• Nie Znaleziono Wyników

Pobieranie przez pomidory miedzi i cynku z kompleksów metaloorganicznych powstałych podczas fermentacji tlenowej i beztlenowej lucerny

N/A
N/A
Protected

Academic year: 2021

Share "Pobieranie przez pomidory miedzi i cynku z kompleksów metaloorganicznych powstałych podczas fermentacji tlenowej i beztlenowej lucerny"

Copied!
10
0
0

Pełen tekst

(1)

MARIA PIOTROWSKA

U P T A K E OF C O PPER AND ZINC B Y TOMATO PLA N T FROM A ER O BIC AND A N A ERO BIC Cu- AND Z n-LU C ER N E DECOMPOSITION

SOLUTIONS Com m unication

Trace Element Laboratory Institute of Soil Science and Plant Cultivation in Puławy, Poland

It was shown by N g and B l o o m f i e l d [3, 10, 11] and later by B l o o m f i e l d et al. [4], th at certain trace elem ents, including copper and zinc, are readilly dissolved from the oxides by both anaerobically and aerobically decomposing plant m aterials.

A prelim inary study on the application of anaerobic and aerobic-M n lucerne decomposition solutions to pea plant [3] indicated th at the anae­ robic solution was as effective as a m ineral salt of Mn and m uch m ore effective than th e aerobic-M n incubation solution.

The present study was m ade to investigate the uptake of copper from aerobic and anaerobic-Cu and Zn-lucerne decomposition solutions by to­ m ato plants.

U PTAK E OF COPPER M A T E R I A L S A N D M E T H O D S

The experim ent was done in the greenhouse from 27th of M ay to 15th of Ju ly , 1970.

Seedlings of dwarf tom ato v. Karzełek Puławski ( 1 2 days old) w ere

set up in plastic pots (v. 800 ml), containing m acronutrients according to

A m on and Hoagland and m icronutrients according to H e w i t t [8].

Copper was om itted. Iron was supplied as citrate: 1 ml of 1% solution

per litre. 1 g of C a C 03 powder was also added to adjust pH of solu­

tion to 6.8.

(2)

B l o o m f i e l d [1 0, 1 1] and B l o o m f i e l d , K e l s o , P i o t r o w ­ s k a [4].

The treatm en ts w ere:

No. 1 Cu — aerobic lucerne decomposition solution after dialysis 1,

No. 2 Cu — aerobic lucerne decomposition solution not dialysed,

No. 3 Cu — anaerobic lucerne decomposition solution,

No. 4 Cu — C u S 0 4,

No. 5 Cu — C u S 04 + blank aerobic solution after dialysis,

No. 6 Cu — C u S 04 + blank aerobic solution not dialysed,

No. 7 Cu — C u S 04 + blank anaerobic solution.

Treatm ents w ithout copper (control) :

No. 8 blank aerobic solution a fte r dialysis,

No. 9 blank aerobic solution not dialysed,

No. 10 blank anaerobic solution,

No. 1 1 Cu — free controls.

The concentration of copper in the nutrient solution throughout was 65 fxg p er litre. The nutrient solution was aerated every day and a con­ stant level of solution m aintained by adding redistilled w ater.

The plants received fresh portions of n u trient solution at intervals of 2 weeks. The plants w ere harvested at the flowering stage and the copper contents determ ined spectrophotom etrically.

RESULTS

Table 1 gives the copper contents of the tom ato tops. It is apparent that the concentration of copper in the plants treated with Cu is nearly constant, and is independent of the form in which the Cu was applied.

T a b l e . 1

Copper conten t o f tomato p lan t /top3/ in ppm

T re a t­

ments 1 2 3 4 5 6 7 8 9 10 11

ppm o f Cu 5*13 5 ,4 0 5 ,4 3 5 ,4 0 5 ,3 3 5 ,5 8 5 ,8 8 0 ,7 8 0 .7 0 0 ,4 0 0 ,5 5

The d ry weights of the aerial parts of the plants and the uptake of

copper are shown in the Table 2 (given only for th e basic treatm ents,

1 to 4).

1 The Cu-aerobic lucerne decomposition solution was dialysed against water, because the relationship between the dialysable and nondialysable forms in this solution is changeable (Bloomfield, personal communication).

(3)

Ta bl e 2

Uptake o f Cu by tomato p la n ts : mean o f 5 p la n ts

Source o f Cu Weight o f p lan t 6

Cu con ten t o f p lan t

ppm Cu Anaerobic 3 .7 9 5 .4 3 2 0 .4 3 Cu A erobic I 3 .7 0 5 .1 3 18.98 Cu A erobic I I 3 .5 3 5 .4 0 19.06 CuSO^ 3 .9 3 5.^ 0 21.22 No Cu 2 .9 4 0 .5 5 1 .6 1

There w ere no significant differences in the dry weights of plants from the various Cu treatm ents. Only plants from th e control treatm en t w ithout copper w ere slightly sm aller (Fig. 1), during vegetative period those shoved mild sym phtom s of copper deficiency.

Fig. 1. Tomato plant at the flowering stage (a day before harvest)

2 — C u - m in e r a l s a l t ( C u S 0 4), 2 — C u - a e r o b ic a f t e r d ia ly s is I, 3 — C u - a e r o b ic w ith o u t d ia ­ ly s is II, 4 — C u - a n a e r o b ic , 5 — n o Cu

DISCUSSION

Plants a re som etim es able to tak e up copper from m etal-organic com ­ plexes m ore easily than from m ineral salts. This w as observed with plants grown in porous media, such as soil, w hen organically com plexed copper persisted in solution longer th an th e ionic form [5, 9, 12, 13].

U nder th e conditions of n u trien t cu ltu re the effect of the form of copper on its uptake by plants m ay be less pronounced. The sm all diffe­ rences in the copper* contents of the plants suggest th at the various forms of Cu investigated w ere equally effective.

(4)

H o d g s o n [9] noticed that the en try of capper into corn roots was doubled when it was applied as a n atu ral m etal-organic form . In Hod­ gson’s exp erim en t the copper w as supplied to plants that had been grown for a long tim e without Cu, and it seem s likely that th e mode of action of m etal-organic com plexes as a source of m icronutrients can differ according to the conditions of plant growth.

The addition of C a C 03 powder to the nutrient solution in this exp e­

rim ent m ight decrease the uptake of copper, either by precipitation [14], or by introducing com petition by Ca ions [9].

Considering the sm all difference between the uptake of copper by plants from the aerobic I solution (in which com plexed copper w as m ainly in the colloidal form) and from the anaerobic Cu-solution (in which n early all the com plexed copper was in true solution) it is diffi­ cult to say, w hether the size of the com plexe m olecules had any in­ fluence on the availability of the copper to plants.

B l o o m f i e l d [3] found that m anganese in colloidal form of an aerobic M n-lucerne decomposition solution w as only slightly available to pea plants, which is surprising considering the predom inantly exch an ­ geable form of the greater part of the organically bound Mn. The pro­ blem of ability of plant roots to take up m etal together with the ligand or w hether only the m etal enters the roots, is complicated.

According to H ill-Cottingham and L loyd -Jon es cited from D e K o c k

and C h e s h i r e [6] the roots of iron deficient apple-trees took up the

whole m olecule of Fe-E D T A , w hereas trees there w ere adequately supplied w ith Fe took up iron separately from chelating agent.

The study of S u e o A s о and I s a о S a k a i [1] on the uptake of humic acid by crop plants showed that the organic m etal com plexes in colloidal from could be easily absorbed by the roots of m ullberry trees. H o d g s o n [9] considered that the beneficial effect of com plexed metals in plant nutrition is connected not only with the uptake of the m etal together with the complexing agent but also w ith the increase of the mass flow of this m etal into plant roots.

In the present trial the form of the Cu had no significant influence on Cu uptake. Although this suggests th at the various form s of Cu are equally effective, it could be that the experim ental conditions w ere not adequate to dem onstrate an y differences that m ay exist. The role of natural m etal-organic C u-com plexes in plant n utrition th erefore needs fu rth er investigation.

(5)

UPTAK E OF ZINC M A T E R IA L S AND M ET H O D S

The experim ent was carried out in a greenhouse from 24th of Ju ly to 10th of November, 1970.

The n u trient culture technique and the variety of tom ato plant w ere the sam e as in the previous trial w ith copper.

The trial comprised five treatm ents as follows:

No. 1 Zn — in Zn-aerobic solution a fter dialysis,

No. 2 Zn — in Zn-aerobic solution not dialysed,

No. 3 Zn — in Zn-anaerobic solution, No. 4 Zn — in ionic form as Z n S 0 4, No. 5 Zn — free controls.

The concentration of zinc in the nutrien t solution w as 64 \ig per litre :

for all treatm en ts:

The plants w ere harvested when the m ajority of the fruit w ere ripe. The plants w ere divided into: fruits, leaves, stem s and roots and the zinc content of each was determined by atom ic absorption.

RESULTS

The m ost significant differences in the dry w eights of the fruit w ere betw een Zn-aerobic solutions and all the other treatm ents (Table 3).

T a b l e 3 The y ie ld o f the dry m atter o f the v ario u s p a rt

o f tomato p la n t; mean o f 5 p la n ts in g Treatment P a st o f p la n t 1 2 3 4 5 F r u its 9 .5 2 1 0 .4 0 4 .3 0 6 .3 4 6.30 Leaves 4 .6 0 5 .2 0 4 .4 0 5 .4 0 3 .8 0 Stems 6 .2 0 6 .0 0 5 .0 0 5 .2 0 5 .0 0 Roots 2 .0 0 2 .2 0 1 .6 0 2 .0 0 2 .2 0 T o ta l 2 2 .3 2 2 3 .8 0 1 5 .3 0 1 8 .9 4 1 7 .3 0

The aerobic solutions gave bigger fruit than any of th e other tre a t­ m ents (Fig. 2).

The yields of fruit and root d ry m atter with the Zn-anaerobic solu­ tion w ere slightly sm aller than w ith the control.

A lthough the total zinc contents of th e fruit, in ppm w ere not affected by th e form in which Zn was applied, m ore zinc appeared in the leaves

(6)

T a b l e 4 The conten t o f zine in th e v ariou s p a rt o f tomato

p lan t in ppm Treatment P art o f p lan t 1 2 3 4 5 F r u its 2 8 . 7 2 7.0 29.2 27.0 1 4 . 7 Leaves 30 .0 30.0 2 9 . 5 25.0 22.0 Stems 3 2 . 7 3 4 . 5 50.8 3 7 . 5 21.0 Roots 4 6 . 0 70 .8 6 4 . 8 4 6 . 0 1 9 . 5 T a b l e 5 Uptake o f zinc per p la n t: mean o f 5 p la n ts

in/ug Tre atme nt P art o f p lan t 1 2 3 4 5 F r u its 233 282 123 171 92 Leaves 138 156 109 135 85 Stems 202 207 234 195 105 Roots 92 15 4 102 92 42 T o ta l I 665 7 9 9 568 593 322

Fig. 2. Tomato plants at the fruiting stage (a day before harvest)

1 — Z n - a e r o b ic s o lu tio n a f t e r d ia ly s is , 2 — Z n - a e r o b ic s o lu tio n w ith o u t d ia ly s is , 3 — Z n - a e r o - b ic s o lu tio n , 4 — Zn-^in io n ic fo r m s a s Z n S 0 4, 5 — c o n tr o l, n o z in c

(7)

How ever, when expressed as th e Zn content per plant, th ere w ere greater significant differences betw een the uptakes from the aerobic solutions com pared with th e anaerobic and inorganic series {Table 5).

The concentrations of zinc in the fru it from the all treatm en ts with zinc w ere v e ry sim ilar, so th at the g reater Zn content per plant reflects the greater w eight of fruit obtained w ith the aerobic solutions.

In contrast to A1 1 o w a y ’s suggestion [2] the application of Zn in

organically bound form s does not affect the concentration of zinc in tom ato fruit.

These results are sim ilar to those obtained by V i e t s [15], who showed th at use of zinc fertilizes substantially increased the yiels of field beans, w ith no change in. the zinc content of seeds.

The g reater effectiveness in Zn-aerobic solutions on the yield of tom ato fruit m ay be partly explained by the great activity of com plexing

agents in colloidal form s [7, 8]. According to Bloomfield and K elso’s

present opinion the m etals hold by the organic colloids of the aerobic e xtra cts a re alm ost entirely in readily exchangeable forms (personnal communication).

In contrast to these results, in previous trials with sim ilar copper solutions, the form in which the copper w as applied had no significant effect on the uptake of Cu by tom ato plants at the flowering stage.

Because the differences betw een the various form s of zinc did not appear before the ripening of the fruit, it is probable that the other factors m ay be responsible for the increased yields of fruit, especially in view of long vegetation tim e. This possibility needs fu rth er investiga­ tions.

The author thanks Dr C. Bloomfield and Mr. W. I. Kelso, Rothamsted E x p eri­ mental Station, England for the aerobic and anaerobic Cu and Zn-solutions and for their valuable comments.

Mr. P. Tarlowski is thanked for his analytical assistance.

REFEREN CES

[1] A s о S., S a к a i I. : Studies on the physiological effects of humic acid (part I). Uptake of humic acid by crop plants and its physiological effects. Soil. Sei. and Plant Nutr. vol. 9, No. 3, pp. 1 to 7, 1963.

[2] A 11 o w a у W. H. : Agronomic controls over the environmental cycling of trace elements. Adv. in Agronomy, vol. 20, pp. 235 to 274, 1968.

[3] B l o o m f i e l d C.: Mobilisation and fixation of iron and trace elements by aerobically decomposing plant matter. Chem. and Ind., pp. 1633 to 1634, 1969. [4] B l o o m f i e l d C., K e l s o W. I., P i o t r o w s k a M.: The mobilization of trace elements by aerobically decomposing plant m aterial under simulated soil conditions. Chem. and Ind., pp. 59 to 61, 1971.

(8)

[5] B r o w n C. J. : Agricultural use of synthetic metal chelates. Soil Sei. Soc. Am. Proc., vol. 33, pp. 59 to 61, 1969.

[6] D e K o c k P. C., C h e s h i r e M. V.: The relationship between trace elements in soils and plants. Offprint from the Welsh Soil Discussion Group. Report No. 9, pp. 98 to 108, 1968.

[7] G e e r i n g H. R., H o d g s o n J. F .: M icronutrient cation complexes in soil solution. III. Characterisation of soil solution ligands and their complexes with Zn2+ and Cu2+. Soil Sei. Soc. Am. Proc., vol. 33, pp. 54 to 59, 1969. [8] H e w i 1 1 E. J. : Sand and w ater culture methods used in the study of plant

nutrition. Second edition, Comm. Agric. Bureaux, England 1966.

[9] H o d g s o n J. F .: Contribution of metal organic complexing agents to the transport of metal to roots. Soil Sei. Soc. Am. Proc., vol. 33, pp. 68 to 75, 1969. [10] N g S i e w К е е and B l o o m f i e l d C.: The solution of some minor element oxides by decomposing plant materials. Geochim. Cosmochim. Acta, vol. 24, pp. 206 to 225, 1961.

[11] N g S i e w К е е and B l o o m f i e l d C.: The effect of flooding and aeration on the mobility of certain trace elements in soils. Plant and Soil, XV I, No. 1, pp. 108 to 135, 1962.

[12] S c h n i t z e r M.: Reactions between fulvic acid, a soil humic compound and inorganic soil constituents. Soil Sei. Soc. Am. Proc. vol. 33, pp. 75 to 81, 1969. [13] W i l s o n A., W a t k i n s o n J. H.: Availability of nutrients to plants. Trans.

9th Int. Cong. Soil Sei., vol. 2, pp. 805 to 812, 1968.

[14] Y o u n t s S. E., P a t t e r s o n R. P .: Copper-time interactions in field expe­ riments with wheat. Yield and chemical composition data. Agron. J., vol. 54, pp. 229 to 233, 1964.

[15] V i e t s F. G.: Zinc Metabolism (A. S. Prasad, ed.), pp. 90 to 128, Thomas Springfield, Illinois 1966. м . П И О Т Р О В С К А УСВОЕНИЕ ПОМИДОРАМИ МЕДИ И ЦИНКА ИЗ М ЕТАЛЛО-ОРГАНИЧЕСКИХ КОМПЛЕКСОВ ОБРАЗУЮ Щ ИХСЯ ВО ВРЕМ Я АЭРОБНОГО И АНАЭРОБНОГО БРОЖ ЕНИЯ ЛЮЦЕРНЫ Л а б о р а т о р и я м и к р о э л е м е н т о в И н с т и т у т а а г р о т е х н и к и у д о б р е н и я и п о ч в о в е д е н и я в П у л а в а х Р е з ю м е Проводились вегетационные опыты с применением различных форм меди и цинка источника этих элементов для помидоров выращиваемых в водных культурах. Медь и цинк в форме естественных металло-органических комплексов (по­ лученных по методу ферментации растительного материала с окисями данных элементов), а также медь и цинк в йонной форме подавали растениям на про­ тяжении вегетационного периода до фазы полного цветения. Концентрация меди и цинка в питательном растворе была одинакова во всех вариантах и составляла для Си 65 мг н для Zn 64 мг на литр смеси. Полученные результаты показывают, что формы меди не повлияли отчет­ ливо на дифференциацию содержания этого элемента в надземной части по­ мидоров. Небольшие различия в содержании и усвоении меди растениями раз­ решают полагать, что испытанные формы меди имели одинаковую эффектив­

(9)

ность. Каж ется вероятным, что способ воздействия отдельных форм меди мо­ жет быть различным в зависимости от условий роста растений. В опыте с цинком уборка растений была проведена в период спелости большинства плодов. Содержание цинка определялось отдельно в корнях, стеб­ лях, листьях и плодах помидоров. Установлено, что применяемые формы цинка сильнее повлияли на диффе­ ренциацию содержания этого элемента в корнях и листьях, чем в плодах. Уро­ жай сухой массы плодов был отчетливо выше в вариантах с внесением ком­ плексной формы цинка получаемой из раствора после аэробного брожения. Предполагается однако, что повышение урожая сухой массы плодов может быть связано с влиянием других факторов. Такая возможность нуждается в дальнейшем изучении. М . P I O T R O W S K A

POBIERANIE PRZEZ POMIDORY MIEDZI I CYNKU Z KOMPLEKSÓW METALOORGANICZNYCH POW STAŁYCH PODCZAS FERM ENTACJI

TLENO W EJ I BEZTLEN O W EJ LUCERNY

L a b o r a t o r iu m M ik r o e le m e n tó w I n s t y t u t u U p r a w y , N a w o ż e n ia i G le b o z n a w s tw a w P u ła w a c h

S t r e s z c z e n i e

Przeprowadzono doświadczenia wazonowe z zastosowaniem różnych form mie­ dzi i cynku jako źródła tych pierwiastków dla pomidorów uprawianych w kultu­ rach wodnych.

Miedź i cynk w formie naturalnych kompleksów metaloorganicznych (otrzy­ manych metodą fermentacji materiału roślinnego z tlenkiem miedzi) oraz miedź i cynk w formie jonowej podawano roślinom przez cały okres wegetacji do mo­ mentu ich pełnego kwitnienia. Stężenie miedzi i cynku w pożywce było jednakowe dla wszystkich kombinacji i wynosiło dla Cu 65 ng, dla Zn — 64 ng na litr po­ żywki.

Uzyskane wyniki wskazują, że zastosowane w doświadczeniu formy miedzi nie wpłynęły wyraźnie na zróżnicowanie zawartości tego pierwiastka w częściach nadziemnych pomidora.

Nieznaczne różnice w zawartości i pobieraniu miedzi przez rośliny mogą suge­ rować, że badane formy miedzi miały taką samą efektywność.

Wydaje się także prawdopodobne, że sposób działania poszczególnych form miedzi może się różnić zależnie do warunków wzrostu rośliny.

Doświadczenie z cynkiem przeprowadzano dłużej, aż do okresu dojrzewania większości owoców. Zawartość cynku oznaczono oddzielnie w korzeniach, łody­ gach, liściach i owocach pomidorów. Stwierdzono, że zastosowane formy cynku wpłynęły bardziej na zróżnicowanie zawartości tego pierwiastka w korzeniach i w liściach niż w owocach. Plon suchej masy owoców był natomiast wyraźnie wyższy w kombinacjach z kompleksową formą cynku z roztworu po fermentacji tlenowej. Przypuszcza się jednak, że zwyżka plonu suchej masy owoców mogła być także związana z wpływem innych czynników. Możliwość ta wymaga dalszych badań.

A d r e s W p ł y n ę ł o d o P T G w g r u d n i u 1972

D r M a r i a P i o t r o w s k a

L a b o r a t o r i u m M i k r o e l e m e n t ó w I U N G P u ł a w y , O s a d a P a ł a c o w a

(10)

Cytaty

Powiązane dokumenty

Despite very high total concentrations of copper in soils in the vicinity of Legnica Smelter, copper solubility in neutral or slightly acidic conditions

Badania przeprowadzone w 2012 roku wykazały, że 74% próbek glebowych pobranych na terenie byłej strefy ochronnej Huty oraz na jej obrzeżach posiada- ło pH<6,6 (62% odczyn

W początkowych latach istnienia Huty emisja pyłowa z tego zakładu była jednak bardzo duża, co spowodowało silną kumulację niektórych metali cięż-

or after coronation take the field at the head of an army to fight either east, west or both ways, when usually the first march is on Kittara, and the second on Usoga25

The occur- ring reactions are: oxidation of copper from the first stage and divalent copper is reduced [Bartosz 2013]... Due to the fact that the above reactions are

M oże być również uczona i ćwiczona oddzielnie podczas zajęć z techniki pracy umysłowej i technik studiow ania lub m etodologii pracy naukowej czy naukoznaw stw

Z wymienionych przez Plesnara cech screwball comedies obecna w filmie Coenów jest również kwestia fałszywej tożsamości bohaterów, w tym przy- padku Amy Archer, która

Do najważniejszych funkcji pełnionych przez Marię Leszczyk należały: wiceprze- wodnicząca Zarządu Powiatowego TPD w Jeleniej Górze (1950–1951); członek zarzą- du