• Nie Znaleziono Wyników

Estimation of Some Linear Functionals in the Family of Bounded Symmetric Univalent Function

N/A
N/A
Protected

Academic year: 2021

Share "Estimation of Some Linear Functionals in the Family of Bounded Symmetric Univalent Function"

Copied!
14
0
0

Pełen tekst

(1)

ANNALES UNI VERSITATIS MARIAE C U R I E ■ S К Ł O D 0 WS К A LUBLIN-POLONIA

VOL. XXXV, 17_______________________ SECTIO A_________________________ 1981

Instytut Matematyki Uniwersytet Łódzki

Krystyna ZYSKOWSKA

Estimation of Some Linear Functionals

in the Family of Bounded Symmetric Univalent Functions Oszacowanie pewnych funkcjonałów liniowych w rodzinie funkcji jednolistnych ograniczonych i symetrycznych

Оценки некоторых линейных функционалов

в смействе однолистных ограниченных и симметрических функций

Introduction. Denote by S the family of functions

F(z) = z + 2 (1)

n = 2

holomorphic and univalent in the disc E = j"z : I z I < 1^ , and by SF the subclass of the family 5 »nsining of functions with real coefficients.

Let Sr(M), M > 1, be the subclass of Sr composed of functions bounded by M, i.e.

those satysfying the condition

lF(z)l<A/,zG£.

It is known that, for each function F & Sr (Л/) ([7], [10]), X2yr<P2i m if M>\ , A<f<PĄ'M if M>i\,

where P2, m> P*. M are, respectively, the second and the fourth coefficients of Taylor expansion (1) of the Pick function Fv(z) given by the equation

PmW z PmW

z GF, (2)

[1-

M

(2)

and satysfying the condition Pm(o) = 0. It is also known ([5], [6]) that, for each N -

= 2,4,6,.., there exists a constant A/yy > 1 such that, for all M > A/yy and each function F G Sr (M), the estimation

^nf^Pn.m (3)

takes place, where P^ m is the jV-th coefficient of Taylor expansion (1) of the Pick function P^y(z) given by equation (2) and satysfying the condition Pm(°) ~ 0.

Note that an analogous result for any odd N is not valid since, as early as N = 3, in the family Sr (A/) the sharp estimation

X3y.-<1 + 2X1for e<Af< + oo (4)

holds, where X is the greater root of the equation X log X = - M~ 1; the Pick function does not realize the equality in estimation (4).

In the proof of result (3) one makes essential use of the fact [1 ] that, for each function

^nF Pn,°°> ‘n ~2, 3,4,

where Pn _ = « is the n-th coefficient in Taylor expansion (1) of the Koebe function

3fo(z) = /’.(z)= —, zG£. (5)

(1 -z)2

In the present paper we consider a real, linear and continuous functional on the family Sr(M) such that its maximum on Sr is attained for Koebe function (5). By making use of the differential functional equation for extremal functions it, will be proved that, when M is sufficiently large, the maximum of such a functional on the class Sr (Af) is attained for the Pick function Pm(z) given by equation (2) and satisfying the condition Pm(o) = 0. This result is a generalization of those obtained earlier in papers [3], [12],

[13], [5], [6] (see also [4]).

The fundamental theorem. Let K, K > 2, be any positive integer and X,„ n = 2, 3, ..,K, real numbers. Consider in the family Sr (M),M > 1, a real functional

4>(F)= 2 \nAnF (6)

n = 1 such that

max 4>(F) = 4>(Jfo) (7)

where is the Koebe function (5).

The functional is continuous, the family Sr (A/) compact in the topology of almost uniform convergence; consequently, for each M > 1, in the family Sr (M) there exists at

(3)

Estimation of Some Linear Functionals ... 151 least one function realizing the maximum of the functional <1> . In the sequel, each func­

tion Fo, for which max $ (F) = $(F0), will be shortly called extremal.

FeSr (M)

From condition (7) and the linearity of the functional <I> it follows that

$(* (z, f)) < <h(s (z, 1)) = <h(Jfo), f e < - 1,1) , (g) where

z

Making use of the form of the coefficients of the function s (z, z) as well as conditions (6) and (8), we obtain that the parameters X„, n - 2, 3, .., must satisfy tire inequalities:

S(---x„ <0, e'* = t -H'vl-Z5 ,-l <r<l,7T=l , (9) zi = 2 sin 0

S [(-1)" + 1 - 1]„A„ <0 , / =-1 . (10) n =1

We shall prove the following

Theorem. Let K, K > 2, be any positive integer, and \n, n-2,3,.., K, real numbers.

Let 4>(F) = 2 X„ Anp be a functional defined on the family K Sr (M), M > 1, such that n = 2

max 4>(F) = <I>(3CO) where Ko is Koebe function (5). Then there exists a constant Mo, F&Sr

Mo>\, such that for all M>MO,

max 4>(F) = 4>(FM) (11)

FeS^(M)

where Pm is the Pick function defined by equation (2) and satisfying the condition Pm (°)= 0- Itidtemly function realizing equality (11). j

Proof. It is known [2] that each function w = /(z) = — F(z), where Fis an extremal M

function in the family Sr 1, satisfies the differential-functional equation:

( —)2 A (w) =JT(z), 0 < | z| < 1, (12) w

where

(4)

A(W’) =

j(2) aiF

X2 +

A3Fj(2) X3 +

a

(2 >

akf 1 v

+ —— (w + —) +

M- 2

Xs +

H>) a

*F

M2 X4 + ... +

j(3)

akf - M‘

(tvJ + -^)3 +...+

W2

K -i, F

~^~XK-' +

j(X-D

K, F \K (wK-2

akfj(K) y-7 )+ T~Fk (w

* " 2 MK tv

M M M w

K - 1

MK - 2 w K - 1

JT(z) = (>42f X2+2?43xX3+3/14^X4+ ... + (K-1)AFF Xx)+ (X2 +2A2F X3 +

+ 3/13F X4 + ... + (K-l)AK_itf

*

k

)(

z + 1/z) +(X3 +2A2FX4 + (13) + 3 A3f X5 + ... + (K-2)AK _ 2, f^k)(z2 + l/zI) + - + (^JC-t +

+ 2A2F\K)(zK~2 + HzK~2) + \K(zK~i + l/zK~1)- ,

& =

2 min

o < x < •*

a(2) aiF

M ■ X2 + A3Fj(2)

M

X3 +...+

AKFA A(3)

asF

M2 x3 + j(3)

m

2

X4 + ... +

AKFx(3)

~Af ) cos 2 x + ... +

j(X-l) AK - l.F K-l

M XF) cos x +

M *K-l +

A^K~^ A W

K F ^KF

+ —— XK)cos(K-2)x + —-—— \K cos(£-l)x ,

MK"2 MK~'

Fm(z) = £ Aft* zn, m = 2,3,.., n = m, m + l,...

n =m

The functions JH>(w) and N (z) take non-negative real values on the circles I wl= 1 and 1 zl = 1, respectively. Each of these functions has on the respective circle at least one zero of even multiplicity. Let us still notice that if JA.(wo) = 0, then JAi(wo) = 0, JHj(1/w0) =

= 0,J11(1/m'o) = 0, and ifj)t(zo) = 0, then alsov^(z^) = 0, J?(l/z0) = 0 and J^(l/zo) = 0.

From condition (7) it follows that, for any e >0, there exists a constant M' > 1 such that, for all M >M ' and each z e A ,

l/-1(JKz)-^(z))l<« (14)

(5)

Estimation of Some Linear Functionals ... 153 where A is an arbitrary compact set containing in its inside all zeros of the function (z), while tf(z) is given by formula (13) and Jf7o (z) is defined as follows:

JTo (z) = [ 2 X2 + 2 • 3 X3 +3-4X4 +... + (K-1)KXA- ] + Xa(z + l/z) +

+ X3 [ 22 (z + 1/z) + (z2 + 1/z2)] + ... + , [(K — 2)2 (z + 1/z) + (X-3)2 (z2 + (15) + 1/z2 ) + ... + 22 (z* ~ 3 + l/zK ~ 3) + (z* “2 + l/zK"2)] + Xjf [(X- l)2 (z + + 1/z) + (K - 2)’ (z2 + 1/z2) + ... + 22 (zK ~ 2 + 1/z* “ 2) + (zK ~ 1 + l/zK ~ *)].

We shall determine the zeros of the function iffo (z) on the circle I z I = 1. Without loss of generality, let us assume that K is even (in the case where K is odd, the proof runs analogously). Since

2 (N-m + l)2 z~m + l=l/zN 2 (N - m + I)2 zN ~ m + 1 =

m = 2 m = 2

= l/zN NiX n2zn = l/zN [((* 2 * z")' z)' z] = l/zN [(()' z)' z] =

= -J-, [(TV-l)2 z2 -(2JV2 -2JV-l)z+JV2 -z~N + 2-z~y + 1J,

therefore, proceeding in an analogous way with all the addends of JTo (z), after some transformations we get:

JK(Z)= “y Lo(z) (16)

(z -1)2

where

Lo (z) = X, [(z + 1/z) - 2] + X3 [(z2 + 1/z2 ) - 2] + X4 [fz3 + 1/z3) + (z + 1/z) - 4] +

+ XS [(z4 +l/z4) + (z2 + l/z2)-4] + ... +XK_, [(zK-J + l/z*_2) + (17) + (z* “ 4 + \/zK " 4) + ... + (z2 + 1/z2) -(X-2)] + \K Kz* “ * + I/** " *) +

+ (z* “ + 1/z* ~ 3) + ... + (z + 1/z)-X ] •

(6)

Adopting in (17) z = e'*, 0 <0< n, after transformations and making use of inequalities (9) and (10), we obtain that the only zero of the function Lo (z) of the circle I z I = 1 is the point z = 1 which, in view of (15), is not a zero of (z).

So, finally, from formula (16) it follows that the function (z) has on the ciicle Iz 1= 1 one double zero z = - 1 and K - 2 zeros both inside and outside this circle.

Let us surround all zeros of the function JTO (z) with sufficiently small disjoint disc.

From the Hurwitz theorem as well as condition (14) we deduce that there exists an M" >

> M' such that, for all M > M", zeros of the function (z) given by formula (13) lie, respectively, in chosen neighbourhoods of zeros of the function o (z), with that in each of these neighbourhoods the number of zeros of both those functions, considering miltiplicities, is the same.

ft is known [2] that the function Jt1 (z) has on the circle lzl= 1 at least one zero of even multiplicity. Let z =# - 1, I zl = 1, be one of these zeros. Then, for M >M", it lies in the vicinity of the double zero z = - 1 of the function J^o (z). Since (z) is a non- -negative faction on the circle I z 1 = 1, the multiplicity of such a zero is at least 2;

besides, in the same neighbourhood there must lie a zero z of multiplicity at least 2, which contradicts the fact that the function J}“ (z) must have exactly two zeros there consider­

ing mutiplicities. Consequently, z = - 1 is the only zero of the function JY“1 (z) on the circle I zI= 1.

So, from the form of it results that, for 4/ >M", this function can be represented as follows:

JV(z)=-^±^-£(z) (18)

zK_1

where L(z) is some polynomial- of degree 2K - 4, and L(z) =# 0 for I zl = 1. From the properties of the function JV (z), given before, we know that if £(zo) = 0, then also

£(fo) = 0,£(l/zo) = 0and£(l/2o) = 0.

From equation (12) we infer that the images iv = /(z) of zeros z, lzl< 1, of the function JT(z) are zeros of the function (w) since/'(z) ¥=0, whereas from the very form of the function JX, (w) it follows that also the points w, l/w, l/w are its zeros.

Moreover, it is well known [2] that the function <JXj(w) has on the circle I wl = 1 at least one double zero w0. From the above properties of the function tf't(w) we deduce that, for M >M",

JHj(w) = (W-Wo)2 A£(w) wK - 1

where wo = - 1 or wo = 1, and L(w) is some polynomial of degree 2K - 4, and £(w) =# 0 for I w I = 1.

We have thus demonstrated that, for M > M", each function w =f(z) = l/MF(z), where F is an extremal function, satisfies the equation (12) where cAl (w) and JV'(z) are given by formulae (18) and (19), respectively.

Using now the Royden theorem |8], the theory of f-structures [9] as well as the fact

(7)

Estimation of Some Linear Functionals ... 155 that, for the classes S# (M), the image f(E) of the disc E under the mapping w = /(z) =

= 1/Af F(z) is symmetrical with respect to the real axis, one proves that, for M > M", each function w = /(z) = l/M F(z), where F is an extremal function, maps the disc I z I < 1 onto the disc I w I < 1 lacking a segment on the real axis with a) one end at the point wo = - 1 and the other at some point of the negative real half-axis between - 1 and 0 or b) one end at the point wo = 1 and the other at some point of the positive half-axis between 0 and 1. Consequently, from the property of the Pick function Pm (e.g. [6]) and from the Riemann theorem it follows that the only such function is in case a) the function PM(z) = 1/Af Pm (z), wliile in case b) the function - pM ( - z) = - 1/M PM (- z) =

= z+ 2 (- 1)” _ 1 Pn m2" where Pm is a Pick function.

n = 2

One knows (e.g. [6]) that lim Pn m =n> » = 2, 3,... . From this and inequality (10) it follows that there exists anMo >M" such that, for all M>MO, the inequality

2 \,Pn,M> 2 (-l)n + 1X„P„,M

n = 2 Z1 = 2

is satisfied. So, finally, the only extremal function in the family Sy?(Af) for M > Mo is the Pick function Pm given by equation (2) and satisfying the condition Pm(°) = 0.

Remark. Proceeding in the way similar to that given above, one can prove that if the functional $ of the form (6) is such that

max (F) = 4>(3fo), jf0(z) = -JC0 ( - z) , FeS/i

where JC0 is Koebe function (5), then there exists an Mo > 1 such that for all M>MO, max 4>(F)=4>(PAf), PA/(z) = -PAf(-z) ,

KeS«(M)

where Pm is the Pick function defined by equation (2) and satisfying the condition

^Af(o) = 0.

In virtue of the Toeplitz theorem on the general form of a linear functional ([11], p. 36), the estimation of the functional (1> (F)- 2 A„p remains an open problem;

n = a

however, the method applied in this paper allows one to consider functionals depending on a finite number of coefficients (see [2]).

(8)

REFERENCES

[ 1 ) Dieudonné.J., Sur les fonctions univalente^Compt. rend. Acad. Sei. 192 (1931), 1148-1150.

(2) Dziubiński,I., L'Equation des fonctions extremales dans la famille des fonctions univalentes symétriques et bornées, Łódzkie Towarzystwo Naukowe, Sec. Ill, Nr 65,1960.

(3) Jakubowski/. J., Maximum funkcjonału At +aAt w rodzinie funkcji jednolistnych o współ­

czynnikach rzeczywistych, Zeszyty naukowe UŁ, Ser. II, Zeszyt 20 (1966), 43-61.

(4) Jakubowski/. J., Sur les coefficients des fonctions univalentes dans la cercle unite, Ann. Polon.

Math., XIX, (1967).

(5) Jakubowski/. J., Zielińska. A., Zysko wska,K., Sharp Estimation of Even Coefficients of Bounded Symmetric Univalent Eunctions, Abstract of short communications and poster sessions, International Congress of Mathematicians, Helsinki, 1978, p. 118.

|6] Jakubowski ,Z. J., Zielińska,A., Zyskowska./., Sharp Estimation of Even Coefficients of Bounded Symmetric Univalent Functions, Ann. Polon. Math., to appear.

(7] Pick.G., Über die Konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränk­

tes Gebiet, Sitrgsber. Kaiserl. Akad. Wiss. Wien., Abt. II a, 126 (1917), 247-263.

[8] Royden.H. L., The Coefficient Problem for Bounded Schlicht Functions, Proc. Nat. Acad. Sei., Vol. 35 (1949), 657-662.

{91 Schaeffer,A. C., Spcncer,D. C., Coefficient Regions for Schlicht Functions, Amer. Math. Soc., Colloqium Publications, Vol. XXXV (1950).

[10) Schiffer,M., Tammi.,0., The Fourth Coefficient of Bounded Real Univalent Functions, Ann., Acad. Sei. Fennicae, Ser. AI, No 354 (1965), 1-34.

[11) Schober.G., Univalent Functions, Lecture Notes in Mathematics, 1975.

(12) Zielińska, A., Zyskowska, K., Estimation of the Sixth Coefficients in the Class of Univalent Bounded Functions with Real Coefficients, Ann. Polon. Math., to appear.

(13) Zielińska, A., Zyskowska/., On Estimation of the Eighth Coefficient of Bounded Univalent Functions with Real Coefficients, Demonstratio Mathematica, VoL XII, No 1 (1979), 231-246.

STRESZCZENIE Niech Sp(M), M > 1, będzie rodziną funkcji

F(z) = z+ ï A^

holomorficznych i jednolistnych w kole jednostkowym E, mających współczynniki rzeczywiste i takich,że IF(2)KMdh z&E.

Niech K > 2 będzie liczbą całkowitą oraz kn, n = 2, 3, K, niech będą liczbami rzeczywistymi.

W pracy rozważa się funkcjonały rzeczywiste postaci

w rodzinie Sp(M) takie, że

max <t>(F) = <t>(3f0), gdzie Sp = Sp(°°) oraz Jfo(z) = z (1 -z)' ’

Dowodzi się, że istnieje stała Mo > 1 taka, że dla wszystkich M > Mo max «>(F)= *(PAf).

FeS^M) gdzie Pyj jest funkcją Pieką określoną wzorem (2).

(9)

Estimation of Some Linear Functionals ... 157

РЕЗЮМЕ Пусть Я к (М), М > 1 семейство одинлистных функций

р(г) = г +л1эЛл/:''Я

в единоличном круге Е, имеющих действительные коеффиценты, таких что 1Г(г) К Мцля г £ Е.

Пусть К > 2 целое число, л = 2. 3,.., К, действительные числа. В этой работе рассматри­

вается действительные функционалы вида ЛГ

ф(К)=я1,ХлЛлК в семи (М), для которых

тах Ф(К) = Ф(И0), где и Ко (г) = г (1 -г)" ’.

Выказано, что существует постронная Мо > 1 такая, что для всех М > Мо, тах Ф(Г) = Ф(Ли),

где Ли функция Пика определенная формулой (2).

(10)
(11)

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

Nakład 650 egz. + 25 nadbitek. Ark. wyd. 11, ark. druk. 10,25. Papier offset, spec. kl. II, 70 g, BI.

Oddano do składu w listopadzie 1982 roku, powielono w kwietniu 1984 roku. Cena zł 160.—

Skład na IBM Composer 82 wykonała Izabela Klipikowska

Tłoczono w Zakładzie Poligrafii UMCS w Lublinie, zam. nr 421/82, L-8

(12)
(13)

ANNALES

U N IV E R S I T A T I S MARIAE C U RI E - S K Ł O D O W S K A LUBLIN —POLONIA

VOL. XXXIV SECTIO A 1980

1. W.Cieślak, A. Kieres: Some Complemented Group of the Isotropy Group.

2. M. Fait, E. Złotkiewicz: A Variational Method for Grunsky Functions.

3. H. Felińska: Sur quelques problèmes d’invariance.

4. M. Franke, D. Szynal: Fixed Point Theorems for Continuous Mappings on Complete, Normed in Probability Spaces.

5. J. Godu 1 a: Remarks on Bazilevic Functions.

6. Z. Grudzień, D. Szynal: OnDistributions and Moments of Order Statistics for Random SampleSize.

7. A. Kieres: A Pseudo-Groupof Motions of a Certain Pseudo-RiemanianSpace.

8. J. G. Krzyż: Coefficient Estimates for Powers of Univalent Functions and Their Inverses.

9. K. W. M o r ri s, D. Szyn a 1: Convergence in Distribution of Multiply-Indexed Arrays, withApplications in MANOVA.

10. A. Wolińska: On a Problem of Dugué for Generalized Characteristic Functions.

11. S. Yamashita: On Quasiconformal Extension.

(14)

MARII CURIE-SKŁODOWSKIEJ w Lublinie

050 55

CZASOPISMA

I ,

4 rad

Adresse:

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ

BIURO WYDAWNICTW Plac Marii

Curie-Skłodowskiej 5 20-031 LUBLIN POLOGNE

l ■

Cena zł 160,—

Cytaty

Powiązane dokumenty

The problem of choosing the regres- sion order for least squares estimators in the case of equidistant observation points was investigated in [4].. In order to investigate

Here we will study the behavior of several estimators of the autocorrelation function from the point of view of the bias and also by studying the autocorrelation Toeplitz matrix due

A certain linear growth of the pluricomplex Green function of a bounded convex domain of C N at a given boundary point is related to the existence of a certain plurisubharmonic

This note contains the representation theorem of a bounded linear functional in a subspace of a symmetric space made of functions with absolutely continuous

2. 2% of newly manufactured processors have damaged cores. A laptop with a damaged core overheats; overheating also appears in 0.002% of laptops with fully functional cores. We

A researcher owning 3 umbrellas walks between his home and office, taking an umbrella with him (provided there is one within reach) if it rains (which happens with probability 1/5),

COPYRIGHT c by Publishing Department Rzesz´ ow University of Technology P.O... Then according to a classical result of Kuniyeda, Montel and Toya

[r]