaticequilibriumanalysisfollowedbyanexplicittransient dy-namicsanalysis,asusedin[11].Thesimulationfirstemployedan im-plicitFEdynamicrelaxationtoallowthewheel-tracksystemtoreach an equilibriumstateundergravity,which provided theinitial nodal displacements tothe explicit wheel-rail transient rolling simulation. Theinitialpositionofthewheelmodelwas1.32mawayfromtheIRJ (twostandardsleeperspansandhalfatimbersleeperspanasshownin

Fig.2(a)).Therotationandforwardtranslationmovementsofthewheel wereappliedastheinitialnodalvelocitiesofthetransientexplicit anal-ysis.

Intheexplicittransientdynamicsanalysis,wecalculatedthe wheel-rail frictional rollingcontact witha penalty contactalgorithm[29], which isdirectlyimplemented intheexplicitFEMandiscalledasa subroutineateachtimesteppriortotheupdatesofthestructural dy-namicresponses.Consideringthattheexplicitintegrationschemeis con-ditionallystable:theintegrationisonlystableifthetimestepsizeused issmallerthanthecriticaltimestepsize,andthatthecriticaltimestep mayvaryinthenonlinearwheel-raildynamicinteractionanalysis be-causeofchangesinthematerialparametersand/orgeometry,ascale factorofcriticaltimestep0.9wasadoptedtocontrolthecomputational timestep andguaranteethe stabilityof theexplicit integration.The stabilityofthepenaltycontactalgorithmcanbecontrolledbyscaling down thepenalty contactstiffness;however,this wasunnecessaryin thisstudy.

Coulomb’slawoffrictionwasimplementedforthewheel-rail con-tactpairwithafrictioncoefficientof0.35(atypicalintermediatevalue oftherailtopfriction[30]).Thewheelwassubsequentlydrivenbya torqueappliedontheaxletorollalongtherailfromtheinitialposition towardsthejoint,thusgeneratingalongitudinalcreepforcebetweenthe wheelandrailthatsatisfiestherequirementthatthetractioncoefficient isbelowthefrictioncoefficient.

Fig.3(a)and(b)showthemeshesoftherailtopsurfacein prox-imitytothejoint before andafterapplyingthemeasuredgeometry, respectively.TheinsitugeometryofthetargetIRJwasmeasuredusing aHandySCAN3Dlaserscanner.Becausetherailheadsurface geome-triesvarywiththeoperationaltimeandeachIRJ,themeasured geome-trymayimposerandomnessonthesimulatedimpactcontactsolutions. Moreover,thematerialpropertiesofcontactbodiesalsoinfluencethe wheel-railcontactsolutions[24,31].Therefore,inadditiontothe sim-ulationconductedbythemeasured-geometrymodelin[1],two addi-tionalsimulationswereperformedinthispaperusingnominal-geometry models,withonesimulatingelasticmaterialsandtheothersimulating

(5)

Z. Yang et al. International Journal of Mechanical Sciences 138–139 (2018) 310–322

Fig.1. InsituconditionofthetargetIRJ.

Fig.2. FEwheel-IRJinteractionmodel.

Fig.3. ApplyingtherealisticgeometrytotheIRJ(thesizeoftheirregularityisexaggerated)[1].

elastoplasticmaterials, togainanoverallunderstanding ofthe tran-sientcontactbehaviorofwheel-IRJimpacts.Thesetupparametersof thethreesimulationsconductedinthisstudyarelistedinTable1,and simulation3wasperformedin[1].Table2liststhevaluesofthe mate-rialparametersusedinthesimulations.Theelastoplasticmaterialmodel appliedinthepapercorrespondstotheR260Mnrailsteelthatiswidely usedintheDutchrailway.

3. Impactcontactsolutions

Toprovideabroadoverviewofthewheel-railimpactcontactatan IRJ,thetimehistoriesofthenormalcontactforcescalculatedbythe threesimulationsarepresentedatthebeginningofthissection. Subse-quently,typicaltransientcontactsolutionscalculatedwithinthe solu-tionzoneareanalyzed,includingthecontactpatcharea,stress magni-tudeanddirection,micro-slipandadhesion-slipdistributions.The influ-enceoftherailsurfacegeometriesandthematerialmodelsarediscussed

(6)

Fig.4. Timehistoryofthewheel-railcontactforce.

Table1

Parametersof thesimulationswithdifferent setups.

Material Profile Simulation1 Elastic Nominal Simulation2 Elastoplastic Nominal Simulation3 Elastoplastic Measured

Table2

Valuesofthematerials.

Elastoplasticmaterialparameters Values Elasticpart Young’smodulus 210GPa

Poisson’sratio 0.3 Density 7800kg/m3

Plasticpart Yieldstress 500MPa Tangentmodulus 21GPa

bycomparingthesolutionsobtainedbythethreesimulations.The tran-sientcontactsolutionsobtainedinthisstudyalsocapturedwave phe-nomena,whichwillbepresentedinSection4.

3.1. Wheel-IRJimpactcontactforce

Thetimehistoriesofthenormalwheel-railcontactforcescalculated bythethreesimulationsareplottedinFig.4(a),whichshowsthat ob-viousimpactcontactoccurredwhenthewheelrolledoverthejointat approximately47ms.Thedampinginthesystemdissipatedtheinitial kineticandpotentialenergyoriginatingfromanyinitialinequilibrium ofthesystemsuchthattheoscillationsweredampedouttolessthan 10%ofthestaticvaluesuponarrivingatthesolutionzone.The close-up viewofthetimehistoriesaroundtheimpactplotted in Fig.4(b) showsthesimulatednormalimpactloadswithinthesolutionzone.The figureshows thattheimpactsimulatedwiththemeasuredgeometry (simulation3)wasmuchlargerthanthosesimulatedwiththenominal geometry.Inaddition,acomparisonofthenormalloadscalculatedby simulations1and2,whichonlydifferinthematerialproperties,shows thattheelastoplasticmaterialmodel(simulation2)providedaslightly higherimpactmagnitudethantheelasticmodel(simulation1), proba-blyduetothatduringtheimpactswiththesameduration(seeFig.4(b)), largercontactcompressionoccurredintheelastoplasticsolutionto bal-ancethesamequasi-staticwheelload[31].

Asreportedin[1],thewheel-IRJdynamicinteractionsimulationin thisstudyemployedasmallcomputationaltimestep(49ns).By

apply-inganexplicitcentraldifferencetimeintegrationandapenaltycontact algorithm[29],nodalforcesandmotionsinthesolutionzonewere cal-culatedforeachtimestep.Certainnodalforcesandmotionswere sub-sequentlyoutputandusedtocalculatethetransientsolutionsofimpact contact.Asmalloutputtimestep(1μs)wasusedinthisstudytocapture high-frequencydynamiceffectsupto500kHzinthetransientsolutions ofimpactcontact.Transientcontactsolutionsof6300outputtimesteps, specificallyfrom43.5msto49.8ms(abscissarangeofFig.4(b)),were calculatedforeachsimulation.

Anexampleofatransientcontactsolutioncalculatedbysimulation 3thatwasoutputatinstant45.613ms(outputtimestep=2113)is dis-playedin Fig.5.InFig.5(a),fromleft toright,thegraphsshow the simulatedstressdistributionsalongthelongitudinalcenterlineofthe contactpatch,stressdistributionswithinthecontactpatch,micro-slip distributionsandrailsurfacenodalvelocities.Thecontactstress distri-butionsweredeterminedbythecalculatedrailsurfacenodalforces;and therailsurfacenodalvelocitiescanbedirectlyoutput.Asforthe micro-slip,orthewheel-railrelativevelocity,becausearailsurfacecontact nodeisactuallyincontactwiththe‘contactpoint’ ratherthanawheel surfacenode[32],interpolationswasusedtoconverttheoutput veloc-itiesofwheelnodesintothevelocitiesofthe‘contactpoints’.

Thetransientwheel-railcontactpositionatthisinstantortimestep canbemoreeasilyidentifiedinFig.5(b).Bydisplayingcontactsolutions ofacertainamountofconsecutivetimestepsasthoseshowninFig.5(b), animations[33–35]werecreated,whichclearlyshowtheevolutionof thecontactsolutionsalongwithcertainhigh-frequencydynamiceffects. Typicaltransientcontactsolutionsareselectedandanalyzedinthe fol-lowingsectionstodemonstratethecharacteristicsofthetransient solu-tionsofimpactcontact.

3.2. Contactareasandstressdistributions

3.2.1. Evolutionofthecontactareasandstressdistributions

Theevolution ofthecontactpressuretogether withthedirection andmagnitudeofthesurfaceshearstresscalculatedbythethree simu-lationsareplottedinthecontour/vectordiagramsinFig.6.Thecontact patchareacanbedeterminedviathecontactpressure:anelementisin contactifthecontactpressureisnon-zero.Thus,theevolutionofthe contactpatchareacanalsobeobservedfromFig.6.Eighttimesteps (t1-t8)withafixedintervalof0.77ms(770timestheoutputtimestep) betweentwoconsecutivetimestepsaredisplayedforeachsimulationto showthemaincharacteristicsoftheimpactcontactareaandthestress evolution.Theoriginofthecoordinatesystemwasatthecenterofthe railbottomsurfaceattheinitialpositionofthewheel-railcontact. Be-causethecoordinatesystemincludedtherailinclinationofthetrack, thelongitudinalcenterlinesofthecontactpatchesshowninFig.6areat

(7)

Z. Yang et al. International Journal of Mechanical Sciences 138–139 (2018) 310–322

Fig.5.Exampleofthetransientcontactsolution.

approximately−3mminthelateraldirectionratherthanat0mm.The contactpressuremagnitudecorrespondstothedepthofcolorwithinthe contactpatchasindicatedbythecolorbar.Thesurfaceshearstresses areindicatedbybluearrows.Thearrowspointinthedirectionofthe shearstress,andthearrowlengthisproportionaltothemagnitude.

InFig.6(a)and(b),otherthanthediscontinuouscontactatthejoint att4,thecontactpatchareascalculatedbyboththeelastic(simulation 1)andelastoplasticmodels(simulation2)correspondwellwiththose reportedin[24,31].Thewheel-railcontactareassimulatedbythe elas-ticmodelhaveellipticalshapes,whereasthosesimulatedbythe elasto-plasticmodelhave‘egg’ shapes,withthetrailingpartsofthecontact patchesenlargedbecauseplasticdeformationhasoccurredintherear

[31].

Although simulation 1 produced the smallest impact force (Fig.4(b)),theamplitudesofthecontactpressurescalculatedby simu-lation1arelargerthanthosecalculatedbytheothertwosimulations asindicatedbyFig.6becausesimulation1hadthesmallestcontact areas.Themagnitudesofthecontactpressurelocatedapproximately inthemiddleofthecontactpatchinFig.6(a)butintheleading sec-tioninFig.6(b)arealsoconsistentwiththeresultsreportedin[24,31].

ThesimulatedcontactpatchareasinFig.6(a)and(b)basicallyremain steadyandincreasetosomeextentduringtheimpactatt4andt5.This phenomenonismoreevidentundertheelastoplasticmaterialcondition. Simulation3providedmoreobviouslynon-steady-statecontact so-lutionsasshowninFig.6(c).Thecontactareasandstressdistributions varyconsiderablywiththetimestepduetothegeometricirregularity oftherailtopsurfaceandsignificantimpact.Thecontactpatchesatt1 andt2inFig.6(c)aresimilartothoseatthesametimestepsinFig.6(b). Subsequently,theareaofthecontactpatchdecreasesatt3andt4 be-cause ofthegeometricdeclivitybeforethejoint (seeFig.3(b)). The contactareaincreasesremarkablyduringtheimpactcontactatt5and thenshrinksatt6,whenthewheelhasatendencytobounce.Therail surfacegeometricirregularitycontributestotheirregularshapesofthe contactpatches,whichareneitherellipticalnor‘egg’ shaped,aswellas theirregularstressdistributionsinFig.6(c).

Byplottingatrailoftransientcontactareas,the‘footprints’ ofthe contactpatchcalculatedbysimulation3arepresentedinFig.7(a).The intervalbetweeneachtwoconsecutivecontactpatchesis0.3ms(300 timestheoutputtimestep).Goodcorrespondencecanbeobtainedby comparingthesimulated‘footprints’ totheinsiturunningbandofthe

(8)

Fig.6. Evolutionoftheimpactcontactareaandstressdistribution.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthisarticle.)

(9)

Z. Yang et al. International Journal of Mechanical Sciences 138–139 (2018) 310–322

Fig.7. Comparisonofthesimulatedcontactpatch‘footprints’ andtheinsiturunningband.(Forinterpretationofthereferencestocolorinthisfigurelegend,the readerisreferredtothewebversionofthisarticle.)

Fig.8. Exampleofthesurfaceshearstressdistribution.

targetIRJshowninFig.7(b).The‘footprints’ becomenarrowatthe regionjustbeforethejoint(1310–1317mm)inFig.7(a),which corre-spondstothecut-off oftherunningband(atapproximately1310mm) inFig.7(b).Wheel-IRJimpacts(thefirstpeakofthecontactforce in

Fig.4(b))occuratapproximately1330–1350mm,wherethe‘footprints’ arelargerinFig.7(a),andabroaderrunningbandandabrighterspot canbe foundin Fig.7(b).Thesecond wheel-railimpact(the second peakofthecontactforceinFig.4(b))occursatapproximately1380– 1390mm,wherelargerthanusualcontactpatchesandabrighterspot canbeobservedinFig.7(a)and(b),respectively,althoughtheyareless pronouncedthanthoseinthefirstimpact.Thegoodcorrespondence be-tweenthesimulatedcontactpatch‘footprints’ andinsiturunningband impliesthatsimulation3(withthemeasuredgeometry)canmore ac-curatelyreproducethetransientimpactcontactsolutionsatthetarget IRJ,whichislikelyinanon-steadystate.

3.2.2. Positivesurfaceshearstress

Whenawheelrollsalongaraildrivenbyatorqueattheaxle,the shearstressdirection on therailsurfaceisgenerallyoppositetothe

wheelrollingdirection.AnexampleisshowninFig.8(a),inwhichthe railsurfaceshearstressdistributionwascalculatedviasimulation2at instant46ms(outputtimestep=2500).Byextractingthesurfaceshear stressalongthelongitudinalcenterlineofthecontactpatchand com-paringittothetractionbound(theproductofthecontactpressureFn

andfrictioncoefficientf),thedistributionoftheadhesion-slipregions canbeobtained,asshowninFig.8(b).Themaximumamplitudeofthe surfaceshearstressislocatedatthejunctureoftheadhesionandslip regions.Theadhesion-slipdistributionwithinthecontactpatchwillbe analyzedindetailinthenextsection.

Inthispaper, thedirection ofthesurfaceshearstressoppositeto thedirectionofwheelrollingisdefinedasnegativeandthatalongthe directionofwheelrollingisdefinedaspositive.Areviewofthe evolu-tionofstressdistributionshowninFig.6indicatesthatasthe counter-forceofthetractioncausesthewheeltomoveforward,thesimulated surfaceshearstresspointsinthenegativedirectionforthemajorityof graphsexceptattheregionsimmediatelyafterthejoint(roughly1323– 1327mm)att4.Toshowthisphenomenonmoreclearly,anevolutionof thesurfaceshearstressdistributionwithinthecontactpatchcalculated

(10)

Fig.9. Evolutionofthesurfaceshearstresscalculatedbysimulation2.

bysimulation2withasmallertimestep(0.1ms,100timesoftheoutput timestep)thanthatusedinFig.6(0.77ms)isdepictedinFig.9.The evolutioncalculatedbysimulations1and3(notpresentedhere)shows thesametrend.

AsshowninFig.9,whenthewheeljusttouchestherightrailafter thejoint(T1-T3),theshearstressvectorsontherightrailarepositive, whereasthoseontheleftrailarenegative.FromT4toT6,asthecontact patchmoves,theamplitudesofthepositiveshearstressesontheright railbetween1325mmand1329mmdecreasetozeroandthenbecome negative.GraphsofT4andT5alsoindicatethatthelateralshearstress playsanimportantroleatthesemoments,especiallyatlocationsclose tothetopandbottomedgesof thecontactpatch,wherethesurface shearstressvectorspointoutwards.Suchstressmayexacerbate mate-rialflowontherailheadandconsequentlywidentherunningbandat theimpactlocationasshowninFig.7(b).AttheinstancesofT7andT8, thecontactpatchhasexitedthepositivesurfaceshearstressregionand allthestressvectorspointinthenegativedirection.Theoccurrenceof transientpositivesurfaceshearstressontherightrailendisshownto resultfromtheimpactcontactattheIRJwithdiscontinuousgeometry. Intheregionimmediatelyafterthejoint,theamplitudesofthe posi-tiveshearstressescausedbythewheel-IRJimpactarelargerthanthe amplitudesoftheoriginalnegativeshearstresses(counterforceofthe traction),thusmakingtheresultantsurfaceshearstressespositive.

Thisstudymodeledawheeldrivenbyatorqueonitsaxle.Whena brakingwheelrollsonasectionoftrackwithanIRJ,theoriginal direc-tionoftherailsurfaceshearstressesisexpectedtobepositive (coun-terforceofthebrakingforce).Insuchcases,thepositiveshearstresses imposedbyimpactwillbeaddedtotheoriginalpositiveshearstresses. TowhatextentanimpactbetweenabrakingwheelandanIRJcan in-fluencethesurfaceshearstressdistributionandtheconsequentwear behaviorontherailheadafterthejointshouldbestudiedinthefuture.

3.3. Adhesion-slipdistributionandmicro-slip

Thedivisionbetweenadhesionandslipregionsinthecontactpatch isanimportantfeatureoffrictionalrollingcontact.Thetransientcontact solutionsthatindicatetheadhesion-slipdistributionduringthe wheel-IRJimpactpredictedbysimulation3arepresentedinthissection.The adhesion-slipdistributioncanbedeterminedeitherbycomparingthe surfaceshearstresswiththetractionboundorbycalculatingthe micro-slipwithinthecontactpatch.Inthisstudy,thesimulatedadhesion-slip distributionsdeterminedbythesetwoapproachesareconsistentwith eachother,asshowninFig.10.

Fig.10(a)displayscomparisonsofthesurfaceshearstressand trac-tionboundalongthelongitudinalcenterlineofthecontactpatchat15 instants.Instantt1isequalto44.4ms,andtheintervalbetweeneach twoconsecutiveinstantsis0.3ms(300timesoftheoutputtimestep).

Fig.10(b)showstheevolutionofthemicro-slipdistributionwithinthe contactpatchatthesame15instants.Theredarrowspointinthe direc-tionofthemicro-slip,andthearrowlengthisproportionaltothe mag-nitude.Themicro-slipvectors(slipregion)occuratthetrailingpartof thecontactpatch,andtheirdirectionslargelycorrespondtothewheel rollingdirection.Thecolordepthwithinthecontactpatchindicatesthe magnitudeofthenormalwheel-railrelativelyvelocity.Thecolor out-sidethecontactpatchcorrespondstoazerorelativevelocity,whereas thatattheleadingandtrailingedges ofthecontactpatcharelighter anddarker,indicatingapositiveandnegativenormalrelativevelocity, respectively.

Theadhesion-slipdistributionsshowninFig.10arenon-steady dur-ingthewheel-IRJimpact,andtheproportionofcontactpatchoccupied bytheadhesionandslipregionsvarygreatlywiththetimestepfromt8 onwards.Themostsignificantvariationoccursfromt9tot13.Atinstant t9,theadhesionregionaccountsforalmosttheentirecontactpatch. Next,theadhesionzoneshrinksgraduallyandtheslipregionreaches itsmaximumoccupationatinstantt12,whenthebouncetendencyof thewheelcomestoanendandthewheelisnearlyatthesecondimpact, whichcorrespondstothecontactforcetroughatapproximately47.7ms inFig.4(b).Thegoodconsistencybetweentheadhesion-slip distribu-tionscalculatedbythecontactstressesandthemicro-slipssupportthe conclusionthattheexplicitFEMpresentedherecansolvethetransient impactcontactproblemwithnon-linearmaterialpropertiesand arbi-trarydiscontinuouscontactgeometries.

4. Wavephenomena

Comparedwiththecontactforceandstress,thesurfacenodal vibra-tionvelocityisfoundtobemoresensitivetodynamiceffectsexcitedby wheel-railcontact[22,36].Therailsurfacenodalvelocitycalculations inthisstudyrevealedwavephenomenaexcitedbywheel-railfrictional rollingimpactcontact,andtheresultswerebasedonthefinemeshof theFEmodel,smallcomputationalandoutputtimesteps,andfull cou-plingofthecontactanddynamicsintheexplicitintegration.Thesizeof thefinemeshisbasedontherequirementthatthesizeoftheelements shouldbenolargerthanhalfawavelength.Thesmallcomputational timestepenablesthecalculationstocapturehigh-frequencydynamic effects,andthesmalloutputtimestepfacilitatestheobservationofthe

(11)

Z. Yang et al. International Journal of Mechanical Sciences 138–139 (2018) 310–322

Fig.10. Evolutionoftheadhesion-slipdistributionscalculatedbysimulation3.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

(12)

Fig.11. Patternsofwavepropagationandreflectionproducedbysimulation3.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderis referredtothewebversionofthisarticle.)

generationandpropagationprocessesofthesimulatedwaves.Full cou-plingmeansthatthecontactforceandwheel-raildynamicsareupdated simultaneouslyineverytimestep,therebyallowingthedynamiceffects tobefullyconsideredwhencalculatingthecontactsolutions.Certain wavepatternsthatindicatewavegeneration,propagationand reflec-tionwereexcitedbywheel-railcontactproducedinthesolutionzone, andtheyarepresentedandanalyzedinthissection.Moreevidentwave phenomenacanbeobservedintheanimations[33–35].

4.1. Wavesgeneratedbywheel-railcontact

Thewavephenomenondiscussedherewasfirstobservedbeforethe wheel-IRJimpact.Fig.11(a)and(b)showtherailnodalvelocitiesinthe solutionzonesimulatedbysimulation3atinstants43.615ms(output timestep=115)and43.640ms(outputtimestep=140),respectively. Thecolordepthin thefigureindicatesthemagnitude ofthenormal nodalvelocity,whichcanbeusedtoidentifytheapproximatepositionof thewheel-railcontactpatch.Thedarkerandlightersemi-ovalsindicate theleadingandtrailingpartsof thecontactpatch,respectively. The tangentialnodalvelocitiesareindicatedby bluearrows. Thearrows pointinthedirectionofthetangentialvelocity,andthearrowlengthis proportionaltothemagnitude.Thestripeinthemiddleofeachgraph showsthepositionofthejoint.

Aregularwavepatternpropagatingfromthewheel-railcontactarea towardsthejointcanbeobservedinFig.11(a).Thewavewitha wave-lengthofapproximately6mmisstrongeraroundthecontactpatchand dissipateswhenpropagating.Whenthewavefrontreachesthejoint,a reflectivewaveoccursunderthefreeboundaryconditiondefined on therailendatthejoint.Thereflectivewaveextendsfromthejointback tothecontactpatchandinterfereswiththeoriginalwaveasindicated inFig.11(b).Moreobviouswaveinterferencecanbeobservedinthe correspondinganimation[33].

Thewavephenomenadiscoveredinthisstudyaretransientand nor-mallytakelessthan0.1msfromgenerationtodisappearance.The gen-erationprocessofthewaveshowninFig.11(a)isdisplayedwithan outputtimestepof1μminFig.12.Theinstantofthefirstgraph(T1) is43.603ms,whichis0.012ms(12outputtimesteps)earlierthanthat ofFig.11(a).AtT1,therailsurfacenodalvelocitiesappeartobe dis-tributedsymmetricallywithrespecttothelongitudinalcenterline.The leadingandtrailingpartsofthecontactpatchcanbeidentifiedbythe darkerandlightersemi-ovals,respectively.Theregionaheadofthe con-tactareaisslightlydarkerthanthatbehindthecontactarea.The tan-gentialvelocitiesaremainlyconcentratedon thetrailingpartof the

contactpatch,andtheirdirectionsarelargelyconsistentwiththewheel rollingdirection.Thelateralcomponentsofthetangentialvelocities in-creasewiththedistancetothelongitudinalcenterlineofthecontact patch.AtinstantT2,turbulenceofthenodalvelocitysuddenlyoccurs intheleadingpartofthecontactpatch.Theturbulencespreadsradially andconsequentlydevelopsintoawaveinthefollowinginstants.This turbulenceissuspectedtoberelatedtothewheel-railfriction-induced instability,andstudiestodetermineitscausearestillongoing.

Graphs ofinstantsT3andT6indicatethatthewavepatternsare embodiedinboththenormalandtangentialnodalvelocities,andthe directionofthetangentialvelocitiesareconsistentwiththewave prop-agationdirection.Thewaveisinitiatedatthelongitudinalpositionof 1244mm(T2),andwithin3timesteps,itsfrontreaches1254mm(T5). Neglectingthewheelrollingdistanceinsuchashortperiod(lessthan 0.1mm),thewavespeedisestimatedas3km/s.Boththepropagation formandthespeedoftheproducedwaveareconsistentwiththe prop-ertiesofRayleighwaves[37].

4.2. Waveexcitedbywheel-IRJimpact

Thisstudyalsorevealedthatanimpactwavecanbegeneratedwhen thewheel rolls overthejoint andjust touchestherail ontheother side. Fig.13 displaysan impact waveproduced by simulation 3at instants46.390ms(outputtimestep=2890),46.395ms(output time step=2895)and46.400ms(outputtimestep=2900).Attheseinstants, thewheelwasrollingfromtheleftrailtotherightrail,anditwasin con-tactwithbothrailends.AsshowninFig.13,anobviouswaveoccursand propagatesontherailafterthejoint.Comparedwiththewavepatterns displayedinFig.11,theimpactwavepatternsdisplayedinFig.13are mainlyformedbythenormalnodalvelocities,andthewavelengthis ap-proximately10mm.Thecontributionsofthetangentialnodalvelocities tothewavepatternsaremuchlesspronounced.Moreevidentimpact wavepropagationcanbeseenintheanimation[34].

In addition to the wave types displayed in Figs. 11 and 13, simulations 1 and2 also producedwaves with longerwavelengths.

Fig.14(a)and(b)showtwoexamplesproducedbysimulation2at in-stants46.74ms(outputtimestep=3240)and46.762ms(outputtime step=3252),respectively. Thesetwowavesappearimmediatelyafter thewholecontactpatchistransferredtotherailafterthejoint,andtheir wavelengths,whichareshowninFig.14(a)and(b),areapproximately 40mmand20mm,respectively.Theanimation[35]showsamoreclear depictionofthesewaves.Thelonger-wavelengthwavewasnotobserved

(13)

Z. Yang et al. International Journal of Mechanical Sciences 138–139 (2018) 310–322

Fig.12. Generationprocessofawave.

Fig.13. Impactwavepatternproducedbysimulation3.

insimulation3.Thecauseoftheselonger-wavelengthwavesmustbe furtherstudied.

Asillustratedabove,wavephenomenawereproducedbythe ex-plicitFEMandobservedinthesimulatedrailnodalvibrationvelocities inthesolutionzone.Becausethecalculationsofthewheel-railcontact forceanddynamicsarefullycoupled,thewavephenomenawerealso capturedbythesimulatedwheel-railcontactforce.Fig.15depictsthe 100-kHzhigh-passfilteredsignalsofthewheel-railcontactforcesinthe solutionzonecalculatedbysimulations2and3.Eachpeakofthe sig-nalsshowninFig.15correspondstoawavephenomenonshownbythe

railnodalvelocities.Peaks1,2and3denotedinFig.15correspondto thewavephenomenashowninFigs.11,13and14,respectively.The wavephenomenacorrespondingtotheotherpeaksofFig.15werealso producedbythesimulationsbutarenotpresentedhere.Higherpeaks correspondtomoresignificantcorrespondingwavephenomena.Peak 2showninthelateral(uppergraph)andlongitudinal(bottomgraph) contactforcesignalsislessremarkablethanthatintheverticalforce sig-nal(middlegraph),anditcorrespondstotheresultsshowninFig.13, whichshowsthatthewavepatternsaremainlyformedbythenormal nodalvelocities.Thecauseofthesehigh-frequencycontactforcepeaks,

(14)

Fig.14. Wavepatternswithlongerwavelengthsproducedbysimulation2.

(15)

Z. Yang et al. International Journal of Mechanical Sciences 138–139 (2018) 310–322

whichislikelythecauseofthewavephenomenaaswell,hasnotbeen clearlyidentifiedinthisstudyandwillbeinvestigatedinthefuture.

5. Conclusionsandfuturework

Thispaperinvestigatedthetransientcontactsolutionsofwheel-IRJ frictionalrollingimpactswithdynamiceffectssimulatedbyanexplicit FEwheel-IRJdynamicinteractionmodel,whichwasvalidatedagainsta comprehensivefieldmeasurementin[1].Thetransientsolutionsof im-pactcontactwithsmalltimestepscalculatedinthispaperincludethe contactpatcharea,stressmagnitudeanddirection,micro-slip distribu-tion,andrailsurfacenodalvelocityinthevicinityofajoint.The sim-ulatedcontactsolutionstendedtovarynoticeablywiththetimestep, indicatingthatdynamiceffectsplayimportantrolesinthewheel-IRJ impactcontact.Transientpositivesurfaceshearstress,whosedirection isoppositethatofshearstressunderordinarytractiverolling,was dis-coveredontherailsurfaceimmediatelyafterthejoint.Thesimulated transientadhesion-slipdistributionsdeterminedbythecontactstresses andmicro-slipsolutionswereverifiedbyeachother.

Inaddition,regularwavepatternswereproducedbothbeforeand duringthewheel-IRJimpactsinthesimulations,andthesepatterns re-flectcontinuumvibrationsexcitedbywheel-railfrictionalrollingand impactcontactandconfirmthatthesimulatedtransientcontact solu-tionsarereliable.Incombinationwiththeconclusionsdrawnfrom[1], thepresentedexplicitFEMissufficientandaccurateforsolving wheel-IRJimpactproblemsbyfullycouplingthehigh-frequencydynamicsof wheelandrailcontinuawiththecomplextransientimpactcontactin onesimulation.

Theinfluenceof thewheel-railcontactgeometryonthetransient contactsolutionswasalsoinvestigatedinthisstudy.Thecontact solu-tionscalculatedwiththenominalgeometrycorrespondwellwiththose reportedintheliterature,whereasthosesimulatedwiththemeasured geometry show obviously non-steady-state impact effects. The good agreementbetweenthesimulated‘footprints’ ofthecontactpatchand theinsiturunningbandimpliesthatthemodelwiththemeasured ge-ometryprovidesmorerealisticpredictionsofthetransientsolutionsof theimpactcontactatthetargetIRJ.Withoutconsideringtherealistic contactgeometries,theimpactcontactforceandimpactcontactarea fluctuationsmaybesignificantlyunderestimated.

Experimentalvalidationofthewavephenomenaproducedbythis study is planned to be conducted in the future by measuring high-frequencyrailsurfacevibrationsupto1MHz.Incombinationwiththese measurements,thesourceoftheinitiationofwaveswillbefurther in-vestigated.Becausethepropagationandreflectionofrailsurfacewaves areexpectedtobe influencedbygeometricdiscontinuities,thisstudy maybefurtherdevelopedandappliedtotrain-bornedetectionof early-stagecracksontherailhead.Inaddition,theinfluenceofthedynamic effectsofimpactsontrackdeteriorationinthevicinityofIRJscanbe studied,andtheresultsofsuchstudiesmaycontributetoasustainable IRJdesignandeffectivemaintenanceinpractice.

Acknowledgments

ThisworkwassupportedbytheChinaScholarship Council(grant No.201206260105),theDutchrailwayinfrastructuremanagerProRail, andtheopenresearchfundoftheMOEKeyLaboratoryofHigh-speed RailwayEngineering,SouthwestJiaotongUniversity.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.ijmecsci.2018.02.025.

References

[1] Yang Z , Boogaard A , Chen R , Dollevoet R , Li Z . Numerical and experimental study of wheel-rail impact vibration and noise generated at an insulated rail joint. Int J Impact Eng 2018;113:29–39 .

[2] Chen YC , Kuang JH . Contact stress variations near the insulated rail joints. Proc Inst Mech Eng Part F 2002;216:265–73 .

[3] Hertz H . Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 1882:1882 .

[4] Chen YC , Chen LW . Effects of insulated rail joint on the wheel/rail contact stresses under the condition of partial slip. Wear 2006;260:1267–73 .

[5] Carter FW . On the action of a locomotive driving wheel. Proc R Soc Lond A-Conta 1926;112:151–7 .

[6] Wen ZF , Jin XS , Zhang WH . Contact-impact stress analysis of rail joint region using the dynamic finite element method. Wear 2005;258:1301–9 .

[7] Cai W , Wen ZF , Jin XS , Zhai WM . Dynamic stress analysis of rail joint with height difference defect using finite element method. Eng Fail Anal 2007;14:1488–99 .

[8] Sandstrom J , Ekberg A . Numerical study of the mechanical deterioration of insulated rail joints. Proc Inst Mech Eng F-J Rai 2009;223:265–73 .

[9] Mandal NK , Dhanasekar M . Sub-modelling for the ratchetting failure of insulated rail joints. Int J Mech Sci 2013;75:110–22 .

[10] Mandal NK . Finite element analysis of the mechanical behaviour of insulated rail joints due to impact loadings. Proc Inst Mech Eng F-J Rai 2016;230:759–73 .

[11] Zong N , Wexler D , Dhanasekar M . Structural and material characterisation of insu- lated rail joints. Electron J Struct Eng 2013;13:75–87 .

[12] Zong N , Dhanasekar M . Minimization of railhead edge stresses through shape opti- mization. Eng Optim 2013;45:1043–60 .

[13] Zong N , Dhanasekar M . Hybrid genetic algorithm for elimination of severe stress concentration in railhead ends. J Comput Civil Eng 2015;29:04014075 .

[14] Zong N , Dhanasekar M . Sleeper embedded insulated rail joints for minimising the number of modes of failure. Eng Fail Anal 2017;76:27–43 .

[15] Li ZL , Zhao X , Dollevoet R , Molodova M . Differential wear and plastic deformation as causes of squat at track local stiffness change combined with other track short defects. Vehicle Syst Dyn 2008;46:237–46 .

[16] Pletz M , Daves W , Ossberger H . A wheel set/crossing model regarding impact, sliding and deformation-Explicit finite element approach. Wear 2012;294:446–56 .

[17] Ayasse JB , Chollet H . Determination of the wheel rail contact patch in semi-Hertzian conditions. Vehicle Syst Dyn 2006;43:161–72 .

[18] Kalker JJ . Three-dimensional elastic bodies in rolling contact. 1st ed. Netherlands: Springer; 1990 .

[19] Piotrowski J , Kik W . A simplified model of wheel/rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Ve- hicle Syst Dyn 2008;46:27–48 .

[20] Zhao X , Zhao X , Liu C , Wen Z , Jin X . A study on dynamic stress intensity factors of rail cracks at high speeds by a 3D explicit finite element model of rolling contact. Wear 2016 .

[21] Wei ZL , Li ZL , Qian ZW , Chen R , Dollevoet R . 3D FE modelling and validation of frictional contact with partial slip in compression-shift-rolling evolution. Int J Rail Transp 2016;4:20–36 .

[22] Yang Z , Li ZL , Dollevoet R . Modelling of non-steady-state transition from single-point to two-point rolling contact. Tribol Int 2016;101:152–63 .

[23] Zhao X , Li ZL . The solution of frictional wheel-rail rolling contact with a 3D transient finite element model: Validation and error analysis. Wear 2011;271:444–52 .

[24] Deng X , Qian Z , Dollevoet R . Lagrangian explicit finite element modeling for spin-rolling contact. J Tribol 2015;137:041401 .

[25] Mulvihill DM , Kartal ME , Nowell D , Hills DA . An elastic–plastic asperity interaction model for sliding friction. Tribol Int 2011;44:1679–94 .

[26] Wriggers P . Computational contact mechanics. Berlin Heidelberg: Springer; 2006 .

[27] Flanagan DP , Belytschko T . A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int J Numer Methods Eng 1981;17:679–706 .

[28] Zong N , Dhanasekar M . Experimental studies on the performance of rail joints with modified wheel/railhead contact. Proc Inst Mech Eng F-J Rai 2014;228:857–77 .

[29] Hallquist JO , Goudreau GL , Benson DJ . Sliding interfaces with contact-im- pact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 1985;51:107–37 .

[30] Eadie DT , Santoro M , Powell W . Local control of noise and vibration with KELTRACK TM friction modifier and Protector® trackside application: an integrated solution. J Sound Vib 2003;267:761–72 .

[31] Zhao X , Li ZL . A three-dimensional finite element solution of frictional wheel-rail rolling contact in elasto-plasticity. Proc Inst Mech Eng J-J Eng 2015;229:86–100 .

[32] Hallquist JO . LS-DYNA theory manual; 2006 .

[33] Animation for Fig. 11, https://youtu.be/tWyWKw9XxRI ; [accessed 16.11.22] in. [34] Animation for Fig. 13, https://youtu.be/fAg99j6kquI ; [accessed 16.11.22] in. [35] Animation for Fig. 14, https://youtu.be/eHh24SnWDFQ ; [accessed 16.11.22] in. [36] Zhao X , Li Z . A solution of transient rolling contact with velocity dependent friction

by the explicit finite element method. Eng Comput 2016;33:1033–50 .

[37] Telford WM , Geldart LP , Sheriff RE . Applied geophysics. Cambridge University Press; 1990 .

Cytaty

Powiązane dokumenty

Oprócz symboliki małych liter alfabetu łacińskiego Boecjusz używa liczebników porządkowych „prim um ” i „secundum” jako zmiennych logicznych. Symbolika

Tłumaczenie przez reprezentację wiedzy – polega na generacji tekstu w obcym języku na bazie wiedzy pozyskanej z wypowiedzi w języku macierzystym... Przykładowe

podstawie fal konieczne jest zastosowanie duŜej ilości elektrod..  Do diagnozowania wystąpienia

24 Analiza sytuacji gospodarczej w krajach Europy Środkowej i Wschodniej...op.. Economic transformation processes o f central and eastern European countries 239 euro

- studenci dziennikarstwa i komunikacji społecznej ujawnili, że jako od­ biorców kampanii społecznych bardziej porusza ich namawianie w reklamach do zaniechania zachowań

Но так как в последнее время (nouissimo tempore) придет и вечное воздаяние святым и наказание нечестивым, то им велено ждать» 79. 877;

Oksana Mikolaïvna Slipuško [Oksana Nikolaevna Slipuško, Oksana Miko- laïvna Slipuško [Оксана Николаевна Слипушко, Оксана Миколаївна Сліпушко]),

2 liceum ogólno­ kształcącego oraz techników i liceów zaw odowych.. Jeszcze jeden nieznany list