• Nie Znaleziono Wyników

Sum/difference - to - product formulae

N/A
N/A
Protected

Academic year: 2021

Share "Sum/difference - to - product formulae"

Copied!
35
0
0

Pełen tekst

(1)

Sum/difference - to - product formulae

(2)

When we solve an equation like:

x2− 4x − 12 = 0 (1)

what we want to do is to turn it (if possible) into:

(x − 6)(x + 2) = 0 (2)

because this immediately gives us the solutions x = 6 or x = −2.

We turned equation (1) where we add terms to an equation (2) where we multiply terms. This is often useful when solving equations.

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 2 / 14

(3)

When we solve an equation like:

x2− 4x − 12 = 0 (1)

what we want to do is to turn it (if possible) into:

(x − 6)(x + 2) = 0 (2)

because this immediately gives us the solutions x = 6 or x = −2.

We turned equation (1) where we add terms to an equation (2) where we multiply terms. This is often useful when solving equations.

(4)

We want to do something similar to trigonometric functions. Suppose we have an equation:

sin A + cos B = 0 can we somehow turn this sum into a product?

The answer is of course yes and we will see how to do this on the next few slides.

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 3 / 14

(5)

We want to do something similar to trigonometric functions. Suppose we have an equation:

sin A + cos B = 0 can we somehow turn this sum into a product?

The answer is of course yes and we will see how to do this on the next few slides.

(6)

Recall that we already have the following four formulae:

sin(α + β) = sin α cos β + sin β cos α sin(α − β) = sin α cos β − sin β cos α cos(α + β) = cos α cos β − sin α sin β cos(α − β) = cos α cos β + sin α sin β

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 4 / 14

(7)

If we add the first two equations we get:

sin(α + β) + sin(α − β) = 2 sin α cos β

Now let A = α + β and B = α − β. This gives α = A + B

2 and

β = A − B

2 . So we get the following formula: sin A + sin B = 2 sin A + B

2



cos A − B 2



Similarly if we subtracted the second equation from the first one we would get:

sin A − sin B = 2 sin A − B 2



cos A + B 2



(8)

If we add the first two equations we get:

sin(α + β) + sin(α − β) = 2 sin α cos β Now let A = α + β and B = α − β.

This gives α = A + B

2 and

β = A − B

2 . So we get the following formula: sin A + sin B = 2 sin A + B

2



cos A − B 2



Similarly if we subtracted the second equation from the first one we would get:

sin A − sin B = 2 sin A − B 2



cos A + B 2



Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 5 / 14

(9)

If we add the first two equations we get:

sin(α + β) + sin(α − β) = 2 sin α cos β Now let A = α + β and B = α − β. This gives α = A + B

2 and

β = A − B 2 .

So we get the following formula: sin A + sin B = 2 sin A + B

2



cos A − B 2



Similarly if we subtracted the second equation from the first one we would get:

sin A − sin B = 2 sin A − B 2



cos A + B 2



(10)

If we add the first two equations we get:

sin(α + β) + sin(α − β) = 2 sin α cos β Now let A = α + β and B = α − β. This gives α = A + B

2 and

β = A − B

2 . So we get the following formula:

sin A + sin B = 2 sin A + B 2



cos A − B 2



Similarly if we subtracted the second equation from the first one we would get:

sin A − sin B = 2 sin A − B 2



cos A + B 2



Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 5 / 14

(11)

If we add the first two equations we get:

sin(α + β) + sin(α − β) = 2 sin α cos β Now let A = α + β and B = α − β. This gives α = A + B

2 and

β = A − B

2 . So we get the following formula:

sin A + sin B = 2 sin A + B 2



cos A − B 2



Similarly if we subtracted the second equation from the first one we would get:

sin A − sin B = 2 sin A − B 2



cos A + B 2



(12)

We can also add the third and fourth equations to get:

cos(α + β) + cos(α − β) = 2 cos α cos β

and again using the substitutions A = α + β and B = α − β we get:

cos A + cos B = 2 cos A + B 2



cos A − B 2



Subtracting the fourth equation from the third one gives: cos A − cos B = −2 sin A + B

2



sin A − B 2



Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 6 / 14

(13)

We can also add the third and fourth equations to get:

cos(α + β) + cos(α − β) = 2 cos α cos β

and again using the substitutions A = α + β and B = α − β we get:

cos A + cos B = 2 cos A + B 2



cos A − B 2



Subtracting the fourth equation from the third one gives:

cos A − cos B = −2 sin A + B 2



sin A − B 2



(14)

In the end we get the following four formulae:

sin A + sin B = 2 sin A + B 2



cos A − B 2



sin A − sin B = 2 sin A − B 2



cos A + B 2



cos A + cos B = 2 cos A + B 2



cos A − B 2



cos A − cos B = −2 sin A + B 2



sin A − B 2



The IB does not require you to know these, but they are very helpful. I would highly recommend to learn them by hard (and since they’re not required by the IB, they’re not in the formula booklet).

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 7 / 14

(15)

In the end we get the following four formulae:

sin A + sin B = 2 sin A + B 2



cos A − B 2



sin A − sin B = 2 sin A − B 2



cos A + B 2



cos A + cos B = 2 cos A + B 2



cos A − B 2



cos A − cos B = −2 sin A + B 2



sin A − B 2



The IB does not require you to know these, but they are very helpful. I would highly recommend to learn them by hard (and since they’re not required by the IB, they’re not in the formula booklet).

(16)

Exercise 1

Evaluate sin 105− sin 15.

sin 105− sin 15= 2 sin 45cos 60 = 2 ×

2 2 ×1

2 =

2 2

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 8 / 14

(17)

Exercise 1

Evaluate sin 105− sin 15.

sin 105− sin 15= 2 sin 45cos 60= 2 ×

2 2 ×1

2 =

2 2

(18)

Exercise 2

Evaluate cos 105− sin 75.

(Remember about the formula that changes a function into a co-function).

cos 105− sin 75= cos 105− cos 15= −2 sin 60sin 45 = −

6 2

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 9 / 14

(19)

Exercise 2

Evaluate cos 105− sin 75. (Remember about the formula that changes a function into a co-function).

cos 105− sin 75= cos 105− cos 15= −2 sin 60sin 45 = −

6 2

(20)

Exercise 2

Evaluate cos 105− sin 75. (Remember about the formula that changes a function into a co-function).

cos 105− sin 75= cos 105− cos 15= −2 sin 60sin 45 = −

6 2

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 9 / 14

(21)

Exercise 3

Express sin θ + sin 3θ as a product of two trigonometric functions. Hence solve sin θ + sin 2θ + sin 3θ = 0 for 0 ≤ θ ≤ π.

We have:

sin θ + sin 3θ = 2 sin θ + 3θ 2



cos θ − 3θ 2



=

= 2 sin 2θ cos(−θ) = 2 sin 2θ cos θ So we get:

sin θ + sin 2θ + sin 3θ = 0 2 sin 2θ cos θ + sin 2θ = 0

sin 2θ(2 cos θ + 1) = 0 Which gives sin 2θ = 0 or 2 cos θ + 1 = 0

(22)

Exercise 3

Express sin θ + sin 3θ as a product of two trigonometric functions. Hence solve sin θ + sin 2θ + sin 3θ = 0 for 0 ≤ θ ≤ π.

We have:

sin θ + sin 3θ = 2 sin θ + 3θ 2



cos θ − 3θ 2



=

= 2 sin 2θ cos(−θ) = 2 sin 2θ cos θ

So we get:

sin θ + sin 2θ + sin 3θ = 0 2 sin 2θ cos θ + sin 2θ = 0

sin 2θ(2 cos θ + 1) = 0 Which gives sin 2θ = 0 or 2 cos θ + 1 = 0

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 10 / 14

(23)

Exercise 3

Express sin θ + sin 3θ as a product of two trigonometric functions. Hence solve sin θ + sin 2θ + sin 3θ = 0 for 0 ≤ θ ≤ π.

We have:

sin θ + sin 3θ = 2 sin θ + 3θ 2



cos θ − 3θ 2



=

= 2 sin 2θ cos(−θ) = 2 sin 2θ cos θ So we get:

sin θ + sin 2θ + sin 3θ = 0 2 sin 2θ cos θ + sin 2θ = 0

sin 2θ(2 cos θ + 1) = 0

(24)

Exercise 3

We want to solve sin 2θ = 0 or 2 cos θ + 1 = 0 for 0 ≤ θ ≤ π.

The first equation gives us θ ∈ {0,π2, π}, the second gives us θ = 3 , so in the end we have four solutions: 0,π2,3 , π.

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 11 / 14

(25)

Exercise 3

We want to solve sin 2θ = 0 or 2 cos θ + 1 = 0 for 0 ≤ θ ≤ π.

The first equation gives us θ ∈ {0,π2, π}, the second gives us θ = 3 , so in the end we have four solutions: 0,π2,3 , π.

(26)

Exercise 4

Solve cos 5θ − cos θ = sin 2θ for 0 ≤ θ ≤ 2π.

We start by combining cos 5θ − cos θ. We get:

cos 5θ − cos θ = −2 sin 5θ + θ 2



sin 5θ − θ 2



=

= −2 sin 3θ sin 2θ

Hence we get:

cos 5θ − cos θ = sin 2θ −2 sin 3θ sin 2θ = sin 2θ This gives:

sin 2θ + 2 sin 3θ sin 2θ = 0

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 12 / 14

(27)

Exercise 4

Solve cos 5θ − cos θ = sin 2θ for 0 ≤ θ ≤ 2π.

We start by combining cos 5θ − cos θ.

We get:

cos 5θ − cos θ = −2 sin 5θ + θ 2



sin 5θ − θ 2



=

= −2 sin 3θ sin 2θ

Hence we get:

cos 5θ − cos θ = sin 2θ −2 sin 3θ sin 2θ = sin 2θ This gives:

sin 2θ + 2 sin 3θ sin 2θ = 0

(28)

Exercise 4

Solve cos 5θ − cos θ = sin 2θ for 0 ≤ θ ≤ 2π.

We start by combining cos 5θ − cos θ. We get:

cos 5θ − cos θ = −2 sin 5θ + θ 2



sin 5θ − θ 2



=

= −2 sin 3θ sin 2θ

Hence we get:

cos 5θ − cos θ = sin 2θ −2 sin 3θ sin 2θ = sin 2θ This gives:

sin 2θ + 2 sin 3θ sin 2θ = 0

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 12 / 14

(29)

Exercise 4

Solve cos 5θ − cos θ = sin 2θ for 0 ≤ θ ≤ 2π.

We start by combining cos 5θ − cos θ. We get:

cos 5θ − cos θ = −2 sin 5θ + θ 2



sin 5θ − θ 2



=

= −2 sin 3θ sin 2θ

Hence we get:

cos 5θ − cos θ = sin 2θ −2 sin 3θ sin 2θ = sin 2θ

This gives:

sin 2θ + 2 sin 3θ sin 2θ = 0

(30)

Exercise 4

Solve cos 5θ − cos θ = sin 2θ for 0 ≤ θ ≤ 2π.

We start by combining cos 5θ − cos θ. We get:

cos 5θ − cos θ = −2 sin 5θ + θ 2



sin 5θ − θ 2



=

= −2 sin 3θ sin 2θ

Hence we get:

cos 5θ − cos θ = sin 2θ −2 sin 3θ sin 2θ = sin 2θ This gives:

sin 2θ + 2 sin 3θ sin 2θ = 0

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 12 / 14

(31)

Exercise 4

Factoring sin 2θ gives:

sin 2θ(1 + 2 sin 3θ) = 0

So

sin 2θ = 0 or sin 3θ = −1 2

From the first equation we get θ ∈ {0,π2, π,2 , 2π}. The second equation gives θ ∈ {18,11π18,19π18 ,23π18,31π18,35π18}

So in the end we have 11 solutions:

θ ∈ {0,18,π2,11π18 , π,19π18,23π18,2 ,31π18 ,35π18, 2π}

(32)

Exercise 4

Factoring sin 2θ gives:

sin 2θ(1 + 2 sin 3θ) = 0 So

sin 2θ = 0 or sin 3θ = −1 2

From the first equation we get θ ∈ {0,π2, π,2 , 2π}. The second equation gives θ ∈ {18,11π18,19π18 ,23π18,31π18,35π18}

So in the end we have 11 solutions:

θ ∈ {0,18,π2,11π18 , π,19π18,23π18,2 ,31π18 ,35π18, 2π}

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 13 / 14

(33)

Exercise 4

Factoring sin 2θ gives:

sin 2θ(1 + 2 sin 3θ) = 0 So

sin 2θ = 0 or sin 3θ = −1 2

From the first equation we get θ ∈ {0,π2, π,2 , 2π}. The second equation gives θ ∈ {18,11π18,19π18 ,23π18 ,31π18,35π18}

So in the end we have 11 solutions:

θ ∈ {0,18,π2,11π18 , π,19π18,23π18,2 ,31π18 ,35π18, 2π}

(34)

Exercise 4

Factoring sin 2θ gives:

sin 2θ(1 + 2 sin 3θ) = 0 So

sin 2θ = 0 or sin 3θ = −1 2

From the first equation we get θ ∈ {0,π2, π,2 , 2π}. The second equation gives θ ∈ {18,11π18,19π18 ,23π18 ,31π18,35π18}

So in the end we have 11 solutions:

θ ∈ {0,18,π2,11π18 , π,19π18,23π18,2 ,31π18 ,35π18, 2π}

Tomasz Lechowski Batory 2IB A & A HL March 30, 2020 13 / 14

(35)

In case of any questions you can email me at T.J.Lechowski@gmail.com.

Cytaty

Powiązane dokumenty

Nevertheless, one can speak of anti-acouological approaches, meaning that there are approaches in which listening in education takes the form of a destitute or depraved, degenerated

Na wejściówkę trzeba umieć policzyć wartość logarytmu z danej liczby w przypadku, gdy podstawa i liczba logarytmowana dają się łatwo zapisać jako potęgi tej samej liczby....

Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working.. Write your answers in the answer

(i) Copy the tree diagram and add the four missing probability values on the branches that refer to playing with a stick.. During a trip to the park, one of the dogs is chosen

You should know the identities for the sine and cosine of a sum or a difference of two angles.. Tomasz Lechowski Batory 2IB A & A HL March 19, 2020 2

A large collector drop of radius R and terminal velocity V(R) falls through a volume containing many smaller drops of radius r and terminal velocity V(r).. In some time interval

We consider (strong) mixing properties of stochastic operators and for the most part restrict our attention to the set of operators admitting an infinite invariant (or

camera, torch, suitcase, guidebook, sunglasses