• Nie Znaleziono Wyników

Diffusion soldering

N/A
N/A
Protected

Academic year: 2022

Share "Diffusion soldering"

Copied!
31
0
0

Pełen tekst

(1)

Diffusion soldering

fundamentals and application

(2)

Solder IP

Conventional soldering

Solders act by:

- wetting the metal surfaces forming the joints,

- flowing between these surfaces filling the space between them, - metallurgically bonding to the surfaces when solidified.

Soldering: joining process below 425

o

C using filler metals

(solders) having melting temperatures below those of base metals

(3)

Conventional soldering

Substitutes for Sn-Pb solders

Sn-based multicomponent alloys with alloying elements such as Bi, In, Ag and Zn

Directive 2002/95/EC - New electrical and electronic equipment should be free of lead and other hazardous substances by July 1st, 2006.

WEEE 2002/96/EC - Waste Electrical and Electronic

Equipment (WEEE) – deadline 2008

(4)

Operating temperature of many electronic devices built on silicon carbide and III-V compound semiconductors exceeds 350

o

C (jet engines, nuclear reactors, geothermal walls, automotive electronics, industrial robots, and space electronics).

Miniaturization of components and contact areas in electronic packaging increase the specific load of contacts due to heat dissipation (chip resistors and resistant heating elements).

Challenges for new joints

IBM: First a solution of the interconnection problem;

Then everything else

Limitation

Service temperature: 60-100 C below soldering temperature

(220-260 C for Sn-Pb solders)

(5)

High temperature stability:

~2 to 3 fold higher than the fabrication temperature

High mechanical strength

Small energy consumption due to low fabrication tem- perature

Environmentally friendly

Reduction in size and cost

No high temperature expo- sure of other circuit ele- ments

High temperature stable con- tacts of resistive heaters for thick-film hot plates, resistive elements for gas sensors

Selective-area sealing and co- mplete package sealing of mi- crocircuits

Development of packages for optoelectronics and other microcircuit application

Wafer-to-wafer joining, flip- chip joining, 3D integration etc.

Producing metal-polyethylene interconnection

Need for a new lead-free joining technology

(6)

100% HM 100% LM

C onc ent ra tio n triangle

LM

HM a

HM

LM

HM

HM LM

b

tim e

T

j

=const., p=const.

IP

1

c

IP

2

IP

1

d

e IP

2

f (HM)

Tj

IP

2

IP

1

(HM)

HM LM

CL CS

C2 C1 C3

Tm

HM- high-melting component (substrate)

LM- low-melting component (solder) IP- intermetallic phase

(HM)- solid solution of LM in HM T

j

- joining temperature

T

m

- melting temperature of LM

Diffusion Soldering

(7)

The diffusion soldering should be distinguished from the diffusion brazing. Although both processes involve the same bonding mechanism, the solid solution of LM in HM is ultimately formed during brazing in the interconnection area instead of the intermetallic phase. It also means that proces is performed at such temperatures or for such systems where there is no intermetallic phases.

The term transient liquid phase diffusion bonding

(TLP) is also frequently used to describe the joining

process involving isothermal solidification. However, it

is also claimed, that no interface remains after the TLP

bonding operation, which resembles the diffusion

brazing rather than diffusion soldering.

(8)

Conventional soldering

good joint filling

tolerance to surface preparation

Diffusion bonding

higher service temperature smaller thermal expansion mismatch stresses

Diffusion Soldering

(9)

Potential candidates for diffusion soldering

interlayer substrate

solder’s materials

Al Ni

In Cu, Ag

Ni,Cu,Ag Sn

In-48 at.%Sn Cu In-22 at.%Bi Cu

No. Element (at.%) T

M

[

o

C]

A B C

1 In(60.3) Bi(21.4) Sn(18.3) 61

2 In(78) Bi(22) --- 72

3 In(52) Sn(48) --- 118

4 In --- --- 156

5 Sn(84.8) Zn(15.2) --- 199

6 Sn --- --- 232

7 Al --- --- 660

(10)

Cu/Sn/Cu interconnection

(Cu

6

Sn

5

)-hexagonal – 415

o

C e(Cu

3

Sn)-orthorombic - 676

o

C

(Cu

10

Sn

3

)-hexagonal – 642

o

C d(Cu

41

Sn

11

)-cubic – 586

o

C

600

400

200 800 1000

1200

0 10 20 30 40 50 60 70 80 90 100

Atomic Percent Tin

Cu Sn

(Sn) (Cu)

L

e

676°C

415°C

227°C

d

Temperature º C

(11)

Cu/Sn/Cu interconnection

S. Bader, W. Gust, H. Hieber, Acta Metall. Mater. 43, 329 (1995)

6Cu+5Sn(l)  Cu

6

Sn

5

Cu

6

Sn

5

 5Sn(l)  Cu

3

Sn Cu

6

Sn

5

+ 9Cu  5 Cu

3

Sn a

Cu Si

e

1 min

c

10 mLM

Cu

Cu e

e

20 min

10 m LM 10 m

LM

b

Cu Si

e

5 min

240 C eutectic Pb-Sn- 183 C

(12)

S. Bader, W. Gust, H. Hieber, Acta Metall. Mater. 43, 329 (1995)

Cu/Sn/Cu interconnection

Tensile test

When both IPs present strength twice larger than for pure Sn (18 MPa)

DEMAND FOR ELECTRONIC INDUSTRY: R

m

= 3-5 MPa

Thermal cycling

-45

o

C/0.5 h +125

o

C/0.5 h 5 s

5 s

Cu/1.5 m Sn/Cu – 5 min at 330

o

C

For more than 300 cycles and p=0.8 MPa

R m = 27 MPa

(13)

X.J. Liu, H.S.Liu, I. Ohnuma et. al.

Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system J. Electronic Mater. 30 (2001) 1093-1103

x(In)

x(Sn) 0.0

0.2 0.3 0.5 0.7 0.9

0.00 0.20.2 0.40.4 0.60.6 0.80.8 1.01 0

0.2 0.4

0.6 0.8

1

x(Sn) x(In

)

Cu

In

Sn

Liquid+

Liq uid

Fcc_A1

+e Fcc+d'

+ +Liqu id

d+

d+ +e

e+Cu3Sn

-CuIn

Fcc+ d d-CuIn

d+Fcc+Cu77InSn23 Fcc+Cu77InSn23+d'

ed ' dd '

dd'+ e

Fcc+ed'

'+d

300 0C

d Cu7In3

 Cu11In9

Liquid

dCu6Sn5

++liquid

Cu6Sn5

300 C

X(In)

X(Sn) 0.0

0.2 0.3 0.5 0.7 0.9

0.00 0.20.2 0.40.4 0.60.6 0.80.8 1.01 0

0.2 0.4

0.6 0.8

1

X(Sn) X(In)

Cu

In

Sn

Liquid

-CuIn+Liquid

Liquid++

d+ +e Fcc+ d

+d '

e-Cu3Sn Fcc+ d'

Fcc_A1 Bct_A5

-CuIn

'-CuIn d-CuIn

d+d' Fcc+d

+Bct

+e +

++Bct Fcc+e+d'

e+d +d

'

d

Liqui d+

+

e+d'

200 0C

-InSn Liquid+

d Cu7In3

 Cu2In

 Cu11In9 Liquid +  + 

 Cu6Sn5+ Liquid

X(In)

X(Sn) 0.0

0.2 0.3 0.5 0.7 0.9

0.00 0.20.2 0.40.4 0.60.6 0.80.8 1.01 0

0.2 0.4

0.6 0.8

1

X(Sn) X(In)

Cu

In

Sn

Liquid

-CuIn+Liquid

Liquid++

d+ +e Fcc+ d

+d '

e-Cu3Sn Fcc+ d'

Fcc_A1 Bct_A5

-CuIn

'-CuIn d-CuIn

d+d' Fcc+d

+Bct

+e +

++Bct Fcc+e+d'

e+d +d

'

d

Liqui d+

+

e+d'

200 0C

-InSn Liquid+

200 C

[Cu

6

(Sn,In)

5

] d[Cu

41

(Sn,In)

11

] e[Cu

3

(Sn,In)]

d[Cu

7

(In,Sn)

3

] ~ 613

o

C

[Cu

2

(In,Sn)] ~ 391

o

C

Cu/In-Sn/Cu interconnection

(14)

Cu

 phase (scallop) In-Sn solder

10 m

5 m

 coarse-grained

 fine-grained Cu

Cu

 phase

 phase

10 m

Cu/In-48Sn/Cu interconnection - [Cu 6 (Sn,In) 5 ] phase

200 °C / 10 h

180 °C / 3 h

(15)

Cu/In-48Sn/Cu interconnection- [Cu

6

(Sn,In)

5

] and d[Cu

41

(Sn,In)

11

] phases

0.5 m

 phase

coarse-grained

 phase fine-grained

200 nm

Cu

d

d

d

In L Sn L

Cu K

Cu

 phase

500 nm

1

200

131

3

0110

0001

4

0001

1230

[013] zone axis [2110] zone axis [5410] zone axis

Lp. Cu In Sn phase 1 99.4 0.2 0.4 Cu 2 71.6 16.6 11.8 d

3 53.4 21.4 25.3  (fine) 4 55.8 19.7 24.6  (coarse)

d[Cu

41

(Sn,In)

11

]

200 °C / 60 h

(16)

Cu

Cu d phase Cu

20 m

Cu  phase Cu Cu

 phase

d

phase

In-Sn solder d phase

20 m 50 m

200 C / 24 h 300 C / 10 min

300 C / 3 days

x (In )

x(Sn) 0.0

0.2 0.3 0.5 0.7 0.9

0.0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1 0

0.2

0.4

0.6

0.8

1

x(Sn) x(In

)

Cu

In

Sn

Liquid+ 

L iq ui d

Fcc_A1

 + e Fcc+

d

'

+ +Liqu id

d+

d+ +e

e

+Cu

3

Sn

-CuIn

Fcc+ d d

-CuIn

d+Fcc+Cu77InSn23

Fcc+Cu77InSn23+d'

ed ' dd '

d

d '+ e

Fcc+ed'

'+d

300

0

C

X (In )

X(Sn) 0.0

0.2 0.3 0.5 0.7 0.9

0.0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1 0

0.2

0.4

0.6

0.8

1

X(Sn) X (In)

Cu

In

Sn

Liquid

-CuIn+Liquid

Liquid++

d+ +e Fcc+ d

+d'

e-Cu3Sn Fcc+d'

Fcc_A1 Bct_A5

-CuIn

'-CuIn d-CuIn

d+d' Fcc+d

+Bct

+e +

++Bct

Fcc+e+d'

e+d +d

' d

Liqui d+

+

e+d'

200

0

C

-InSn

Liquid+

300 C

Cu/In-48Sn/Cu interconnection - d[Cu 41 (Sn,In) 11 ] phase

(17)

1 µm

Cu Sn In

57.8 32.5 9.7 59.3 28.1 12.6 62.3 18.7 19.0 64.7 12.2 23.1

Cu 6 (Sn,In) 5 Cu 2 (In,Sn)

d+e

d ε

Cu

0.1 m

Cu

Cu/In-48Sn/Cu interconnection - e[Cu

3

(Sn,In)] and d[Cu

7

(In,Sn)

3

] phases

0 20 40 60 80 100

0 50 100 150 200 250 300

odległość [nm]

skład chemiczny [at.%]

Cu-delta Sn-delta In-delta Cu-epsilon Sn-epsilon In-epsilon

distance

chemical composition

220 °C / 243 h

d

(18)

x(In)

x(Sn) 0.0

0.2 0.3 0.5 0.7 0.9

0.00 0.20.2 0.40.4 0.60.6 0.80.8 1.01 0

0.2 0.4

0.6 0.8

1

x(Sn) x(In

)

Cu

In

Sn

Liquid+

Liq uid

Fcc_A1

+e Fcc+d'

+ +Liqu id

d+

d+ +e

e+Cu3Sn

-CuIn

Fcc+ d d-CuIn

d+Fcc+Cu77InSn23 Fcc+Cu77InSn23+d'

ed ' dd '

dd'+ e

Fcc+ed'

'+d

300 0C

a

b c

d

f e h g

i j

k

d Cu7In3

e Cu3Sn d Cu41Sn11

 Cu6Sn5

 Cu2In

48%Sn52%In L

a b de

d

Cu

c d-e

f-g h i-j k

e d e

d e d e d

0.1 m

d [Cu

41

(Sn,In)

11

]

 [Cu

6

(Sn,In)

5

]

Clark J.B.: Conventions for plotting the diffusion paths in multiphase ternary diffusion couples on the isothermal section of a ternary phase diagram, Trans. Metal. Soc. AIME 227, (1963) 1250-1251.

Concentration of elements at points 1-13 across the joint [at.%], SEM (EDX)

1 2 3 4 5 6 7 8 9 10 11 12 13

Cu 2 8 7 15 31 60 56 66 74 74 76 91 100

In 32 39 64 62 51 20 22 17 13 10 6 5 0

Sn 66 53 29 23 18 20 22 17 13 16 18 4 0

Cu/In-48Sn/Cu interconnection - diffusion path

300 °C / 6 h

(19)

[Cu 6 (Sn,In) 5 ] 180-220 °C

(20)

d[Cu 41 (Sn,In) 11 ]

d [Cu 7 (In,Sn) 3 ] e [Cu 3 (In,Sn)]

300 -350 °C

(21)

Temperature and time of production

Phases present in the joined area Shear strength [MPa]

200 C/3 hours [Cu6(Sn,In)5] and In-Sn solder 4.6

200 C/5 hours [Cu6(Sn,In)5] and In-Sn solder 7.1

200 C/3 days [Cu6(Sn,In)5] 11.2

250 C/3 hours [Cu6(Sn,In)5], d[Cu41(Sn,In)11], In-Sn solder 4.2 300 C/3 hours [Cu6(Sn,In)5], d [Cu41(Sn,In)11], In-Sn solder 4.7 300 C/5 hours [Cu6(Sn,In)5], d [Cu41(Sn,In)11], In-Sn solder 6.4

300 C/3 days d [Cu41(Sn,In)11] 28.5

Shear test at room temperature in Cu/In-48Sn/Cu joint

Shear test at elevated temperature in Cu/In-48Sn/Cu joint

Temperature and time of

production

Phases present in the joined area Shear strength [MPa]

200 C/3 days [Cu6(Sn,In)5] 9.5 (test at 100 °C )

200 C/2 weeks [Cu6(Sn,In)5] andd[Cu41(Sn,In)11] 9.8 (test at 100 °C )

300 C/1 week d [Cu41(Sn,In)11] The fracture occurred in copper substrate.

Joint was not destroyed at 100 and 150 °C 300 °C/2 weeks d [Cu41(Sn,In)11] The fracture occurred in copper substrate.

Joint was not destroyed at 100 and 150 °C

(22)

Temperature º C

20 40 60 80

Atomic percent Ni

Cu+5at.%Ni/Sn/Cu+5at.%Ni interconnection

Cuiping Wang, Jinjin Zhu, Yong Lu, Yihui Guo, and Xingjun Liu, Journal of Phase Equilibria and Diffusion Vol. 35 No. 1, 2014.

C. Schmetterer, H.

Flandorfer, CH. LueF, A. Kodentsov, H. Ipser Cu-Ni-Sn: A Key System for Lead-Free Soldering Journal of Electronic Materials, Vol. 38, No. 1, 2009.

240 ºC

[(Cu

1-x

Ni

x

)

6

Sn

5

] e[Cu

3

Sn]

KPMI Fall Meeting, 13-14 November 2014, Yeosu, South Korea

Paweł Zięba, Anna Wierzbicka-Miernik Diffusion soldering- fundamentals and application

(23)

Cu+5at.%Ni/Sn/Cu+5at.%Ni interconnection [(Cu 1-x Ni x ) 6 Sn 5 ]

250°C / 2 min 250°C / 5 min

250°C / 10 min 250°C / 15 min

Lp. Cu at.% Sn at.% Ni at.% phase 1 95.1 0.0 4.9 (Cu,Ni) 2 0.0 100.0 0.0 Sn 3 50.7 45.1 4.2 

50 µm Cu+5at.% Ni

Cu+5at.% Ni (Cu1-xNix)6Sn5

Sn

1 2

3

50 µm Cu+5at.% Ni

(Cu1-xNix)6Sn5 Sn

260°C / 10 min

after selectively etching away the Sn

e[Cu

3

Sn] WAS NOT OBSERVED

50 µm

50 µm 50 µm

(24)

250°C / 10 min

250°C / 60 min

Cu/Sn/Cu vs. Cu+5at.%Ni/Sn/Cu+5at.%Ni joints

Cu/Sn/Cu Cu+5at.%Ni/Sn/Cu+5at.%Ni

(25)

Cu+5at% Ni substrate

Reaction zone

1 µm Cu+5at%Ni

Reaction zone Sn L Cu K Ni K

400 nm Reaction zone

1

2

0002

2110 [0110] Cu6Sn5

2 0111

[1210] Cu6Sn5 1

1101

250 °C / 60 min

Cu+5at.%Ni/Sn/Cu+5at.%Ni interconnection [(Cu 1-x Ni x ) 6 Sn 5 ]

Ni enrichment zone-possible reason that no e[Cu

3

Sn] formed

KPMI Fall Meeting, 13-14 November 2014, Yeosu, South Korea

Paweł Zięba, Anna Wierzbicka-Miernik Diffusion soldering- fundamentals and application

(26)

in general: x=kt n

the widith of the phase interlayer

Growth rate constant time

* for n=0.5: parabolic growth,

controlled by the volume diffusion

* for n=1: linear growth, controlled by the chemical reaction at the phase boundary

Rate controlling factor of IPs growth

There are two important advantages of linear growth from the diffusion soldering process point of view:

1. faster formation of the intermetallic phase,

2. shorter time needed to create a joint.

(27)

S. Bader, W. Gust, H. Hieber, Acta Metall. Mater. 43, 329 (1995)

Growth kinetics  and ε phases in Cu/Sn/Cu joint

phase n

240 C 0.21 300 C 0.26

ε phase n

240 C 0.45

300 C 0.49

(28)

Growth kinetics  and d phases in Cu/In-48Sn/Cu joint

phase n

180 C 0.40 ± 0.02 200 C 0.20 ± 0.03 220 C 0.31 ± 0.09

d phase n

300 C 1.08 ± 0.04 325 C 1.10 ± 0.08 350 C 0.91 ± 0.04

d at 300 C

0 4 8 12 16 20

0 0,2 0,4 0,6 0,8 1 1,2

t [h]

x [um]

(29)

S=kt n

the area of the phase

Growth rate constant time

* for n=1: controlled by the volume diffusion

* for n<1: controlled by the grain boundary diffusion

Rate controlling factor of IPs growth in Cu+5at.%Ni/Sn/Cu+5at.%Ni joints

Wierzbicka-Miernik A., Miernik K., Wojewoda-Budka J., Filipek R., Lityńska-Dobrzyńska L., Kodentsov A., Zieba P. (2013): Growth kinetics of the intermetallic phase in diffusion-soldered

Cu+5at.%Ni)/Sn/(Cu+5at.%Ni) interconnections, Materials Chemistry and Physics 142, 682-685.

KPMI Fall Meeting, 13-14 November 2014, Yeosu, South Korea

Paweł Zięba, Anna Wierzbicka-Miernik Diffusion soldering- fundamentals and application

(30)

Growth kinetics  phase in Cu+5at.%Ni/Sn/Cu+5at.%Ni joint

phase n coeficient 240 C 0.27 ± 0.08 250 C 0.24 ± 0.08 260 C 0.15 ± 0.09

n<1: grain boundary diffusion

 at 250 C

(31)

The proces can be even more efficient if:

• the growth kinetics of IPs is controlled either by chemical reactions at the interfaces or grain boundary diffusion processes,

• The substrate is doped with other elements preventing growth of undesired IPs like ε-Cu 3 Sn and accelerating growth kinetics due to change of formation mechanism of IPs (see (Cu 1-x Ni x ) 6 Sn 5 .

The diffusion soldering is a novel interconnection technology. It is characterized by the low joining temperature (comparable with Pb-Sn eutectic solders) combined with the service temperature, which can be higher by several hundred degrees than the joining temperature. For these reasons, diffusion soldering is a very attractive method for certain types of electronic application.

Conclusions

Cytaty

Powiązane dokumenty

Jak wykazały przeprowadzone badania – dynamika zmian rozmieszczenia działalności przemysłowej na badanym obszarze zależy w dużym stopniu od rodzaju obszaru, na którym

Èíòåðåñíî, ÷òî ëåêñåìà ïàðàëè÷ ÷àñòî âñòðå÷àåòñÿ â ìåäèéíûõ òåêñòàõ, õàðàêòåðèçóÿ òå èëè èíûå äåéñòâèÿ âëàñòè: „ Parali¿ w kraju

Odkryto nikłe ślady zasiedlenia w postaci paleniska kamiennego z VIII wieku oraz pojedyncze fragmenty oeramlki e XI wle;u, skupione wył^oznle

Relacje między członami schematycznie zapisanych opozycji w historii filmu i kina układały się w rozmaity sposób, dziś – jak się wydaje – badacze coraz bardziej skłonni

Osoby zorientowane na stan, dla których kontrola autorytarna stanowi g ówny typ regulacji dzia ania, s% bardziej zewn%trzsterowne ni$ oso- by zorientowane na dzia anie, a tak$e

Słowa kluczowe: gazety rękopiśmienne, zapożyczenia, wpływy francuskie Key words: handwritten newspapers, borrowings, French influences.. Wpływy francuskie pojawiły się w

На рубеже XX и XXI веков наблюдалось бурное развитие лингвистических исследований, сосредотачивающихся на языке СМИ, что

As a further application we describe (in terms of prime ideals) the radical property p. which was recently introduced by JENKINS [6]. It is shown that p coincides with the upper