• Nie Znaleziono Wyników

Modelling of thin periodic plates subjected to large deflections = Modelowanie cienkich płyt periodycznych o dużych ugięciach

N/A
N/A
Protected

Academic year: 2021

Share "Modelling of thin periodic plates subjected to large deflections = Modelowanie cienkich płyt periodycznych o dużych ugięciach"

Copied!
16
0
0

Pełen tekst

(1)

No. 5 2010

MODELLING OF THIN PERIODIC PLATES SUBJECTED TO LARGE DEFLECTIONS

Łukasz DOMAGALSKI, Jarosław JĘDRYSIAK Department of Structural Mechanics, Technical University of Łódź

Al. Politechniki 6, 90-924 Łódź, Poland

lukasz.domagalski@p.lodz.pl, jaroslaw.jedrasiak@p.lodz.pl

The objects under consideration are thin linear-elastic plates with periodic structure in planes parallel to the plate midplane, subjected to large (of the order of plate thickness) deflections. The main aim is to propose a mathematical model describing geometrically nonlinear problems of such plates, which is based on the tolerance averaging technique, cf. Woźniak et al. [3]. Results calculated for a special static problem by the tolerance model are compared with results obtained within the known tolerance linear model of thin plates.

Keywords: periodic plates, nonlinear bending, tolerance modelling

1. INTRODUCTION

In many engineering problems we deal with plates which are made of isotropic materials, but as a result of changing thickness or using two or more materials with different elastic properties their behaviour is similar to behaviour of anisotropic or orthotropic ones with discontinuities of geometric or/and material properties, cf. Fig. 1. It leads to governing equations of these plates, which have non-continuous, highly oscillating, functional coefficients. Exact solutions to these equations are very difficult to obtain. Therefore, various simplified approaches, introducing effective plate properties, are proposed. Amongst them there have to be mentioned models based on the asymptotic homogenization, e.g. homogenized model of periodic plates proposed by Kohn and Vogelius [2].

Unfortunately, governing equations of these models usually neglect the effect of the microstructure size on the plate behaviour. In this paper, in order to describe this effect, the tolerance modelling approach is applied.

The aim of this contribution is twofold: to derive governing equations of the nonlinear tolerance model of thin periodic plates subjected to large

(2)

deflections, which take into account the effect of the microstructure size, and to compare some numerical results obtained by this model with those obtained by the linear tolerance model of thin plates.

Fig. 1. A fragment of a thin periodic plate

2. FUNDAMENTAL EQUATIONS

Let Ox1x2x3 be an orthogonal Cartesian coordinate system in the physical space.

The time coordinate is denoted by t. Subscripts i, j, k, l run over 1, 2, 3 and α, β, γ, ω run over 1, 2. Setting x=(x1,x2) and z=x3, it is assumed that the undeformed plate occupies the region Ω≡{(x,z):δ(x)/2zδ(x)/2, x∈Π}, with midplane Π and the plate thickness δ(⋅).

Periodic plates consist of many repetitive elements called periodicity cells, having identical geometric and material properties. Our considerations concern plates with a periodic structure along two directions. Then the periodicity cell can be defined as a plane region W≡[−λ1/2,λ1/2]×[−λ2/2,λ2/2], with λ1, λ2 being the cell dimensions along the x1- and x2-axis. The diameter of the periodicity cell, given by λ=[(λ1)2+(λ2)2]1/2, is called the microstructure parameter. It is assumed that max(δ)<<λ<<min(L1,L2), where L1, L2 are characteristic dimensions of the plate along the x1- and x2-axis. For this reason each periodicity cell can be treated as a thin plate. Here and further the partial derivative with respect to a space coordinate is denoted by ∂α=∂/∂xα, and the derivative with respect to time t is denoted by an overdot.

The considerations are based on the well-known nonlinear theory of thin plates (cf. the book edited by Woźniak [4]). Denote a plate midplane deflection by w(x,t), the in-plane displacements along the xα-axes by u(x,t), x∈Π, t∈(t0,t1), the mass density of the plate material per unit area by

δ

δ

ρ

= µ ( )/2

2 / ) (

) ( )

(

x

x

x

x dz ,

(3)

the elastic moduli tensor by aijkl, the components of shell and bending stiffnesses tensors by

δ

δ

αβγω αβγω =

2 / ) (

2 / ) (

) ( )

(

x

x

x

x c dz

b , δ

δ

αβγω αβγω = ( )/2

2 / ) (

) 2

( )

(

x

x

x

x c z dz

d ,

where cαβγω=aαβγωaαβ33a33γω/a3333, and the total loadings in the z-axis by q(x,t).

Neglecting terms involving tangent and rotational inertia of the plate and loads tangent to the plate midplane, we obtain:

(i) the strain-displacement relations:

,

), (

,

0 2 0

1 0

0

w w

w u

u E

z E E

αβ αβ β

α β α α β αβ

αβ αβ

αβ== ∂+ κ+∂ +∂ ∂ κ =−∂

(2.1) (ii) the stress-strain relations:

γω,

αβγω αβ=c E

S (2.2)

(iii) the equilibrium equations expressed in terms of displacements u

and deflection w:

. 0 )

( ] ) (

[

, 0 )]

( [

0 2 0

1

0 2 0

1

=

− µ

∂ +

∂ +

=

∂ +

∂ +

γω αβγω αβ α γ ω ω γ γ ω αβγω β

γ ω ω γ γ ω αβγω β

q w w d

w w w u

u b

w w u

u b

&

& (2.3)

Let us introduce the action functional in the form:

, )) , ( ), , ( ), , ( ), , ( ), , ( ), , ( , (

)) ( ), ( (

1

0

0 0

0

∫∫

Π

α β α αβ

α α

=

=

t

t

dtd t u t u t w t w t w t w u w

y y

y y

y y

y

y &

Λ Α

(2.4)

with the lagrangean given by

, ]

) )(

(

[ 41 0 0 0 0

2 1

qw w w w w d

w w u

u w w u u b

+ µ +

− − ∂ +∂ +∂ ∂ ∂ +∂ +∂ ∂ −

=

αβ γω αβγω

β α β α α β ω γ γ ω ω γ αβγω

&

&

Λ (2.5)

for which the Euler-Lagrange equations take the form:

. ) 0

( )

(

, ) 0

( 0

0

∂ =

∂∂

∂ −

∂ ∂

∂ +

∂∂

∂ −

∂ =

∂ ∂

∂∂ −

αβ αβ α α

α β β

α

w t w w

w

u u

&

Λ Λ

Λ Λ

Λ Λ

(2.6)

Applying the principle of stationary action, i.e. (2.6) and (2.5), we obtain the fundamental system of equations of the nonlinear theory of plates (2.3), with

(4)

highly oscillating, periodic, non-continuous functional coefficients bαβγω(x), dαβγω(x) and µ(x).

3. TOLERANCE MODELLING

To obtain averaged equations of periodic plates subjected to large deflections we apply the tolerance averaging technique, cf. the book edited by Woźniak et al. [3]. In the tolerance modelling some basic concepts, such as: an averaging operator, a tolerance-periodic function, a highly oscillating function, a slowly- varying function, defined and explained in this book are used. Some of them are recalled below.

3.1 Basic concepts

Let W(x)=x+W, Π={x∈Π:(x)⊂Π}, be a cell at xΠ. The averaging operator for an arbitrary integrable function f is defined by

. , ) , 1 (

) (

) (

2 1 2 1 2 1

Π λ ∈

>

< x

x

x

dy dy y y f

f (3.1)

It can be shown that for periodic function f of x, its averaged value calculated from (3.1) is constant.

Let ∂kf be the k-th gradient of function f=f(x), x∈Π, k=0,1,…,α, α≥0, ∂kf≡f and ~f(k)(,⋅⋅) be a function defined in Π×Rm.

Function fHα) is called the tolerance-periodic function (with respect to cell W and tolerance parameter d), fTPdα(Π,Ω), if for k=0,1,…,α, the following conditions hold:

(1o)

( )

( ) ~

( )

, || ( ) ]

) (

|

||

[ )) ( ) ,

~ (

(∃f k ⋅ ∈H0kf ⋅ − f(k)H0d Π

x xΠx x Πx ,

(2o) ~ (, ) 0( )

) (

)

( ⋅ ∈ Π

f k zdz C .

Function ~f(k)(x,⋅) is referred as to the periodic approximation of kf in W(x) , x∈Π, k=0,1,…,α.

Function f∈Hα(Π) is called the slowly-varying function (with respect to cell W and tolerance parameter d), FSVdα(Π,Ω), if

(1o) fTPdα(Π,Ω),

(2o) ~ ( ,)| ( ) ( ), 0,...,α]

[ )

(∀x∈Π F(k) xx=∂kF x k= . It means that periodic approximation F~( )k

of ∂kF(⋅) in W(x) is a constant function for every x∈Π.

(5)

Function φ∈Hα) is called the highly oscillating function (with respect to cell W and tolerance parameter d), φ∈HOdα(Π,Ω), if

(1o) φ∈TPδα(Π,Ω),

(2o) ( ) ~( ), 0,1,...,α]

| ) ,

~ ( [ )

(∀x∈Π φk x(x)=∂kφx k= .

Moreover, for every FSVdα(Π,Ω) function fFTPdα(Π,Ω) satisfies condition

(3o) ( ) ~( )| , 1,...,α )

(

| ) ,

~ (

) ( )

( = ∂ φ =

F k

f k x x x k x x . If α=0 then we denote ~ ~( )0

f f ≡ .

By h(⋅) denote a highly oscillating function, hHOdα(Π,Ω), defined on Π, continuous together with gradient ∂1h. Its gradient 2h is a piecewise continuous and bounded. Function h(⋅) is called the fluctuation shape function of the 2-nd kind, if it depends on λ as a parameter and satisfies conditions:

(1o) ∂khOαk)for k=01,,...,α,α=2,∂0hh, (2o) <h>(x)0for every xΠ.

Set of all fluctuation shape functions of the 2-nd kind is denoted by FSd2(Π,Ω). Condition (2o) can be replaced with <µh>(x)≈0 for every xΠ, where µ>0 is a certain tolerance-periodic function.

3.2 Fundamental assumptions

Following the book – edited by Woźniak, Michalak and Jędrysiak [5], and using the above concepts we introduce modelling assumptions.

The first assumption is the micro-macro decomposition, in which we assume for deflection w(x,t) and in-plane displacements u(x,t):

).

, ( ) (

), , ( ,

, ,..., 1

), , (

), , ( ) , ( ), , (

), , ( ) , (

), , ( ) ( ) , ( ) , (

2 0 1

1

2 0

Ω Ω

Π

⋅Π ∈

= Π

∈ ⋅ ∈ Π

⋅ == +

α

α α

A d d

A d

A A

FS h

t t t

N A

SV U

SV t V t W

t U t u

t V h t W t w

x x

x

x x x

x

(3.2)

The basic kinematic unknowns W(⋅,t) and Uα(⋅,t) are called the macrodeflection and the in-plane macrodisplacements, respectively, VA(⋅,t) are additional basic kinematic unknowns, called the fluctuation amplitudes; hA(⋅) are the known fluctuation shape functions.

The tolerance averaging approximation is the second modelling assumption, in which it is assumed that in the course of modelling terms O(d) are negligibly small, e.g. in formulas:

(6)

).

, ( ),

, ( ),

, (

; 1 0

; ,..., 1

; 2 , 1

;

), ( ) ( ) ( )

( ) (

), ( ) ( ) ( )

(

), ( ) ( )

(

2 2

2 ΠΩ ∈ ΠΩ ∈ ΠΩ

∈Π α= = < <<

∈∂ > =< ∂ > +

< > =< > + < > =< > +

<

α α

A d d

d

A A

FS h SV

F TP

f

d N A

d O F h

f F

h f

d O F f fF

d O f

f x

x x x

x x x

x x

(3.3)

We also assume a decomposition of the transversal load q(x,t) in the form )

,

~( ) , ( ) ,

( t q0 t q t

q x = x + x , where q0=<q> is the slowly-varying averaged load, )

,

0(

0SVd ΠΩ

q , and q~ is the oscillating part of the load, q~∈HOd1(Π,Ω), and

~>≅0

<q .

4. MODELLING PROCEDURE

4.1 Averaged description

Now, we apply the tolerance modelling to the action functional. Substituting the micro-macro decomposition (3.2) to formula (2.4) and using the averaging operator (3.1), bearing in mind assumptions (3.3), we obtain the tolerance averaged action functional

. ) , , , , , , , , (

)) ( ), ( ), ( (

1

0

∫ ∫

Π

α β α αβ

α α

>

<

=

=

t

t

A h A

h A

dtd V V U U W W W W

V U W

y

y & &

Λ Α

(4.1)

Denoting

~ , ,

,

~ µ , µ

,

~ , ,

,

~ , , ,

2 4

4 2

2

αβ

γω αβγω

γω αβγω αβ

αβγω αβγω

β α ω γ αβγω

ω γ αβγω αβ

β γ αβγω αω

αβγω αβγω

λ

>

≡<

>

≡<

λ

>

≡<

>

≡<≡<≡<≡<≡<≡< ∂∂>∂>∂∂∂ >≡<≡<∂λ> ∂∂∂ >∂λ> >λ

A A B

A AB

B A AB

A A

D C B A ABCD

B A AB

B A AB

qh Q q Q h

h m

m

h h d

D

h d

D d

D

h h h h b B

h h b B

h h b B b

B )

(4.2)

the tolerance averaged lagrangean (2.8) takes the form

~ .

~ } 2~

) )(

(

)

~ ( {

2 4

4 4 2 1

4 1

2 2 1 2 1

A A B

A AB

B A AB A

A

D C B A ABCD B

A AB

B AB A h

V Q QW V

V m W W m

V V D W V D W W D

V V V V B W W V V B

W W U U W W U

U B

W W U U V V B

λ + + λ

− ∂ ∂ + ∂ + −

+λ ∂ ∂ + λ +

+

+

∂ +

∂ +

∂ +

∂ +

∂ +

+

∂ +

∂ +

∂ λ

>=

<

αβ αβ γω

αβ αβγω

ω α αω

ω γ ω γ γ ω β α β α α β αβγω

β α β α α β αβ

&

&

&

&

) Λ

(4.3)

(7)

4.2 Model equations

Let us apply the principle of stationary action to the averaged action functional (4.1). The tolerance averaged lagrangean (4.3) has to satisfy the following system of Euler-Lagrange equations:

. 0

, ) 0

( )

(

, ) 0 (

∂ =

>

<

∂∂

∂ −

>

<

∂ =

>

<

− ∂

>

<

∂ ∂

∂ +

>

<

∂ ∂

∂ −

>

<

∂ =

∂< >

∂ ∂

∂ >−

<

αβ αβ β β

α β β α

A h A

h

h h

h h

h h

V t V

W t W

W

U U

&

&

Λ Λ

Λ Λ

Λ Λ

Λ Λ

(4.4)

Combining (4.3) with (4.4) we obtain the following system of N+3 equations:

two equations for the in-plane macrodisplacements Uα(⋅,t), one equation for the macrodeflection W(⋅,t), and N equations for the fluctuation amplitudes VA(⋅,t):

.

~ 0

~ ) ~

~ ( ( ) ~ 0,

) ~ (

, 0 )

~ ( ) (

2 4

4 2 1

2 2

2 1

2

2 2 1 2

1

2 2 1 2

1

= λ

− λ

+ +

∂ + λ

+

+

∂ λ +

∂ +

∂ +

∂ λ

= +

∂ λ +

+

∂ λ

+

∂ +

∂ +

=

∂ λ +

∂ +

∂ +

αβ αβ

ω α αω β

α β α α β αβ

αβ αβ αβγω

αβγω ω

α αω

αβ αβ αβ

ω γ ω γ γ ω αβγω

β αβ ω

γ ω γ γ ω β αβγω

A B AB B

AB A

D C B ABCD

B AB

AB B

A A B

A AB

B AB A

B A AB

Q V m V D W D V V V B

WV W B V W W U U B

Q W m V D W D

W V V B

W V V B W W W U U B

V V B W

W U U B

&

&

) &&

) (4.5)

The above equations of the nonlinear tolerance model have constant coefficients and describe the effect of the microstructure size on the overall dynamic plate behaviour by terms involving parameter λ. Solutions to these equations have to be considered together with the boundary conditions for: the in-plane macrodisplacements Uα(⋅,t), the macrodeflection W(⋅,t), and the fluctuation amplitudes VA(⋅,t), and have a physical sense only if the following conditions hold for every time t∈(t0,t1):

).

, ( ) , ( ), , ( ) , ( ), , ( ) ,

(⋅ ∈ 2 ΠΩ A ⋅ ∈ d2 ΠΩ α⋅ ∈ d1 ΠΩ

d V t SV U t SV

SV t

W (4.6)

Let us recall equations of the linear tolerance model of thin periodic plates, which under denotations (4.2) can be written as following:

~ ,

~ ~ ~ ,

2

4 AB B A

B AB A

A A

Q V

m V D W D

Q W m V D W D

λ

= λ

+ +

∂∂ + ∂ + =

αβ αβ

αβ αβ αβγω

αβγω

&

&

&

&

(4.7) cf. Jędrysiak [1], Woźniak, Michalak and Jędrysiak [5].

(8)

5. EXAMPLES OF APPLICATION

5.1 Formulation of the problem

The object under consideration is a simply supported rectangular plate with constant thickness δ and length dimensions L1 and L2 along the x1- and x2-axis, respectively. The plate is made of two isotropic materials, having Young’s moduli E’ and E”, and Poisson’s ratio ν’ and ν”, periodically distributed along the x1- and x2-axis. For the sake of simplicity we consider a static bending problem. Hence, the known load q, unknown macrodisplacements, macrodeflection and fluctuation amplitudes are now functions of the space coordinates x1, x2 only, i.e. q=q(), Uα=Uα(⋅), W=W(), VA=VA(⋅). Moreover, we assume only one fluctuation shape function in the form

2 2 1

2 1

1 2

2 cos

cos λπ

λπ λ

=

= x x

h

h , (5.1)

satisfying the condition <h>=0. Let q(x) be a slowly-varying function in x.

Hence,

~ 0

Q . (5.2)

Under the above-mentioned assumptions denotations (4.2) can be written in the form:

.

~ , ,

,

~ , , ,

4

2 2

>

≡< ∂ ∂ ∂ ∂ >λ ≡< ∂ >

≡<≡<≡< ∂ >∂ >λ ≡<≡< ∂ >∂ >λ

αβ γω αβγω

γω αβγω

αβ β α ω γ αβγω

β γ αβγω

αω ω γ αβγω αβ

αβγω αβγω

αβγω αβγω

h h d

D

h d

D h

h h h b B

h h b B h

h b B

d D

b

B )

(5.3)

Thus, tolerance averaged lagrangean (4.3) takes the form

,

} )

~ (

) )(

(

2~ {

4 4 4 2 1 2

2 2

2 1 4 1

2 2

1

QW

V B WV

W B V W W U

U B

W W U U W W U U B

V D WV D

W W

h D

+ λ ∂ +∂ +∂ ∂ +λ ∂ ∂ + λ +

+

+

∂ +

∂ +

∂ +

∂ +

∂ +

+ +

∂ +

>=

<

ω α αω β

α β α α β αβ

ω γ ω γ γ ω β α β α α β αβγω

αβ αβ γω

αβ αβγω

) Λ

(5.4)

whereas equations (4.6) have the following form:

(9)

.

~~~( 0 ( ) ) 0,

) ~ (

, 0 )

~ ( ) (

3 4 2 2 1

2 2 1

2 2

2 2

2 1 2 1

2 2

2 1 2

1

= +

+λ ∂ +∂ +∂ ∂ +λ ∂ ∂ + λ +

= +

∂ λ +

∂ λ +

+

∂ +

∂ +

=

∂ λ +

∂ +

∂ +

αβ αβ

ω α αω β

α β α α β αβ

ω α αω αβ

αβ

αβ αβ αβγω

αβγω αβ

ω γ ω γ γ ω αβγω

β αβ ω

γ ω γ γ ω β αβγω

V D W D

V B WV W B V W W U U B

Q WV B

WV B

V D W D

W W W U U B

V B W

W U U B

)

) (5.5)

On the other hand, the linear tolerance model of thin periodic plates, subjected to the static load with assumptions (5.1) and (5.2), is described by the equations:

D W V D Q D W

D

Dαβγω Dγω αβ∂αβγω = =− αβαβ



 − ~

,

~

~

, (5.6)

both independent of the microstructure parameter.

It can be seen that equations (5.5) stand a system of coupled nonlinear differential equations, solutions to which are very difficult to obtain. In contrast, system (5.6) can be solved equation by equation, but it neglects the effect of the microstructure size.

5.2 Solutions to the tolerance models

Let us consider a simply supported square plate (L1=L2=L), made of two different isotropic materials. The periodicity cell is also square, and is defined as W≡[−λ/2,λ/2]×[−λ/2,λ/2], cf. Fig. 2.

Fig. 2. A basic periodicity cell It is assumed that the Young’s modulus is given by

(10)





λ αλ

× λ αλ

∪ αλ λ × −λ −αλ ∪

∪ −λ −αλ × αλ λ ∪

∪∈ −λ −αλ × −λ −αλ ∪ ε ′

′′=′ ∪∪∈−αλ−αλλ λ−αλαλ× −×αλ×−−λαλαλλ αλ∪ ∪

=

], 2 / , 2 / ( ] 2 / , 2 / (

) 2 / , 2 / [ ] 2 / , 2 / (

] 2 / , 2 / ( ) 2 / , 2 / [

) 2 / , 2 / [ ) 2 / , 2 / [ if

], 2 / , 2 / [ ] 2 / , 2 / (

] 2 / , 2 / [ ] 2 / , 2 / [

] 2 / , 2 / [ ) 2 / , 2 / [ if

)

( x

x

x E E E

E

where α is a dimensionless parameter describing distribution of material properties in the periodicity cell, cf. Fig. 2. However, Poisson’s ratio is assumed to be the same for both materials, i.e. ν’=ν”=ν. The fluctuation shape function (5.1) is given by h=λ2cos(2πx1/λ)cos(2πx2/λ). We assume that the load is given by the formula

. sin sin ) ,

( 1 2 0 1 2

0

L x L q x x x

q = π π

Solutions W(⋅⋅⋅⋅), Uα(⋅⋅⋅⋅), VA(⋅⋅⋅⋅) have to satisfy boundary conditions for the simply supported plate with immovable edges, i.e. W=∂11W=0 for x1=0, L;

W=22W=0 for x2=0, L; V=11V=0 for x1=0, L, V=22V=0 for x2=0, L, U1=U2=0 for x1=0, L and for x2=0, L. Therefore, denoting ξm=mπ/L, ζn=nπ/L, solutions to (5.5) can be assumed in the form:

, sin sin )

, (

, sin sin

) , (

, sin sin

) , (

2 1 2

1

2 1 2

1

2 1 2

1

x x A

x x V

x x A

x x U

x x A

x x W

n mn m

V

n mn m

U

n mn m

W

ζ ξ

=== ξξ ζζ

α α (5.7)

where AWmn, AUmn

α , AVmn are new unknown constant parameters. Our investigations are restricted to the first approximations of (5.7). From the symmetry we conclude that W(x1,x2) and V(x1,x2) are even functions of x1 and x2, while U1(x1,x2) is an odd function of x1 and U2(x1,x2) is an odd function of x2. Hence, solutions (5.7) take the form as:

. sin sin )

, (

2 , sin sin )

, (

, 2 sin

sin )

, (

, sin sin )

, (

2 1 2

1

2 1

2 1 2

2 1 2

1 1

2 1 2

1

2 1

L x L A x x x V

L x L

A x x x U

L x L

A x x x U

L x L A x x x W

V U U W

π

= π

π

= π

π

= π

π

= π

(5.8)

(11)

To find amplitudes AW, A, AV, the Ritz method can be used, cf.

Timoshenko and Woinowsky-Krieger [6]. The conditions of the Ritz method take the form:

0

1

max =

∂∂ AU

V , 0

2

max =

∂∂ AU

V , max =0

AW

V , max =0

Aw

V , (5.9)

where Vmax is the maximal strain energy of the plate. Using notations:

, 16 ) 1 )]}(

4 cos(

1 [ 2

) 1 )(

2 sin(

16 ) 2 ( 16 {

, 16 ) 1 )]}(

4 cos(

1 [ 2

) 1 )(

2 sin(

16 ) 2 ( 16 {

), 1 )](

2 cos(

1 [ 4

}, 36 ) 1 )](

4 cos(

8 ) 8 cos(

) 1 )(

4 sin(

6 ) 2 ( 36 {[

]}, ) 1 2 ( ) 2 [(

4 ) 1 2 (

) 4 cos(

{1

), 1 2 ( 2

4 2

3 2 12 4

4 2

3 2 10 4

5

4 2

2 8 1

3 2 4

2 8 4 63 4

2 2 2

1 2

2 0 2

ε π + ε

− απ

− π

− π= −π ααπ−α −−επ+ παπε −α +

− =π= −π απααπ−−απ +−επαπ απ−ε +−απ+ε +

+ α

− απ π

+ α

− α π + π λ

=

ε + α

− α + α

− α π + ε απ − λ −

=

+ α

− α ε + α

− α

=

C C C C C C

(5.10)

coefficients (5.3) can be written as

, 4

) 2

(

),

~ ( ,

, ) (

), (

),

~ ( ,

1212 12 2222 1122 1111

10

22 11 5 0

2222 1111 4 4

2 2 1 1 2 1

22 11 2 1

0

d C d

d d

C D

d d C D d

C D b

b C B

b b C B b

b C B b

C B

′ +

′ +

′ +

== ′ + ′ = ′ = ′ + ′

λ = ′ λ = ′ + ′ λ = ′ + ′

αβ αβ αβ

αβγω αβγω

ω β ω β βω

αβ αβ αβ

αβγω

αβγω )

(5.11)

and the maximal strain energy Vmax takes the form

. ) }(

) ( )

)(

1 ( ){ 1 (

} ) ( )

1 (

) ( )]

1 ( ) 1 ( [ ){ 1 ( 1

} ) ( )

1 ( ]

) ( ) [(

) 9 (

) )(

( ) ( ){ 1 (

2 2 4 2 16 2 1 1 2

32 3 3 1

1 2 2

0 2 4 24 2 1

2 5 24

1

2 10 4

48 12 1 2 3 2

4 4 128 2 5

9 2 8 2

2 2 16

1

2 2

3 5 4 1 2 2 2 0 4 1 max

2 1

2 1 1

2

2 1

V W

U U

W V

W

V

W U

U U

U

W U U W

A L C A

C A

A L

E C

A C L

A A C

A L C

E C L

A L

A A A

A L

A A A E L

L L C QA V

λ

− π

− + ν ν +

− ′ λ δ +

+ π

+ ν + π

− ν

+ + ν ν −

− ′

− δ

− π

+ ν + +

+ π

ν

− +

+ +

π ν ν −

− ′

− δ

=

(5.12)

Applying conditions (5.9) to polynomial (5.12) we obtain the system of four algebraic equations:

(12)

− two of the form

, 0 ) )(

1 ) ( 1 (

)]

1 ( )

9 ( ) ( ) ( )[ 1 (

, 0 ) )(

1 ) ( 1 (

)]

1 ( )

9 ( ) ( ) ( )[ 1 (

1 2 3 1 2 2

2 9 2 8 2 8

2 1 2 3 5 4 1 2 2 0

1 2 3 1 2 2

2 9 2 8 2 8

2 1 2 3 5 4 1 2 2 0

1 2

2 1

= ν

ν +

− ′ λ δ

− ν + +

π ν

− + π

ν ν −

− ′ δ

= ν

ν +

− ′ λ δ

− ν + +

π ν

− + π

ν ν −

− ′ δ

V

U U W

V

U U W

A L

E C

L A A L A

E L L C

A L

E C

L A A L A

E L L C

(5.13)

which are linear in parameters AU1 and AU2, and

− two of the form

. 0 )}

1 ( )]

1 ( ) 1 ( [ ){ 1 ( 1

] )

( )

)(

1 ( )[ 1 (

, 0 ] )

1 ( )[

1 ( 1

) ) (

1 (

] ) ( )

( ) ( )[ 1 (

5 2 2 24 4 1 10

24 12 1 2 3 2

2 4 2 8 2 1 1 2

16 3 3 1

2 2 2

4 0 12 2 1

2 5 24

1 2 3 2

2 1 2 16

3 2 2

3 4 32 2 5

3 5 2 1 2 2 2 0 4 1

2 1

2 1

= ν + π

− ν

+ + ν ν −

− ′

− δ

− λ

− π

− + ν ν +

− ′ λ δ

= π

− ν + ν π

− ′ + δ

+ ν π

− ′ λ δ

− π

+ +

π ν ν −

− ′

− δ

L A C A

L C

E C L

A L C A

C A

A L

E C

A C L

A E C

L

A A E C

A A

A A E L

L QL C

W V

V W

U U

W V

W V

W W

U U

(5.14)

Amplitudes AU1 and AU2 can be derived from equations (5.13):

)] . 1 ( ) 9 ( [

) )(

1 ( )

( ) (

9 2 8 8

1

2 0

2 1 2 3 2 1 2 3 5 4 1

2

1 L

C A L C A

A A

V W

U

U −νπ + +ν

ν + λ

+ π

− ν

=

= (5.15)

Substituting obtained formulas for AU1 and AU2 to (5.14) we arrive at two nonlinear algebraic equations for constants AW and AV, which can be solved numerically for every special case.

In contrast, approximate solutions for the linear tolerance model of thin periodic plates, governed by equations (5.6), can be obtained by substituting (5.8)1 and (5.8)4 into (5.6). It leads to a system of linear algebraic equations for constants AW, AV. Solving these equations we arrive at:

) . ( ) 1 ( )]

1 ( ) 1 ( [ 2

) 1 ( '

) 1 ( 12 2 1

) , ( ) 1 ( )]

1 ( ) 1 ( [ 2

) 1 ( ) 1 ( '

) 1 ( 12 2 1

5 2 12 2

10 0

5 3

2 2

2

5 2 12 2

10 0

12 10

3 2 4

4

C C

C C

C E

A QL

C C

C C

C C

E A QL

V W

ν +

− ν

− + ν +

ν + δ

ν

= π

ν +

− ν

− + ν +

ν

− + ν + δ

ν

= π

(5.16)

(13)

Obtained formulas can be now applied to a numerical analysis.

5.3 Calculational results

Assuming solutions of the considered problem in form (5.8), calculated constants AW and AV are values of macrodeflection W(x1,x2) and fluctuation amplitude V(x1,x2) at point (x1,x2)=(L/2,L/2).

In calculations we assume that: the Young’s modulus E’=200 GPa, the Poisson’s ratio ν=0.3; the length L=1.0 m, the thickness δ=5×10−3 m, the amplitude of the load is q0=5 kPa.

Figures 3-7 show some numerical results.

Fig. 3. Dimensionless ratio AW/δ versus QL4/δD0, D0=E’δ3/12(1−ν2)

Fig. 4. Dimensionless ratio AW/δ versus dimensionless parameter α

(14)

Fig. 5. Dimensionless ratio AV/δ versus dimensionless parameter α

Fig. 6. Dimensionless ratio AW/δ versus dimensionless ratio λ/L

Fig. 7. Dimensionless ratio AV/δ versus dimensionless ratio λ/L

(15)

6. FINAL REMARKS

In this note the tolerance modelling technique has been used to obtain governing equations with constant coefficients of the tolerance model for thin periodic plates subjected to large deflections instead of equations with highly oscillating, periodic, non-continuous coefficients.

Analyzing results presented as the diagrams in Figs. 3-7 it can be observed that:

• differences between the macrodeflection within the nonlinear tolerance model and linear tolerance model for deflections smaller than 1/5δ are less than 10% and increase with the increasing of the load, (Fig. 3);

• these differences increase with the decreasing values of the parameters α and ε, i.e. with the decreasing of the plate longitudinal and flexural rigidity, (Fig. 4);

• differences between the values of fluctuation amplitudes depend also on the value of the load and on the parameters α and ε, but the differences are lesser (in the case of the increasing load) or more distinct (in the case of the decreasing stiffness) than it is in the case of macrodeflections, (Fig. 5);

• Figs. 6 and 7 show that both the macrodeflection and the fluctuation amplitude considered within the framework of the nonlinear tolerance model are depended on ratio λ/L, while those obtained from the linear tolerance model are independent of λ.

The nonlinear tolerance model equations describe the effect of the microstructure size, while the linear model neglects this effect.

REFERENCES

1. Jędrysiak J.: Dispersion Models of Thin Periodic Plates, Sci. Bul. Łódź Tech. Univ. , No 872, series: Sci. Trans. 289, Łódź 2001 (in Polish).

2. Kohn R.V., Vogelius M.: A New Model of Thin Plates with Rapidly Varying Thickness, Int. J. Solids Struct., 20, (1984) 333-350.

3. Mathematical Modelling and Analysis In Continuum Mechanics of Mictrostructured Media, eds. Cz. Woźniak et al., Silesian Technical University Press, Gliwice 2010.

4. Mechanics of Elastic Plates and Shells, series: Technical Mechanics, vol.

VIII, ed. Cz. Woźniak, PWN, Warszawa 2001 (in Polish).

5. Thermomechanics of Microheterogeneous Solids and Structures. Tolerance Averaging Approach, eds. Cz. Woźniak, B. Michalak, J. Jędrysiak, Technical University of Łódź Press, Łódź 2008.

6. Timoshenko S., Woinowsky-Krieger S.: Theory of Plates and Shells, New York, McGraw-Hill 1959.

(16)

MODELOWANIE CIENKICH PŁYT PERIODYCZNYCH O DUŻYCH UGIĘCIACH

S t r e s z c z e n i e

W pracy rozpatrywane są cienkie, liniowo-sprężyste płyty o budowie periodycznej w płaszczyznach równoległych do płaszczyzny środkowej. Zagadnienia statyki i dynamiki tego rodzaju płyt w zakresie dużych ugięć opisane są układem równań różniczkowych nieliniowych o silnie oscylujących, periodycznych, nieciągłych współczynnikach (por. książka pod red. Woźniaka i in. [3]). W celu otrzymania równań o stałych współczynnikach zastosowano tu technikę tolerancyjnego uśredniania, omówioną w książce pod red. Woźniaka, Michalaka i Jędrysiaka [5]. Zaproponowano nieliniowy model tolerancyjny, opisujący nieliniowo-geometryczne zagadnienia cienkich płyt periodycznych. Model ten zastosowano do wyznaczenia ugięć dla danego obciążenia, a otrzymane wyniki porównano z wynikami uzyskanymi w ramach liniowego modelu tolerancyjnego.

Cytaty

Powiązane dokumenty

As an important factor of communication between both processes, we use the oxygen tension (on fibroblast mobility and proliferation), the presence of macrophage derived growth

titration protocol developed in real time directly mimics the protocol identified by the optimal protocol found by the optimal control analysis shown in ( Fig 3 ). These results

to „zanieczyszczenie” spo- wodowane jest dostosowaniem się przedstawicieli mass mediów do nowej rzeczywis- tości społeczeństwa sieciowego.. Aby utrzymać swoją pozycję na

W relacji z narady podano: „Zbliżające się XIX Plenum KC PZPR będzie istot­ nym wydarzeniem również dla inteligencji prawniczej, tak bardzo związanej z

Our example is restricted to analyse free vibrations of the transversally graded plate band using only the asymptotic model described by equation (7.5).. This

Niektórzy z badaczy, zajmujący się obserwacją procesów globalizacji i modernizacji doszli do wniosku, iŜ mimo Ŝe nie jest to zjawisko nowe, dzisiaj nabrało juŜ

Dorota mieszka na Queensie, pochodzi z Krakowa, w USA od pół roku: „Podoba mi się w Nowym Jorku, dobrze się tu czuję, dostałam pracę, zadomowiłam się tutaj...

elastycznego biura, w którym jest mniej stanowisk pracy niż pracowników, oraz ruchomego biura, które pracownik nosi ze sobą w komputerze (Toffl er, Toffl er, 1995). Jest ona