• Nie Znaleziono Wyników

Mikroflora ryzosfery pszenicy i jej wpływ na odżywianie roślin i niektóre grzyby patogeniczne. Część I. Zmiany w populacji bakterii ryzosfery wraz z rozwojem pszenicy ozimej

N/A
N/A
Protected

Academic year: 2021

Share "Mikroflora ryzosfery pszenicy i jej wpływ na odżywianie roślin i niektóre grzyby patogeniczne. Część I. Zmiany w populacji bakterii ryzosfery wraz z rozwojem pszenicy ozimej"

Copied!
10
0
0

Pełen tekst

(1)

ROCZNIKI GLEBOZNAWCZE T. XLIV NR 3/4, WARSZAWA 1993:45-53 J Ó Z E F K O B U S , JA N C Z A B A N , A N N A G A J D A , D A N U T A M A S IA K , A N D R Z E J K S IĘ Ż N I A K

W H E A T R H IZ O S P H E R E M IC R O F L O R A A N D ITS E F F E C T ON

P L A N T N U T R IT IO N A N D S O M E P A T H O G E N IC FU N G I.

P A R T I. C H A N G E S O F R H IZ O B A C T E R IA L P O P U L A T IO N S

W IT H D E V E L O P M E N T OF W IN T E R W HEA T*

D e p a rtm e n t A g ric u ltu ra l M ic ro b io lo g y . In s tiu te o f S o il S c ie n c e a n d P la n t C u ltiv a tio n a t P u ła w y

IN T R O D U C T IO N

Several studies on bacterial population within the root environment of plants

have shown that the fluorescent Pseudom onas constitute a major group of

rhizobacteria [7,12,18,30]. Certain isolates of these fluorescent Pseudom onas,

mainly P . fluorescens and P. putida strains, can stimulate the growth o f several

crops and thereby significantly increase their yield. These bacteria were termed

plant growth promoting rhizobacteria (PGPR) by Kloepper et al.[13].

In some cases, the biological activities of inoculants were screening for their

bio-control pontency. Some of the isolated rhizosphere different genera have

been examined for the presence of antifungal secondary metabolites [1,4-

6,10,16,23-26].

The results obtained by different authors demonstrate that there is still a

considerable need for extensive inventory studies on rhizobacterial populations

to understand changes in their composition under different environmental

factors [14,15,17,26-29].

In this connection the aim of present studies is to recognize: 1) variations

o f bacterial populations during the growing seasons on winter wheat and 2)

* T h is study w as supported by the grant No M R/USDA-89-3 for the D epartm ent of Agricultural M icrobiology o f Institute of Soil Science and Plant Cultivation in Puławy. We thank Prof. W . M yśków for helpful suggestions in the interpretations o f the presented results.

(2)

46

J. Kobus, J. Czaban

,

A. Gajda, D. Ma siak, A. Księżni ak

composition of bacterial populations in soil adhering to roots, on root surface

and in the root inside.

S O IL A N D P L A N T M A T E R IA L

Winter wheat Tviticum aestivum L. cv. Gama, sown on 10 September 1989,

was grown on the Experimental Station Field of the Institute of Soil Science

and Plant Cultivation in Puławy. The soil was loess, content of С - about 0.8%,

N - 0.082%, pH (H20 ) - 7.2

S A M P L IN G

Samples of soil with growing wheat plants were taken on: October 10,1989

- at the 2 leaves stage, April 27, 1990 at the 4 leaves stage, June 5, 1990 at the

flowering stage, and July 20, 1990 at the full ripeness stage.

P R E P A R A T IO N O F P L A N T R O O T S W IT H S O IL F O R A N A L Y S E S

The roots of wheat were gently removed from soil, and then excess of soil,

were shaken off, leaving only the thin layer of soil on the root surface.

Ten grams of wet roots with adherent soil were transferred to the bottle

containing 100 ml o f sterile water and shaken for 30 minutes. The soil

suspension obtained by shaking was the 1st fraction of the rhizosphere.

Another part of wheat roots, removed from soil at the same manner as above,

was washed with tap water.The washed roots were rinsed 10 times with sterile

water by hand shaking. The roots samples without soil residues were transferred

to the bottles containing 100 ml of sterile water and 30 g of coarse sand. This

mixture was shaken for 30 minutes. The suspension of the external parts of the

wheat roots, removed during shaking with sand-water mixture was the 2nd

fraction of what rhizosphere (rhizoplane).

After preparation of 2nd fraction, the wheat roots were rinsed with sterile distilled

water several times, then divided into two parts. One of the parts was sterilized with

70%; ethanol and next with 3% H

2

O

2

, both for 15 minutes. The 2nd part of the wheat

roots was non sterile. Both parts were homogenized in glass Potter homogenizer,

containing 25 cm3 of sterile distilled water. Homogenate of the unsterilized roots

was the 3rd fraction (total endorhizosphere and possibly some not determined

residues of rhizoplane). The homogenate of the sterilized roots was the 4th wheat

rhizosphere fraction (endorhizosphere or some part of it, because we do not know if

ethanol or H

2

O

2

penetrate root cells, and sterilize to some extent the root inside). The

4th rhizosphere fraction was a part of the 3rd fraction.

M E D I A

“Total num bers” of bacteria were determined on King, Ward and Raney

medium [11], and total number of non-symbiotic nitrogen fixing bacteria on

Burk's medium as described by Brotonegore [3].

(3)

Wheat rliizospliere microflora

.

47

Identification o f bacteria are described in “Laboratory Methods in M icro­

biology” [8]. The isolated bacteria were identified according to Bergey s

Manual of Systematic Bacteriology [2].

R E S U L T S A N D D ISC U SSIO N

B a c te ria l C o m m u n itie s O f W in te r W h e a t R h iz o s p h e re

Bacterial communities associated with winter roots system (Triticum aesti-

vum L. cv. Gama) were evaluated 4 times from early stage of plant growth to

full ripeness under field conditions. The distribution of bacterial populations

in the examined rhizosphere fractions: in soil adhering to roots, on the roots

surface (rhizoplane) and in the roots inside (endorhizosphere) were studied as

well (Tables 1-3).

No marked differences were pronounced in the numbers of bacteria isolated

with the use of K ing ’s medium at the following periods: the 2nd leaf (October

10,1989), the 4th leaf (April 27,1990) and flowering (June 5,1990). However

at full ripeness period (July 20, 1990) distinct increase of numbers of these

bacteria, especially in the roots inside (endorhizosphere), was observed (Tables

1, 2). This phenomenon was certainly caused by decrease of resistance o f the

dying roots against microorganisms penetrations. The augmentation of rhizo-

bacterial populations with the progressing of plant growth was also reported

by Iswandi et al. [9]. On the other hand Liljeroth and Baath [19] have noticed

in the research on barley rhizosphere the decrease of bacteria number in the

older plants.

Tabela 1

N um bers of bacteria in w inter wheat rhizosphere fractions on K ing's medium (x 1()6 g '1) per g d.m. of soil ( 1 ) or roots (2-4)

Fractions

Whe at growth stages

2nd leaf 4th leaf flowering full ripeness 1. Soil adherent to roots 2529.9a 2187.4 2662.9 3103.6 2. Roots surface (rhizoplane) 806.9b 1345.5 1336.5 1269.8 3. E ndorhizosphere + rhizoplane 9690 919.4 1088.0 2016.7

4. Endorhizosphere 3.05 2.93 2.36 262.1

Total roots fractions

2+3 1775.8 2264.9 2424.5 3286.5

Л T h e n u m b e r o f b a c te ria (c fu ) in g o f soil a d h e re n t to ro o ts (fra c tio n s 1). T h e n u m b e r o f b a c te ria (c fu ) in g o f ro o ts (fra c tio n s 2, 3 a n d 4).

(4)

48

J. Kobus, J. Czaban, A. Gajda, D. Ma siak, A. Księżniak

The studied bacterial populations varied singificantly as influenced by the

kind of rhizosphere fraction. The numbers of these bacteria prevauled in the

soil adhering to the roots (81-96%) with the decreasing value at the older plants

(Table 2). This phenomenon might be explained by gradual decrease of ratio

of rhizosphere soil: roots in the examined samples. The populations of bacteria

found in the endorhizosphere (4th fraction) were only the minute part of the

rhizobacterial numbers (0.007 - 1.5%, Table 2). It is worth to mention that the

numbers of determined bacteria, colonizing the roots surface and roots inside

during plant growth, calculated per 1 g of roots d. m . , were in the same range

as the numbers of these bacteria in the rhizosphere soil (from about 2 x 109 to

3 x l 0 9, Table 1).

Tabela 2

Distribution of bacteria in wheat rhizosphere

l 'raclions

2nd leaf :stage 4th leaf stage Flowering stage Full ripeness stage

x 106 % x 106 % x 106 % x 106 % 1 16545.5 95.9 14799.95 94.S 14060.1 86.6 16799.8 81.0 2 321.1 1.9 487.1 3.1 1202.85 7.4 1523.8 7.3 3 3S5.7 2.2 332.8 2.1 979.2 6.0 2420.0 11.7 4 1.21 0.007 1.06 0.007 2.2 0.013 314.5 1.5 Total 17252.3 15619.85 16242.15 20743.6

T h e v a lu e s w e r e c a lc u la te d by m u ltip lic a tio n o f th e dry w e ig h t o f soil o r ro o ts ( i n g ) in w h o le 10 g o f fresh ro o ts + a d h e re n t so il s a m p le s by th e b a c te ria n u m b e rs (c fu ) in g soil (fra c tio n 1) o r ro o t ( fr a c tio n s 2 , 3 , 4 ).

Tabela 3

N um bers of bacteriai in winter wheat rhizosphere on B u rk 's N-fri•e medium (x 106 g"1 of soil or roots)

Fourth leaf stage Full ripeness stage

Fractions

numbers

in per cent of the total number of bacteria on the

K ing’s medium

in per cent of the total . number of bacteria on the numbers Kjng s medium 1 1167.6 53.4 2095.0 67.5 2 678.6 50.4 550.8 43.4 3 685.2 74.3 1714.2 85.0 4 2.35 80.3 63.3 25.5 E x p la n a tio n s as in T a b le 1.

(5)

Table 4

Qualitative composition o f bacterial populations in the exam ined fractions of wheat rhizosphere at different stages o f the plant growth, isolated w'ith the use of K ing’s medium (per cent)

2nd leaf stage 4th leaf stage Flowering stage Full ripeness stage

Genus or groups o f bacteria fractions

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

G ra m -n e g a tiv e b a c te ria :

Pseudom onas (producing fluoroscent pigments) 22.8 25.5 29.6 12.1 18.8 34.2 33.3 42.1 2.6 3.9 3.2 82.7 0 3.1 6.2 3.5

Pseudom onas - like (not producing fluoroscent

pigments) 3.5 9.5 1.85 0 7.25 5.1 6.9 1.7 2.6 10.7 6.4 1.3 4.9 3.1 4.2 3.5

A lcaligenes-like 7.0 2.0 1.85 0 1.5 0 1.2 0 2.6 2.9 6.4 0 13.1 4.1 18.7 12.3

E nvinia (about 2/3 E. carotovora, 1/3 E.

herbicoid) 19.3 17.6 27.8 69.8 0 0 0 0 0 0 0 0 14.8 2.0 0 3.5

J anthinobacterium 0 0 0 0 0 0 0 0 2.6 0 0 0 0 0 0 0

X anthom onas - like 1.75 5.9 7.4 3.0 0 1.2 2.3 0 5.3 8.7 7.1 5.3 3.3 7.1 2.1 7.0

Others - motile, colourless oxidase negative

bacteria 5.3 25.5 13.0 3.0 0 5.1 3.4 5.3 2.6 14.6 7.1 2.7 4.9 3.1 14.6 5.3

Klebsiella 1.75 2.0 1.85 0 0 0 0 0 0 0 0 0 0 0 0 0

F lexibacter - like 8.8 2.0 3.7 0 21.7 17.7 27.6 14.0 26.4 23.3 33.3 0 9.8 10.2 0 1.8

A cinetobacter - like 10.5 2.0 0 0 7.25 3.8 3.4 0 0 6.8 4.5 0 1.6 2.0 4.2 1.8

Others - non motile, colourless, oxidase positive 3.5 2.0 3.7 0 10.1 5.1 1.2 0 7.9 8.7 7.1 0 9.8 5.1 12.5 8.8 G ra m - po sitiv e b a c te ria : B acillus 1.75 2.0 0 3.0 1.5 2.5 0 12.3 7.9 1.9 8.3 8.0 4.9 9.2 0 5.3 M icrococcus 3.5 2.0 1.85 3.0 0 6.3 0 0 5.3 1.0 0.6 0 1.6 9.2 2.1 1.8

W

he

a

t

rh

iz

os

ph

er

e

m

ic

r

o

ß

o

r

a

...

(6)

2nd leaf stage 4th leaf stage Flowering stage Full ripeness stage

Genus or groups of bacteria fractions

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Coryneform group (various Gram-positive rods) 7.0 2.0 7.4 6.1 31.9 19.0 20.7 24.6 26.3 17.5 16.0 0 31.3 41.8 35.4 45.4

Actinomyces 3.5 0 0 0 0 0 0 0 7.9 0 0 0 0 0 0 0 Numbers of isolates 57 51 54 33 69 79 87 57 38 103 156 75 61 98 48 57

J.

K

o

b

u

s,

J.

C

za

b

a

n

,

A

.

G

aj

da

,

D

.

M

as

ia

k

,

A

.

K

s

żn

ia

k

(7)

Wheat rhizosphere microflora.

51

The size o f bacterial populations growing on the B urk’s N-free medium

changed also as influenced by the growth stage of winter wheat and the kind

o f rhizosphere fraction. In general, the number of examined bacteria showed

the similar pattern to the bacterial numbers on the K ing ’s medium (Table 3).

Similar results in the researches on rhizobacteria of grass plants were obtained

by Lawley et al. [17]. It is worth to notice that some o f the mentioned bacteria,

belonging to K lebsiella and Erwinia genera, were able to fix N

2

.

Bacterial genera o f winter wheat rhizosphere

Azotobacter cells were found only in the soil adhering to the roots of winter

wheat.

The majority of bacteria isolated from rhizosphere and roots surface on winter

wheat belonged to the Pseudomonas, Etwinia and Flexibacter genera (Table 4).

It is worth to refer to results of Kleeberger et al. [12] who have found the

predominance of pseudomonads in the rhizospheres of wheat. Etwinia was

numerous only at the

2

nd leaf stage, and fluorescent pseudomonads at the two first

stages in all studied rhizosphere fractions, moreover in the roots inside at the

flowering. Flexibacter was abundant at 4th leaf and flowering stages, except the

roots inside (4th fraction). Also Gram-positive rods - Coryneform group were

relative numerous. This group occurred in larger numbers starting from the 2nd

stage of plant growth. At full ripeness Coryneform bacteria reached the maximal

value, becoming the predominant group of the isolated bacteria in all rhizosphere

fractions. It should be emphasized that, in general, fluorescent pseudomonads and

Erwinia spp. were prevailed on the roots and in their inside, opposed to Coiyneform

bacteria which were the main group of rhizosphere soil. Other genera of bacteria

as: Xanthom onas, Alcaligenes, Klebsiellay Acinetobacter, Janthinobaclcrium,

Bacillus, M icrococcus and non-fluorescent pseudmonads occurred in the exami­

ned rhizosphere fractions in smaller quantités (Table 4).

The rhizobacteria isolated in younger growth stages of winter wheat indicated,

more often, Gram-negative reaction (e. g. Erwinia, Pseudomonas, Xanthomonas,

Flexibacter, Klebsiella), but at ripeness stage the contribution of Gram-positive

bacteria distinctly increased (e. g. Coryneform bacteria, Bacillus). Similar results

were obtained by Miller et al. [21, 22] and by Turner et al. [28].

It is worth to add, that at all exam ined wheat growth stages, the share number

o f motile bacteria gradually increased from 24-56% (average 42%) in the first

rhizosphere fraction (soil adherent to roots) to 67-94% (average 81%) in the

fourth fraction (endorhizosphere).

R E F E R E N C E S

[1] B a sh k a to v a N .A ., K u zn etsov V . D., 1 987: S tu d y in g o f so il S trep to m yces a s a n ta g o n is ts o f

p h y to p a th o g e n ic m ic ro fu n g i. In t.S y m p . In te rre la tio n s h ip s b e tw e e n m ic ro o rg a n is m s a n d p la n t in so il. J u n e 2 2 -2 7 , L ib lic e , C z e c h o slo v ia k a p. 112.

(8)

52

J. Kobus, J. Czaban, Л. Ga/Wa, Z). Ma siak, A. Księżni а к

2] B e rg e y s M a n u a l o f S y s te m a tic B a c te rio lo g y . B a ltim o re , W illia m s a n d W ilk in s . 1 9 8 4 -1 9 8 9 .

3]B ro to n eg o re S., 1974: N itro g e n fix a tio n a n d n itro g e n a z e a c tiv ity o f A zo to b a c te r chro o co ccu m .

II. V . W a g e n in g e n : 1-76.

4] C la rk e S .E., S tu a rt J., S a n d ers-L o ch r J., 1987: In d u c tio n o f s id e ro p h o r e a c tiv ity \n A n a b a e n a

sp p . a n d its m o d e ra tio n o f c o p p e r to x ic ity . A p p l. E n v iro n . M ic ro b io l. 53: 9 1 7 -9 2 2 .

5] D eb ette J., B lond eau R., 1980: P re se n c e d e P se u d o m o n a s m altophilia d a n s l a rh iz o s p h e r e d e

q u e lq u e s p la n ts c u ltiv é e s . C an. J. M ic ro b io l. 26: 4 6 0 -4 6 3 .

6] D ori S., S olei Z., K ash m an Y ., ß a ra sch I., 1990: C h a ra c te riz a tio n o f h y d r o x a m a le s id e r o p h o r c s

a n d s id e ro p h o r e m e d ia te d iron u p ta k e in G aeum annom yces g ra m in is v ar. tritici. P h y sio l. M o le c u la r P la n t P a th o l. 37 : 9 5 -1 0 6 .

7] E llio t J. M . , M arth re D. E., Send s D. C., 1987: I d e n tific a tio n a n d c h a r a c te riz a tio n o f

r h iz o s p h e r e - c o m p e te n t b a c te ria o f w h e a t. A p p l. E n v iro n . M ic ro b io l. 53: 2793-2799.

8] H arrigan W . F., M c C an ce M . E., 1 966: L a b o ra to ry m e th o d s in m ic ro b io lo g y . A c a d . P re ss ,

L o n d o n , N e w Y o rk : 1 0 0 -1 0 1 .

9] Isvvandi A ., B o ssier P., van den A h ccle J., V erstraete W ., 1987: R e la tio n b e tw e e n soi I m ic ro b ia l

a c tiv ity a n d th e e ffe c t o f se e d in o c u la tio n w ith th e rh iz o p s e u d o m o n a d stra in 7 N S K 2 o n p la n t g ro w th . B io l. F e rtil. S o ils 3: 1 4 7 -1 5 1 .

10] J a g e r G ., V e lv is H ., 1989: D y n a m ic s o f d a m a g e fro m R hizoctonia so la n i in p o ta to fie ld s. (In :)

N e th e r la n d s J. o f A g ric u ltu ra l S ei. 2 3 7 -2 4 6 .

11 ] K ing E. D . , W ard M . K., R aney D. E., 1954: T h e s im p le m e th o d s fo r th e d e te r m in a tio n o f

p y o c y a n in a n d flu o re s c in . J. L ab . M e d . 44 : 3 0 1 -3 0 4 .

12]K leeb erg er A ., C astorp h H., K lin gn iu llcr W . 1983: T h e r h iz o s p h e re m ic ro flo ra o f w h e a t an d

b a rle y w ith sp é c ia l re fe re n c e to G ra m -n e g a tiv e b a c te ria . A rc h . M ic ro b io l. 136: 306-311.

13] K lo cp p cr J. W ., S ch roth M .N., M illerT . P., 1980: E ffe c ts o f rh iz o s p h e re c o lo n iz a tio n by p la n t

g r o w th -p r o m o tin g r h iz o b a c te ria o n p o ta to p la n t d e v e lo p m e n t a n d y ie ld . P h y to p a th o lo g y 70: 1 0 7 8 -1 0 8 2 .

14]K lo cp p cr J. W ., M c Inory J. A., Bow en K .L., 1992: C o m p e ra tiv e id e n tific a tio n by fa tly a c id

a n a ly s is o f so il, r h iz o s p h e re , a n d g e o c a rp o s p h e re b a c te ria o f p e a n u t (A rachis h yp o g a e L .). P la n t a n d S o il 139: 85-90.

15] K u rek E., K obu s J . , 1990: K o rz y stn e i s z k o d liw e o d d z ia ły w a n ie m ik ro flo ry ry z o s fe ro w e j na

w z r o s t i ro z w ó j ro ślin . P o st. M ik ro b io l. 29: 1 0 3 -1 2 3

16] L a m b ert B., L eyns F., Van R ooycn L., G osclc F., Papon Y ., Sw in gs J . , 1987: R h iz o b a c te ria

o f m a iz e a n d th e ir a n tifu n g a l a c tiv itie s. A p p l. E n v iro n . M ic ro b io l. 53: 1 8 6 6 -1 9 7 1 .

17] Ł aw icy R .A ., C a m p bell R., N ew m an E. I. 1983: C o m p o s itio n o f th e b a c te ria l flo ra o f th e

r h iz o s p h e r e o f th re e g ra ss la n d p la n ts g ro w n s e p a ra te ly a n d in m ix tu re s. S oil B io l. B io c h e m . 15: 6 0 5 -6 0 7 .

18] L icvcn s K. M., Van R ijsb ergen R., L eyns R. F., L am bert B. J., T em in g P., S vin gs J., Joos P. 1 9 8 9 :D o m in a n t rh iz o s p h e re b a c te ria as a so u rc e fo r a n tifu n g a l a g e n ts . P c slic . S ei. 27 :

1 4 4 -1 5 9 .

19] I .iljeroth E., B aath E., 1988: B a c te ria a n d fungi o n ro o ts o f d iffe re n t b a rle y v a rie tie s (H ord eiim

vulgare L. ). B io l. F e rtil. S o ils 7: p 5 3 -5 7 .

2 0 ] L in n g a p p a Y ., L ock w ood J. L., 1962: C h itin m ed ia fo r s e le c tiv e is o la tio n o f a c tin o m y c c te s . P h y to p a th o lo g y 32 : 3 1 7 -3 2 3 .

2 1 ] M iller H. H anken G M Van V een ,]• A., 1989: V a ria tio n a n d c o m p o s itio n o f b a c te ria l p o p u la tio n s in th e r h iz o s p h e re s o f m a iz e , w h e a t an d g ra ss c u ltiv e rs. C a n . J. M ic ro b io l. 35 : 6 5 6 -6 6 0 .

2 2 ] M iller H . Li ^er ot h E., H anken G., Van V enn J - A ., 1990: F lu c tu a tio n in th e f lu o re s c e n t p s e u d o m o n a d a n d a c tin o m y c e te s p o p u la tio n s o f rh iz o s p h e re a n d r h iz o p la n e d u rin g th e g ro w th o f s p r in g w h e a t. C a n . J. M ic ro b io l. 36: 2 5 4 -2 5 8 .

2 3 ] N elson E. B., H arm an G . E., N asch G. T., 1988: E n h a n c e m e n t o f T richoderm a in d u c e d b io lo g ic a l c o n tro l o f P ythium se e d ro o t a n d p re e m e rg e n c e d a m p in g o f f o f p e a s. S o il B io l. B io c h e m . 20: 1 4 5 -1 5 0 .

2 4 ] O rd en tlich A ., E la d J ., C h et J . , 1988: T h e ro le o f ch'iùir<\se oi' S errât ia m a rcesc en s in b io c o n tro l o f S clero tiu m rolfsi. P h y to p a th o lo g y 7 8 :8 4 -8 8 .

(9)

Wheat rhizosphere micro flor a .

53

[25] S ch ip p ers В. (in p re ss ): P ro s p e c ts fo r m a n g e m e n t o f n atu ral s u p p r e s s iv e n e s s to c o n tro l soi I b o rn e

p a th o g e n e s .

[26] S iv sm a n i E., G n a n a m a n ich er S. S., 1988: B io lo g ic a l c o n tro l o f F usarium o xysp o ru m sp p .

cu b en se in b a n a n a by in o c u la tio n w ith P seu d o m o n a s flu o rescen s. P la n t a n d S oil 107: 3-9.

[27] T h o m p so n I. P., Y oung G . S., C o o k K. A ., L eth erb rid ge G., B u m s R. G ., 1992: S u rv iv a l o f

tw o e c o lo g ic a lly d is tin c t b a c te ria (F lavobacterium an d A rth ro b a cler) in u n p la n te d a n d r h iz o s ­ p h e r e so il: fie ld stu d ie s . S o il B io l. B io c h e m . 24: 1-14.

[28] T u r n e r S. M ., N ew m an E. I., C am p bell R., 1985: M ic ro b ia l p o p u la tio n o f ry e g ra s s ro o t

s u rfa c e s : I n flu e n c e o f n itro g e n a n d p h o sp h o ru s s u p p ly . Soil B io l. B io c h e m . 17: 15-22.

[29] V a n cu ra V., S ta n ek M., C atska V., 1985: A s s o c ia tiv e m ic ro o rg a n is m s o f th e ro o ts a n d

i n f lu e n c e o f p la n ts . T ra n s . X III C o n g re s s Int. S o c. Soil S e i., 13-20 A u g u s t, H a m b u rg , II: 6 3 2-653.

[30] V la ssa k K ., V an H olm L M D u ch ateau L., V an d erleyd en Л-, de M ot R., 1992: I so la tio n a n d

c h a r a c te r iz a tio n o f flu o re s c e n / P seu d o m o n a s a s so c ia te d w ith th e ro o ts o f r ic e an d b a n a n a g ro w n in S ri L a n k a . P la n t a n d S o il. 145: 51-63. J . K o b u s , J . C z a b a n , A . G a jd a , D . M a s ia k , A . K s ię ż n ia k M I K R O F L O R A R Y Z O S F E R Y P S Z E N I C Y I J E J W P Ł Y W N A O D Ż Y W I A N I E R O Ś L I N I N I E K T Ó R E G R Z Y B Y P A T O G E N I C Z N E . C Z . I Z M I A N Y W P O P U L A C J I B A K T E R I I W R Y Z O S F E R Z E P S Z E N I C Y O Z I M E J Z a k ła d M ik ro b io lo g ii R o ln ic z e j In sty tu t U p ra w y i N a w o ż e n ia G le b y w P u ła w a c h S T R E S Z C Z E N I E

C e le m p ra c y b y ło ilo ś c io w e i ja k o ś c io w e p o z n a n ie p o p u la c ji b ak terii w ry z o s f e r z e p s z e n ic y o z im e j w r ó ż n y c h fa z a c h je j ro z w o ju , w u p ra w ie p o lo w e j na g le b ie b ru n a tn e j w y tw o rz o n e j z le ssu . B a d a n o n a s tę p u ją c e f ra k c je ry z o s fe ry : 1) g le b ę p rz y le g a ją c ą d o k o rz e n i, 2) p o w ie rz c h n ię k o rz e n i ( ry z o p la n a ), 3 )h o m o g e n a t k o rz e n i n ie s te ry liz o w a n y c h (c a łk o w ita e n d o ry z o s fe ra + n ie z n a n a p o z o ­ s ta ło ś ć ry z o p la n y ), 4) h o m o g e n a t k o rz e n i ste ry liz o w a n y c h p o w ie rz c h n io w o (e n d o ry z o s fe ra lu b je j c z ę ś ć ). P o p u la c je b a d a n y c h b a k te rii z m ie n ia ły się w a n a liz o w a n y c h fa z a c h ro z w o ju r o ś lin ,o s ią g a ją c m a k s y m a ln e w a rto ś c i w fa z ie d o jrz a ło śc i. L ic z e b n o śc i b ak terii w 1 g s . m . g le b y lu b l g s . m . k o rz e n i b y ły z b liż o n e i w a h a ły się w g r a n ic a c h 2 -3 x 10°, je d n a k ż e z p o w o d u z n a c z n ie w ię k s z e g o u d z ia łu m a s y g le b y n iż m a s y k o rz e n i w b a d a n y c h p ró b k a c h r y z o s lc ry , 8 1 -9 6 % ty c h d r o b n o u s tr o jó w w y s tę p o w a ło w e fra k c ji 1. B a k te rie z n a le z io n e w e n d o r y z o s fe rz e (fra k c ja 4) s ta n o w iły ty lk o n ie w ie lk i u ła m e k ( 0 ,0 0 7 -1 ,5 % ) p o p u la c ji d ro b n o u s tro jó w ry z o s fe ry . W ię k s z o ś ć w y iz o lo w a n y c h s z c z e p ó w b a k te rii n a le ż a ła d o ro d z a jó w : P seudom onas, E rw inia i F lexib a cter o ra z d o g ru p y

C o tyn e fo rm . N a o g ó ł f lu o ry z u ją c e b a k te rie z ro d z a ju P seu d o m o n a s, ja k ró w n ie ż E rw in ia s p p ., p r z e w a ż a ły lic z e b n ie na k o rz e n ia c h i w ich w n ę trz u w m ło d sz y c h fa z a c h ro z w o ju p s z e n ic y , n a to m ia s t

F le xib a c te r s p p . b y ł s to s u n k o w o lic z n y w fa z ie c z w a rte g o liśc ia i k w itn ie n ia . B a k te rie z g ru p y

C o tyn e fo rm s ta n o w iły g łó w n ą p o p u la c ję w fa z ie d o jrz a ło śc i p sz e n ic y .

P r o f dr. J ó z e f K obus Praca wpłynęła do redakcji w listopadzie 1992 r. Zakład M ikrobiologii Rolniczej

1UNG w Puław ach

(10)

Cytaty

Powiązane dokumenty

Stosowanie przez Komisję Europejską postanowień Paktu Stabilności i Wzrostu spotkało się w latach następnych – zwłaszcza po 2000 r. W szczególności krytykowano

Największe plony otrzymano z pszenżyta ozimego uprawianego w drugim roku po mieszance koniczyny czerwonej z życicą wielokwiatową w kombinacji ze słomą oraz po facelii ze

Powyższe nauki Biskupa Nyssy skupiają się wokół rozważenia tajemnicy oddziaływania przebóstwionej natury ludzkiej Jezusa na całą pleromę, stąd ba- dacze myśli Grzegorza

O realizacji tej funkcji z wykorzystaniem prac Stanisława Dróżdża już wspo- minałam przy okazji wcześniej omawianych dzieł Continuum, 1973 (ilustracja 7) i Klepsydra (było,

W zadaniu c) pojawia się konieczność zaproponowania definicji nowego po- jęcia. Rosnący ciąg kolejnych liczb pierwszych jest oczywiście nieskończonym ciągiem liczb parami

Praca składa się z czterech rozdziałów oraz wstępu, zakończenia i bibliografii. Układ rozdziałów i podrozdziałów jest poprawny i nie budzi zastrzeżeń. Narracja au- torki

Artykuł bada obecną sytuację gospodarczą małych i średnich przedsiębiorstw (MŚP) w Rumunii oraz przy- datność technologii chmury obliczeniowej w procesie zrównoważonych

Trzecim możliwym rozwiązaniem są wspólne projekty obu stron w ob- szarze B+R realizowane na potrzeby praktyki gospodarczej w ramach gran- tów (strony są partnerami projektu);