• Nie Znaleziono Wyników

Hydrodynamic development of inclined keel hull-propulsion

N/A
N/A
Protected

Academic year: 2021

Share "Hydrodynamic development of inclined keel hull-propulsion"

Copied!
6
0
0

Pełen tekst

(1)

O c e a n E n g i n e e r i n g 6 3 ( 2 0 1 3 ) 9 0 - 9 5

ELSEVIER

Contents lists available at S c i V e r s e S c i e n c e D i r e c t

Ocean Engineering

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / I o c a t e / o c e a n e n g

Hydrodynamic development of Inclined Keel HuU-propulsion

K.C. Seo-^'* M. Atlar^ D. Wang^'^

' School of Marine Science and Technology, Newcastle University, UK ''Harbin Institute of Technology, China

A R T I C L E I N F O Article history: R e c e i v e d 2 1 O c t o b e r 2 0 1 2 A c c e p t e d 2 6 J a n u a r y 2 0 1 3 A v a i l a b l e o n l i n e 2 1 M a r c h 2 0 1 3 Keywords: I n c l i n e d K e e l H u l l A l a r g e p r o p e l l e r d i a m e t e r E n e r g y s a v i n g G r e e n h o u s e g a s e m i s s i o n A B S T R A C T

The gain in propulsive efficiency using a large propeller diameter w i t h lower shaft rotation is perhaps the simplest and most robust way of improving the fuel economy of a ship. W i t h i n this framework the concept of "Inclined Keel Hull" has attracted much interest in small vessels such as fishing boats and t u g boats to improve their pulling power however there has been no application of this concept to large commercial ships. This is the second of two papers on a hydrodynamic development of an Inclined Keel Hull w i t h a well-designed 3600 TEU container vessel based on the recently completed postgraduate study, (Seo, 2010). In the first paper (Seo et al., 2012) the validation for the bare hull resistance and wake distribution on the propeller plane was conducted by using advanced numerical tools and large scale model' tests as part of an on-going collaborative FP7-EU research project. Streamline (2010). The present paper is the continuation of the validation study for the propulsion analysis of the same vessel by using numerical analysis and large scale self-propulsion tests as part of the same project. The validation study confirmed the worthiness of the Inclined Keel Hull concept by achieving a 4.3% m a x i m u m power saving in the delivered power around design speed.

© 2013 Elsevier Ltd. All rights reserved.

1.

Introduction

A successful s h i p d e s i g n i n t e r m s o f s h i p p o w e r i n g d e m a n d s p r o p u l s i o n devices d e s i g n e d t o give m a x i m u m e f f i c i e n c y a n d t o absorb a l o w s h a f t p o w e r w i t h l o w h u l l pressures, noise, c a v i t a -t i o n e r o s i o n a n d v i b r a -t i o n . I n general i -t is a p l a -t i -t u d e f o r n a v a l a r c h i t e c t s t h a t a large p r o p e l l e r d i a m e t e r i n c o m b i n a t i o n w i t h a l o w r o t a t i o n a l speed leads t o a n a t t r a c t i v e g a i n i n p r o p u l s i v e e f f i c i e n c y d u e t o t h e r e d u c t i o n o f a x i a l losses. A d d i t i o n a l l y , a s l o w t u r n i n g p r o p e l l e r can also have c a v i t a t i o n b e n e f i t s . M a n y a p p l i c a -tions, especially f o r larger t a n k e r s ( h i g h t h r u s t l o a d i n g case) i n w h i c h t h e a x i a l e n e r g y loss d o m i n a t e s , t h e r e f o r e have t a k e n place i n a d a p t i n g large a n d s l o w t u r n i n g p r o p e l l e r s as b e i n g one o f t h e m o r e r o b u s t a n d e f f e c t i v e w a y s o f a c h i e v i n g s i g n i f i c a n t p r o p u l -sive efficiencies (Beek, 2 0 0 4 ; C i p i n g e t al., 1 9 8 9 ) . For t h e same vessel a f u r t h e r increase o f p r o p e l l e r d i a m e t e r w o u l d r e q u i r e t h e d e v e l o p m e n t o f t h e n e w p r o p e l l e r a p e r t u r e . I n o r d e r t o secure a deeper a f t d r a u g h t for a large d i a m e t e r p r o p e l l e r t h e A u t h o r s have i n t r o d u c e d "Inclined Keel Hull" c o n f i g u r a t i o n w h e r e t h e d r a u g h t o f

* C o r r e s p o n d e n c e t o : S c h o o l o f i V I a r i n e S c i e n c e a n d T e c h n o l o g y , A r m s t r o n g B u i l d i n g , N e w c a s t l e U n i v e r s i t y , N E I 7 R U , U n i t e d K i n g d o m . T e l . : + 4 4 0 1 9 1 2 2 2 5 0 6 7 ; f a x : + 4 4 0 1 9 1 2 2 2 5 4 9 1 . E-mail addresses: k w a n g - c h e o l . s e o O n c l . a c . u k , s k c 0 0 7 6 @ h o t m a i l . c o m ( K . C . S e o ) . " F o r m e r l y w o r k e d a t S c h o o l o f M a r i n e S c i e n c e a n d T e c h n o l o g y , U K . 0 0 2 9 - 8 0 1 8 / $ - s e e f r o n t m a t t e r © 2 0 1 3 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d . h t t p : / / d x . d o i . 0 r g / 1 0 . l 0 1 6 / j . o c e a n e n g . 2 0 1 3 . 0 1 . 0 2 6 t h e vessel is g r e a t e r at t h e a f t p e r p e n d i c u l a r t h a n t h a t at t h e fore p e r p e n d i c u l a r w i t h a l i n e a r v a r i a t i o n i n b e t w e e n . N e w c a s t l e U n i v e r s i t y h a v e b e e n e x p l o r i n g t h e d e s i g n a n d o p e r a t i o n a l b e n e f i t s o f t h e I n c l i n e d Keel H u l l c o n c e p t u s i n g a w e l l - d e s i g n e d 3 6 0 0 TEU c o n t a i n e r vessel, w h i c h is d e s i g n a t e d as 'Basis H u l l ( B H ) ' , b y i n c r e a s i n g t h e d i a m e t e r o f its p r o p e l l e r a b o u t 13%. H o w e v e r , i m p r o v i n g t h e o p e r a t i o n a l b e n e f i t s b y t h e increase i n p r o p e l l e r size a n d hence i n p r o p u l s i v e e f f i c i e n c y is n o t a s i m p l e issue as t h e l a t t e r is t h e p r o d u c t o f t h e h u l l , p r o p e l l e r a n d r e l a t i v e -r o t a t i v e efficiencies. The ba-re h u l l -resistance a -r o u n d t h e h u l l a n d i n f l o w v e l o c i t y i n t o t h e p r o p e l l e r p l a n e are i m p o r t a n t h y d r o -d y n a m i c s aspects o f t h e h u l l f o r m -d e v e l o p m e n t . I f t h e increase o f t h e bare h u l l resistance o f I n c l i n e d Keel H u l l ( I K H ) is c o n s i d e r a b l e t h a n t h a t o f BH (Basis H u l l ) t h e e c o n o m i c s o f t h e I K H w i l l n o t w o r k since t h e e x p e c t e d p r o p u l s i v e g a i n f r o m t h e e n l a r g e d d i a m e t e r o f t h e I K H w i l l be l o s t t o t h e p o t e n t i a l increase i n t h e e f f e c t i v e p o w e r o f t h e IKH. U s i n g n u m e r i c a l d e s i g n a n d analysis m e t h o d s s u p p o r t e d by l i m i t e d m o d e l t e s t analysis, Seo ( 2 0 1 0 ) d e m o n s t r a t e d t h a t t h e IKH c o n c e p t m a y p r o v i d e a 4 - 5 % o f p o w e r s a v i n g . I n t h e p r e v i o u s c o m p a n i o n p a p e r (Seo e t a l , 2 0 1 2 ) a b r i e f d e f i n i t i o n o f t h e I K H c o n c e p t a n d its d e v e l o p m e n t f o r t h e 3 6 0 0 TEU c o n t a i n e r vessel w e r e p r e s e n t e d i n c l u d i n g t h e analyses f o r t h e resistance a n d h u l l w a k e b y u s i n g t h e CFD codes. T h e n u m e r i c a l results w e r e v a l i d a t e d f o r t h e bare h u l l resistance a n d w a k e o f t h e B H a n d I K H based o n t h e m o d e l t e s t m e a s u r e -m e n t s . M a i n p a r t i c u l a r s o f t h e BH a n d I K H are g i v e n i n Table 1 .

(2)

The resistance tests w i t h t w o 7.15 m (Lpp) h u i l m o d e l s c o n -f i r m e d t h e success-ful design o -f t h e I K H -f o r m w h i c h r e s u l t e d i n a 1% increase i n t h e e f f e c d v e p o w e r as t h e a u t h o r s had t a r g e t e d i n the I K H d e v e l o p m e n t . I n o r d e r t o d e m o n s t r a t e t h e effectiveness o f the IKH c o n c e p t over t h e B H , t h e p r o p e l l e r m u s t be designed t o operate e f f e c t i v e l y i n a n o n - u n i f o r m a n d u n s t e a d y w a k e f l o w f i e l d b e h i n d t h e h u l l . I n general, t h e m a i n p a r t i c u l a r s o f p r o p e l l e r s are d e t e r m i n e d f o r t h e o p t i m u m c o n d i t i o n b y u s i n g s t a n d a r d ( o r c h a r t ) series m o d e l p r o p e l l e r d a t a a n d t h e basic p a r t i c u l a r s o f t h e p r o p e l l e r is f u r t h e r o p t i m i z e d w i t h respect t o t h e r a d i a l l y v a r y i n g w a k e d i s t r i b u t i o n . A n d f i n a l step o f t h e design a p p r o a c h i n v o l v e s a n analysis o f t h e o p t i m u m p r o p e l l e r i n c i r c u m f e r e n t i a l v a r y i n g three d i m e n s i o n a l w a k e d i s t r i b u t i o n s by using advanced unsteady p r o p e l l e r analysis t o o l s t o f u r t h e r r e f i n e t h e p r o p e l l e r g e o m e t r y f o r b e t t e r c a v i t a t i o n a n d v i b r a t i o n p e r f o r m a n c e .

I n t h i s paper, p r o p e l l e r designs a n d p r o p u l s i o n analyses f o r t h e IKH and BH h u l l s are p r e s e n t e d f o r f u r t h e r v a l i d a t i o n o f t h e r e l a t i v e p r o p u l s i v e p e r f o r m a n c e f o r t h e I n c l i n e d Keel H u l l based T a b l e 1 M a i n p a r t i c u l a r s o f B a s i s H u l l ( B H ) a n d I n c l i n e d K e e l H u l l ( I K H ) . M a i n d i m e n s i o n s B H I K H L p p ( m ) 2 3 2 . 8 2 3 2 . 8 B e a m ( m ) 3 2 . 2 3 2 . 2 D e s i g n D r a f t ( m ) T F 1 1 . 3 1 0 . 5 D e s i g n D r a f t ( m ) T A 1 1 . 3 1 2 . 1 W S A ( m 2 ) 9 2 6 6 9 2 2 0 V o l u m e ( m 3 ) 5 0 8 4 9 5 1 1 3 6 0 . 8 4 0 0 . 8 4 1 o n t h e s e l f - p r o p u l s i o n tests c o n d u c t e d i n t h e SSPA t o w i n g t a n k ( A l l e n s t r o m a n d Riisberg-Jensen, 2 0 1 1 a).

2. Numerical analysis of propulsion

Prior t o t h e design o f a n e f f i c i e n t p r o p e l l e r f o r t h e IKH a n d c o m p a r i s o n o f its p r o p u l s i v e p e r f o r m a n c e w i t h t h a t o f t h e B H a set o f p r e l i m i n a r y s e l f - p r o p u l s i o n tests w e r e c o n d u c t e d w i t h b o t h h u l l m o d e l s .

Based o n t h e p r o p e l l e r h u l l - i n t e r a c t i o n data o b t a i n e d f r o m these early s e l f - p r o p u l s i o n m o d e l tests, w h i c h w e r e o b t a i n e d w i t h s u i t a b l e stock p r o p e l l e r s f o r t h e BH a n d IKH a n d r e p o r t e d i n A l l e n s t r o m a n d Riisberg-Jensen ( 2 0 1 1 a , 2 0 1 1 b ) , t h e p r o p e l l e r designs w e r e carried o u t f o r b o t h BH a n d I K H . B o t h p r o p e l l e r s (i.e. f o r BH a n d I K H ) w e r e d e s i g n e d u s i n g t h e same p r o c e d u r e i n t h r e e stages t h a t are "Basic D e s i g n " , " L i f t i n g Line d e s i g n ( o r W a k e A d a p t a t i o n ) " a n d " B a l a n c e d Design ( o r Design A n a l y s i s ) " . For each o f these stages, t h e d e s i g n s t r a t e g y a n d c r i t e r i a w e r e d i f f e r e n t t o achieve t h e u l t i m a t e d e s i g n o b j e c t i v e , i.e., h i g h e r p r o p u l s i o n e f f i c i e n c y w i t h l o w e r c a v i t a t i o n a n d v i b r a t i o n . Each d e s i g n stage w a s i t e r a t i v e w i t h its o w n o b j e c t i v e t h a t m a d e t h e e n t i r e d e s i g n o p t i m i z a t i o n task m u l t i - o b j e c t i v e a n d i t e r a t i v e as s h o w n b y t h e f l o w c h a r t i n Fig. 1 a n d d e s c r i b e d i n t h e f o l l o w i n g w i t h m o r e d e t a i l s .

I n t h e basic design stage, t h e m a i n design strategy was to m a k e use o f well-established propeller design practices a n d experiences, w h i c h are w e l l presented i n t h e systematic p r o p e l l e r c h a r t series, t o achieve a m o r e reliable basic design and t o a v o i d a n y i n t e r a c t i o n ( a n d hence i t e r a t i o n ) w i t h t h e other t w o design stages. I n t h e basic design stage, t h e m a i n particulars of b o t h propellers ( m a i n l y p i t c h .

S t a r t : D e s i g n S p e c i f i c a t i o n B a s i c D e s i g n : C h a r t s e r i e s D , R P M , A E / A Q, C h o r d , T ^ a x . V B a l a n c e d •

r

e s i g n L i f t i n g L i n e D e s i g n : B a s e d o n W a k e D i s t r i b u t i o n O p t . C i r c u l a t i o n D i s t r i b u t i o n B a l a n c e d D e s i g n

1

U n l o a d T i p L o a d i n g M o d i f y L o a d i n g D i s t r i b u t i o n B a l a n c e d D e s i g n W a k e A n a l y s i s : S e l e c t S k e w D i s t r i b u t i o n O p t . C i r c u l a t i o n D i s t r i b u t i o n L i f t i n g S u r f a c e D e s i g n : C a m b e r & S k e w R e l o c a t e L o a d i n g b e t w e e n C a m b e r & P i t c h U n s t e a d y L i f t i n g S u r f a c e A n a l y s i s : C a v i t a t i o n & H u l l p r e s s u r e s M o d i f y S k e w B a l a n c e d D e s i g n F i g . 1. P r o p e l l e r d e s i g n b l o c k d i a g r a m .

(3)

9 2 K.C. Seo et al. / Ocean Engineering 63 (2013) 90-95

shaft speed and blade area) w e r e selected i n iterative m a n n e r for the o p t i m u m propulsive efficiencies a n d m i n i m u m risk o f cavitation for the m a x i m u m propeller d i a m e t e r for each ship w i t h the same ship speed (i.e. 2 4 knots) by u s i n g B-Series propeller chart (van L a m m e r e n e t al., 1 9 6 9 ) and Burrill's cavitation d i a g r a m ( B u r r i l l and Emerson, 1963). The w a k e fraction and t h r u s t d e d u c t i o n fraction used w e r e based o n the self-propulsion tests w i t h stock propellers.

As s h o w n i n Table 2, a f t e r t h e basic design, t h e o p e n w a t e r e f f i c i e n c y f o r t h e I K H p r o p e l l e r w a s 3.8% h i g h e r t h a n t h a t o f t h e BH d u e t o t h e i n c r e a s e d p r o p e l l e r d i a m e t e r a n d r e s u l t i n g l o w e r p r o p e l l e r s h a f t speed. C o n s e q u e n t l y t h e I K H w a s e x p e c t e d t o achieve a s a v i n g i n s h a f t p o w e r o f 2.7%, d u e t o t h e i m p r o v e m e n t T a b l e 2 C o m p a r i s o n o f b a s i c p r o p u l s i v e p e r f o r m a n c e . S p e e d ( k n ) P / D J / f r I O K Q B H 2 4 1.1 0 . 7 8 4 0 . 2 0 1 0 . 3 7 7 6 I K H 2 4 1.2 0 . 8 9 1 0 . 2 0 3 0 . 4 1 5 0 K T / J ' ' / o N ( r p m ) Q ( k N m ) ' PD ( k W ) B . A . R 0 . 3 2 6 0 . 6 6 7 9 3 . 4 2 9 0 4 2 8 , 3 1 4 0 . 7 2 0 . 2 5 6 0 . 6 9 3 7 3 . 0 3 6 1 7 2 7 , 3 1 1 0 . 6 2 i n t h e o p e n w a t e r e f f i c i e n c y despite t h e 1% increase o f h u l l resistance. I n t h e l i f t i n g l i n e d e s i g n stage, t h e d e s i g n o b j e c t i v e w a s t o a d a p t t h e p r o p e l l e r s , w h i c h w e r e d e s i g n e d f r o m t h e c h a r t series, t o t h e w a k e s o f t h e t a r g e t ships based o n Lerbs' l i f t i n g l i n e m e t h o d (Lerbs, 1 9 5 2 ) . Hence t h e c i r c u l a t i o n d i s t r i b u t i o n s o f b o t h p r o p e l l e r s w e r e o p t i m i z e d t o its i n d i v i d u a l axial w a k e d i s t r i b u -tion, w h i c h w a s o b t a i n e d f r o m t h e m o d e l tests, b y u s i n g a n i n - h o u s e l i f t i n g l i n e code f o r a c h i e v i n g t h e m a x i m u m p r o p e l l e r e f f i c i e n c y w i t h t h e c r i t e n a o f a b s o r b i n g t h e i r r e q u i r e d e n g i n e p o w e r s .

The balanced design stage consisted o f t h r e e sub-stages such as " w a k e analysis", " l i f t i n g surface d e s i g n " a n d " u n s t e a d y l i f t i n g surface analysis". I n t h e w a k e analysis substage the w a k e d i s -t r i b u -t i o n s o f b o -t h s h i p models w e r e c a r e f u l l y analyzed for selec-ting t h e p r o p e l l e r s k e w d i s t r i b u t i o n s i n case t h a t t h e c a v i t a t i o n w a s i n e v i t a b l e . The objective o f t h e l i f t i n g surface design sub-stage was t o f u r t h e r i m p r o v e t h e l i f t i n g line design results i n t e r m s o f t h e blade camber, p r o p e l l e r p i t c h a n d p r o p e l l e r skew. For t h i s p u r p o s e , Greeley a n d K e r w i n ' s l i f t i n g surface design code (Greeley a n d K e r w i n , 1 9 8 2 ) w a s used. The objective o f t h e u n s t e a d y l i f t i n g surface analysis sub-stage w a s t o p r e d i c t the p r o p e l l e r c a v i t a t i o n

1.00R 0.95R 0.90R -0.80R 0.70R- • 0.60R' 0 . 6 0 R -0.40R 0 . 3 0 R " 0 . 2 0 l i _ _ Taper 1:0 > 0.73 1.58

Profile View

Expanded View

Transverse View

F i g . 2 . D e s i g n e d p r o p e l l e r f o r B a s i s H u l l 0.02000 1.63130

Expanded View

-2.40930 •2.32340 -2.17310 96810 1.72200

Profile View

Transverse View

(4)

p e r f o r m a n c e a n d v i b r a t i o n . For t h i s p u r p o s e i n - h o u s e u n s t e a d y l i f t i n g surface code IJPCA91 (Szantyr a n d Glover, 1 9 9 0 ) w a s used. As s h o w n i n Fig. 1 i f t h e c a v i t a t i o n e x t e n t a n d s h i p h u l l pressures w e r e acceptable, the c i r c u l a t i o n d i s t r i b u t i o n o p t i m i z e d f r o m t h e l i f t i n g l i n e d e s i g n stage w o u l d be k e p t u n c h a n g e d , a n d t h e d e s i g n i t e r a t i o n w o u l d n o t go back to t h e l i f t i n g l i n e d e s i g n stage. I n t h i s case, t h e l o a d i n g at c e r t a i n r a d i i m a y be r e l o c a t e d l o c a l l y b e t w e e n t h e m a x i m u m c a m b e r a n d p i t c h at t h o s e r a d i i t o i m p r o v e t h e i r c a v i t a t i o n e x t e n t . I n case t h a t t h e c a v i t a t i o n a n d h u l l pressures w e r e excessive, hence n o t acceptable, f i r s t i y t h e s k e w o f p r o p e l l e r w o u l d be increased t o i m p r o v e t h e s i t u a t i o n . I f t h e r e s u l t i n g c a v i t a t i o n a n d h u l l pressures w e r e s t i l l n o t acceptable, t h e r a d i a l d i s t r i b u t i o n o f t h e p r o p e l l e r l o a d i n g h a d t o be m o d i f i e d , u s u a l l y b y u n l o a d i n g t h e blade t o w a r d s t h e t i p . I n t h i s case t h e d e s i g n i t e r a t i o n h a d t o be t a k e n back t o t h e l i f t i n g l i n e d e s i g n stage as s h o w n i n Fig. 1.

The m a i n features a n d sectional d e t a i l s o f each p r o p e l l e r are s h o w n i n Figs. 2 a n d 3 as t h e f i n a l d e s i g n o b t a i n e d f r o m t h e above d e s c r i b e d d e s i g n process w h i l s t t h e basic d i m e n s i o n s o f t h e p r o p e l l e r s are g i v e n i n Table 3 t o g e t h e r w i t h t h e n u m e r i c a l results o f t h e i r p e r f o r m a n c e s based o n t h e u n s t e a d y l i f t i n g surface analysis as d e s c r i b e d above.

As can be seen i n Table 3 t h e BH s h o w e d t h e p o w e r d e l i v e r e d t o t h e p r o p e l l e r at t h i s o p t i m u m o p e r a t i n g c o n d i t i o n w a s P D = 2 7 , 9 6 2 k W . The s i m i l a r analysis f o r t h e I K H p r o p e l l e r i n d i -c a t e d t h a t t h e d e l i v e r e d p o w e r , P D = 2 6 , 8 8 8 k W f o r t h e o p t i m u m o p e r a t i n g c o n d i t i o n . This r e v e a l e d t h a t t h e d e l i v e r e d p o w e r f o r T a b l e 3 C o m p a r i s o n o f b a s i c d i m e n s i o n s a n d n u m e r i c a l p r o p u l s i v e p e r f o r m a n c e o f d e s i g n e d p r o p e l l e r s a t t h e d e s i g n s p e e d ( 2 4 l < n o t s ) . S p e e d ( k n ) B l a d e n o . D i a . ( m ) B.A.R B H 2 4 5 . 7 . 9 1 0 . 7 2 I K H 2 4 5 8 . 9 5 0 . 6 2 P/ D T h r u s t ( k N ) N ( r p m ) Q ( N m ) PD ( k W ) 1 . 0 6 1 9 4 8 9 3 . 4 2 8 5 6 2 7 , 9 6 2 1 . 1 7 1 9 7 5 7 3 . 0 3 4 9 8 2 6 , 8 8 8 1 B a s i s H u l l i I n c l i n e d K e e l H u l l L~-~l

L

2 B R 3 B R 4 B R B l a d e R a t e F r e q u e n c y F i g . 4 . C o m p a r i s o n o f n u m e r i c a l h u l l p r e s s u r e s i n d u c e d b y t h e p r o p e l l e r . T a b l e 4 C o m p a r i s o n o f B H p r o p e l l e r — d e s i g n e d a n d m a n u f a c t u r e d . B H p r o p e l l e r . B l a d e n o . B.A.R B H - d e s i g n e d 5 0 . 7 2 B H - m a n u f a c t u r e d 5 0 . 6 8 I K H p r o p e l l e r w o u l d r e s u l t i n a 3.84% s a v i n g c o m p a r e d t o t h e BH at a 22.6% l o w e r s h a f t speed rate. The h u l l pressure c o m p u t a t i o n s w e r e c a r r i e d o u t at a p o i n t o n t h e h u l l w h e r e t h e pressures w e r e e x p e c t e d t o h a v e t h e p e a k values. These p o s i t i o n s f o r t h e BH a n d I K H w e r e a t 6.2 m a n d 6.83 m a b o v e t h e p r o p e l l e r s h a f t axis i n t h e p r o p e l l e r p l a n e , r e s p e c t i v e l y . I K H h u l l w a s designed t o h a v e a s i m i l a r level o f p r o p e l l e r clearance t o BH h u l l a n d t o r u n a t a d e e p e r d r a u g h t w h i c h has t h e effect o f r e d u c i n g t h e p o t e n t i a l f o r sheet c a v i t y d e v e l o p e d o v e r t h e s u c t i o n side o f t h e p r o p e l l e r , t o g e t h e r w i t h i m p r o v i n g t h e r a d i a t e d h u l l surface pressure. To give a m o r e c o m p r e h e n s i v e c o m p a r i s o n b e t w e e n t h e BH a n d t h e I K H , h a r m o -n i c a -n a l y s i s o f t h e f l u c t u a t i -n g pressure i -n d u c e d b y t h e p r o p e l l e r u p t o f o u r t h b l a d e r a t e are s h o w n i n Fig. 4 . These c o m p a r i s o n results s h o w t h a t t h e I K H w i l l o f f e r b e n e f i t s b y r e d u c i n g t h e h u l l p r e s s u r e f l u c t u a t i o n s at the f i r s t a n d second h a r m o n i c b y a l m o s t 35%.

3. Experimental analysis of propulsion

The m o d e l p r o p e l l e r s w e r e m a n u f a c t u r e d b y SSPA a c c o r d i n g t o t h e d e s i g n data p r o v i d e d b y t h e a u t h o r s t o SSPA. H o w e v e r d u r i n g t h i s process a n u n f o r t u n a t e e r r o r t o o k place r e s u l t i n g i n t h a t t h e m a n u f a c t u r e d BH m o d e l p r o p e l l e r h a d a s m a l l e r BAR t h a n t h e d e s i g n e d one as s h o w n i n Table 4 . The d i f f e r e n c e w a s 5.5% decrease i n t h e BAR due t o t h e h u m a n e r r o r d u r i n g t h e exchange o f i n f o r m a t i o n o n t h e c h o r d l e n g t h s o f t h e blade sections i n t h e excel tables a l t h o u g h t h e d r a w i n g s w e r e c o r r e c t . H o w e v e r t h e r e m a i n i n g data o f t h e BH p r o p e l l e r w e r e t h e same as t h e d e s i g n e d one p r o d u c e d b y t h e a u t h o r s . This u n f o r t u n a t e s i t u a t i o n , i n fact, p u t t h e B H m o d e l p r o p e l l e r i n m o r e e f f i c i e n t a n d hence m o r e c o m p e t i t i v e t h a n t h e i n t e n d e d n u m e r i c a l d e s i g n t h a t m u s t be b o r n i n m i n d i n t h e c o m p a r i s o n s . I n o t h e r w o r d , t h e BH m o d e l p r o p e l l e r w o u l d be o v e r - p e r f o r m i n g d u e t o its l o w e r f r i c t i o n a l loss. H o w e v e r , t h e p r o p e l l e r m a n u f a c t u r e d w i l l be e x p o s e d t o h i g h e r r i s k o f c a v i t a t i o n a n d h u l l pressure t h a n t h e p r o p e l l e r 0 . 8 0 . 4 0 . 2 B H K I - E x p BH IOKq-Exp BH Etao -Exp . IKH Kt-Exp

IKH IOKq -Exp IKH Etao -Exp - « BH Kl-In-house • • • BH IOKq -In -house - • BH Etao-In-house IKH Kt-In-house IKH IOKq-In-house - 0 — • IKH Etao-In-house 0 . 6 O.i A d v a n c e d ratio(J) F i g . 5 . C o m p a r i s o n o f o p e n w a t e r e f f i c i e n c y f r o m m o d e l t e s t a n d i n - h o u s e l i f t i n g s u r f a c e c o d e f o r B a s i s H u l l a n d I n c l i n e d K e e l H u l l ( m o d e l s c a l e ) .

(5)

9 4 K.C. Seo et al. / Ocean Engineering 63 (2013) 90-95

T a b l e 5

C o m p a r i s o n o f p r o p u l s i v e p e r f o r m a n c e a t 2 4 k n o t .

P E( k W ) N ( r p m ) il„ I/H 'IR 'ID PD ( k W )

B H 2 0 , 3 2 3 9 2 . 9 0 . 6 9 8 1 . 0 9 4 0 . 9 9 6 0 . 7 6 0 2 6 , 7 5 1 I K H 2 0 , 5 3 1 7 2 . 8 0 . 7 2 6 1 . 0 9 5 1 . 0 0 5 0 . 7 9 9 2 5 , 6 8 9 p o w e r s a v i n g a r o u n d t h e d e s i g n speed. T h e p o w e r s a v i n g is a p p a r e n t b e t w e e n 18 and 2 6 l<nots w i t h a m a x i m u m o f 4.3% at 2 3 l<nots.

4.

Conclusions

4 5 0 0 0 4 0 0 0 0 35000 g 30000 g ° 25000 20000 E f f e c t i v e p o w e r D e l i v e r e d p o w e r - E f f e c t i v e p o w e r - D e l i v e r e d p o w e r • B H • • o - . IKH . . , . . 0 . . . I K H E f f e c t i v e p o w e r D e l i v e r e d p o w e r - E f f e c t i v e p o w e r - D e l i v e r e d p o w e r y -

/

: St -

/;

- J

/ /

f

-v

- ft/'

-f ^

1 1 1 1 \ 1 1 1 20 22 24 S t i i p S p e e d ( k n ) F i g . 6 . C o m p a r i s o n o f d e l i v e r e d p o w e r a t f u l l s c a l e . d e s i g n e d a l t h o u g h t h e e a r l i e r p r e s e n t e d h u l l pressure p r e d i c t i o n s w e r e a l l based o n t h e d e s i g n e d , i.e., c o r r e c t p r o p e l l e r .

The e n t i r e p r o p u l s i o n tests w e r e c o n d u c t e d i n SSPA a n d r e p o r t e d b y A l l e n s t r o m and Riisberg-Jensen (2011 a). The c o m p a r i s o n o f the propeller o p e n w a t e r performances f r o m the m o d e l tests a n d in-liouse unsteady l i f t i n g surface code f o r t h e models o f t h e t w o propellers is s h o w n i n Fig. 5. N u m e r i c a l predictions o f t h r u s t and t o r q u e coefficients correspond t o the m o d e l test results w i t h i n 5%. The s e l f - p r o p u l s i o n m o d e l tests w e r e carried o u t at several c r u i s i n g speeds a r o u n d the design ship speed o f 2 4 knots a n d f u l l scale p o w e r p r e d i c t i o n w a s c o n d u c t e d using t h e ITTC 78 p e r f o r m a n c e p r e d i c t i o n m e t h o d .

Table 5 s h o w s t h e c o m p a r a t i v e p r o p u l s i v e e f f i c i e n c y a n d its c o m p o n e n t s as w e l l as t h e f u l l scale d e l i v e r e d p o w e r at t h e d e s i g n speed ( 2 4 k n o t s ) f o r t h e B H a n d I K H . The r e s u l t s o f t h e f i n a l m o d e l test for t h e BH s h o w e d t h a t the o p t i m u m p r o p e l l e r e f f i c i e n c y w a s 0.698 w h i l s t t h e p o w e r d e l i v e r e d t o t h e p r o p e l l e r w a s P D = 2 6 , 5 7 1 k W . T h e s i m i l a r analysis f o r t h e I K H p r o p e l l e r i n d i -cated t h a t t h e o p t i m u m p r o p e l l e r e f f i c i e n c y w a s 0 . 7 2 6 a n d t h e d e l i v e r e d p o w e r w a s P D = 2 5 , 6 8 9 k W . T h i s r e v e a l e d t h a t t h e o p e n w a t e r a n d r e l a t i v e - r o t a t i v e efficiencies o f t h e IKH p r o p e l l e r w e r e 4% a n d 1% h i g h e r t h a n t h a t o f t h e BH a t a 21.5% l o w e r s h a f t speed, r e s p e c t i v e l y . This w o u l d r e s u l t i n a 4% s a v i n g i n t h e d e l i v e r e d p o w e r f o r t h e IKH d e s p i t e t h e fact t h a t t h e I K H p r o d u c e d a 1% h i g h e r e f f e c t i v e p o w e r t h a n t h a t o f t h e BH. A n o t h e r f a c t o r t h a t m u s t be b o r n i n m i n d i n t h i s c o m p a r i s o n is t h a t t h e m a n u f a c t u r e d BH m o d e l p r o p e l l e r w o u l d be o v e r - p e r f o r m i n g t h a n t h e d e s i g n e d one w h i c h w o u l d r e s u l t i n t h e r e d u c e d r e l a t i v e p e r f o r m a n c e g a i n f o r t h e I K H . Fig. 6 s h o w s t h e c o m p a r i s o n o f t h e d e l i v e r e d p o w e r at f u l l scale for b o t h t h e h u l l s w h i c h c l e a r i y p r e s e n t s an average o f 4%

T h i s paper presents t h e f i n a l o u t c o m e o f t h e I K H d e v e l o p m e n t , w h i c h e x p l o r e d t h e p r o p u l s i v e b e n e f i t s o f 13% larger p r o p e l l e r d i a m e t e r t h a n t h e B H , i n t e r m s o f h y d r o d y n a m i c p e r f o r m a n c e w i t h t h e h e l p o f advanced CFD tools a n d l a r g e scale m o d e l tests c o n d u c t e d i n t h e S t r e a m l i n e p r o j e c t S t r e a m l i n e , ( 2 0 1 0 ) . T h e o p t i m u m designs f o r t h e B H a n d IKH p r o p e l l e r s are p r e s e n t e d u s i n g t h e i n - h o u s e s o f t w a r e codes a n d a n assessment o f t h e n u m e r i c a l p r e d i c t i o n s o f p r o p u l s i v e e f f i c i e n c y m a d e against m o d e l test results w a s m a d e . Based o n t h e k n o w l e d g e g a i n e d so far i t w a s f o u n d t h a t t h e success o f t h e ' I n c l i n e d Keel H u l l ' a p p l i c a t i o n i n t o a l a r g e c o m m e r c i a l vessel r e q u i r e s a f i n e balance b e t w e e n t h e m i n i m a l increase i n the bare h u l l resistance a n d a m a x i m u m g a i n i n t h e p r o p u l s i v e e f f i c i e n c y . M o r e s p e c i f i c a l l y t h e f o l l o w i n g c o n c l u s i o n s are r e a c h e d based o n t h e i n v e s t i g a t i o n p r e s e n t e d i n t h i s p a p e r : 1) N u m e r i c a l s t u d y i n d i c a t e d t h a t t h e I K H c a n o f f e r 4% o f p o w e r s a v i n g a n d b e n e f i t s o f r e d u c i n g t h e h u l l p r e s s u r e f l u c t u a t i o n s a p p r o x i m a t e l y b y 35% o v e r t h e BH p r e s s u r e levels at f i r s t t w o h a r m o n i c s f o r t h e d e s i g n speed o f 2 4 k n o t s . 2 ) M o d e l tests r e v e a l e d t h a t t h e o p e n w a t e r a n d r e l a t i v e -r o t a t i v e e f f i c i e n c y o f t h e I K H p -r o p e l l e -r w a s 4% a n d 1% h i g h e -r t h a n t h a t o f t h e BH, r e s p e c t i v e l y , a t a 21.5% l o w e r s h a f t speed. This r e s u l t e d i n a 4.3% m a x i m u m s a v i n g i n t h e d e l i v e r e d p o w e r at 23 k n o t s w h i l s t t h e s a v i n g w a s 4% at t h e d e s i g n speed

3 ) The above findings f a v o r a b l y c o n f i r m t h e n u m e r i c a l p r e d i c t i o n s f o r p o w e r s a v i n g a n d hence s u p p o r t i n g t h e w o r t h i -ness o f t h e I K H c o n c e p t f o r t h e d e s i g n a p p l i c a t i o n s o f l a r g e c o m m e r c i a l vessels.

Acknowledgments

The c o n c e p t p r e s e n t e d i n t h i s p a p e r w a s d e v e l o p e d d u r i n g t h e p r i n c i p a l a u t h o r ' s Ph.D. s t u d y at N e w c a s t l e U n i v e r s i t y a n d s p o n s o r e d b y t h e Korea Science a n d E n g i n e e r i n g F o u n d a t i o n G r a n t n o : M 0 6 - 2 0 0 4 - 0 0 0 - 1 0 5 3 9 a n d Dr. Sasaki Funds. The basis h u l l f o r m used i n this s t u d y is a c o u r t e s y o f M r . D a n i e l W i n t e r s o f O r b i s L t d . F i n a l l y t h e e x p e r i m e n t a l v a l i d a t i o n s o f t h e IKH c o n c e p t is b e i n g s p o n s o r e d b y t h e EU - FP7 p r o j e c t STREAMLINE ( 2 3 3 8 9 6 FP7SST2008RTD1). The a u t h o r s t h e r e f o r e g r a t e f u l l y a c k n o w l -edge the above c o n t r i b u t i o n s m a k i n g t h e I K H research a n d t h i s p a p e r possible.

References

A l l e n s t r o m , B., R i i s b e r g - J e n s e n , S., 2 0 1 1 a . S t r e a m l i n e : I n c l i n e d K e e l C o n c e p t W P 1 1 . 5 , B a s i s H u l l . SSPA R e p o r t n o . R E 4 0 0 8 4 8 1 7 - 1 1 - 0 0 - A . A l l e n s t r o m , B., R i i s b e r g - J e n s e n , S., 2 0 1 1 b . S t r e a m l i n e : I n c l i n e d K e e l C o n c e p t W P 1 1 . 5 , D e s i g n H u l l . SSPA R e p o r t n o . R E 4 0 0 8 4 8 1 7 - 1 2 - 0 0 - A . B e e k , T . V . , 2 0 0 4 . T e c h n o l o g y G u i d e l i n e s f o r E f f i c i e n t D e s i g n a n d O p e r a t i o n o f S h i p P r o p u l s i o n s . M a r i n e N e w s , W a r t s i l a . B u r r i l l , L C , E m e r s o n , A., 1 9 6 3 . P r o p e l l e r c a v i t a t i o n : f u r t h e r t e s t s o n 1 6 i n . p r o p e l l e r m o d e l s i n t h e k i n g ' s c o l l e g e c a v i t a t i o n t u n n e l . T r a n s . NECIES 7 8 , 2 9 5 - 3 2 0 . C i p i n g , J . , L i a n g q u a n , C , W e i m i n g , T., 1 9 8 9 . I n v e s t i g a t i o n o n r e s i s t a n c e a n d p r o p u l s i v e q u a l i t i e s o f l a r g e f u l l s h i p w i t h l o w r e v o l u t i o n l a r g e d i a m e t e r p r o p e l l e r . I n : P r o c e e d i n g s o f t h e I n t e r n a t i o n a l S y m p o s i u m o n S h i p R e s i s t a n c e a n d P o w e r i n g P e r f o r m a n c e , p p . 1 8 4 - 1 9 0 .

(6)

G r e e l e y , D.S., K e r w i n , J.E., 1 9 8 2 . N u m e r i c a l m e t h o d s f o r p r o p e l l e r d e s i g n a n d a n a l y s i s i n s t e a d y f l o w . T r a n s . S N A M E 9 0 , 4 1 5 - 4 5 3 . L e r b s , H . W . , 1 9 5 2 . M o d e r a t e l y l o a d e d p r o p e l l e r s w i t h a f i n i t e n u m b e r o f b l a d e s a n d a n a r b i t r a r y d i s t r i b u t i o n o f c i r c u l a t i o n . T r a n s . S N A M E 6 0 , 7 3 - 1 1 7 . S e o , K . C , 2 0 1 0 . A p p l i c a t i o n o f I n c l i n e d K e e l t o L a r g e C o m m e r c i a l S h i p s . P h . D . T h e s i s . N e w c a s t l e U n i v e r s i t y , U K . S e o , I C C , A t l a r , M . , S a m p s o n , R., 2 0 1 2 . H y d r o d y n a m i c d e v e l o p m e n t o f i n c l i n e d k e e l h u l l - r e s i s t a n c e . O c e a n E n g . 4 7 , 7 - 1 8 . S z a n t y r , J.A.. C l o v e r , E.J., 1 9 9 0 , U P C A 9 1 - T h e L i f t i n g S u r f a c e P r o g r a m f o r U n s t e a d y P r o p e l l e r C a v i t a t i o n A n a l y s i s . I n s t r u c t i o n s f o r t h e U s e r . E m e r s o n C a v i t a t i o n T u n n e l R e p o r t , D e p a r t m e n t o f M a r i n e T e c h n o l o g y , U n i v e r s i t y o f N e w c a s t l e U p o n T y n e , U K . S t r e a m l i n e , 2 0 1 0 . A n n e x . 1 — D e s c r i p t i o n o f W o r k . E u r o p e a n U n i o n 7 t h F r a m e w o r k P r o g r a m m e 2 3 3 8 9 6 F P 7 - S S T - 2 0 0 8 - R T D - 1 . v a n L a m m e r e n , W . P . A . , v a n M a n e n , J.D., O o s t e r v e l d , M . W . C , 1 9 6 9 . T h e W a g e n i n -g e n B - s c r e w s e r i e s . T r a n s . S N A M E 7 7 , 2 6 9 - 3 1 7 .

Cytaty

Powiązane dokumenty

I dla­ tego społeczeństwo dwóch pierwszych jego powieści to n ie­ tylko szlachta dobrzyńska, przeniesiona z „Pana Tadeusza“, to również społeczeństwo

Wspólne cechy myślenia globalnego o świecie przejawiają się poprzez to, że ci oboje twórcy przyjmują dynamizm świata jako miejsce spotkań lu- dzi z różnych krajów, narodów

Drogiemu Księdzu, jako Redaktorowi Naczelnemu pisma „ S a h a ­ toris Mater” oraz wszystkim Współpracownikom na dalszą owocną działalność Ojciec Święty z serca

seen to occur in regions of flow instabilities, e.g., at the top of the canopy in atmospheric boundary layer flows over vegetation [26], in rough wall

The study assessed the microclimate parameters, the state of thermal comfort and the level of carbon dioxide concentration, as well as the maintenance of comfort conditions

Jako dyscyplina akademicka AI pojawiła się na przełomie XX/XXI wieku, zajmuje się problematyką projektowania i organizacji informacji w różnych postaciach z uwzględnieniem

Tajemnica Trójcy Przenajświętszej ukazuje się stopniowo przez adora- cję 104. Wiara nie jest więc wyłącznie doktryną do przyjęcia, lecz zakorzenia się w

Już w latach sześćdziesiątych daje się poznać Grabow ska jako ceniony recenzent wydawniczy, współpracujący przede wszystkim z Państwowym Instytutem Wydawniczym