• Nie Znaleziono Wyników

Hydrothermal laumontite from the Strzelin granitoids

N/A
N/A
Protected

Academic year: 2022

Share "Hydrothermal laumontite from the Strzelin granitoids"

Copied!
13
0
0

Pełen tekst

(1)

Vol. 28, No . . 2

acta··

geolog'ca polonica

. Warlz~wa· 1978

Hydrothermal laumontite from the Strzelin aranitoids

ABSTRACT: Lawnontite occurring in post-magmatic veins in the StrzeIin granltoida, Low:er SUesia (southern Poland), as it lB. evidenced by

its

physical and optical properties, chemical composition and crystalloche~ formula, as well as by the X-ray·; :powder pliUenu, D'1!/A curve; IR.absorptionspectnun,' and ·studies .~: ·ftuid·

inclusions in associated

quartz,

originated jointly with associated minerals at the teII!.perature range 340-175OC under the pressure lower than 730

±

70 bars from diluted C<?:!-bearing hydrothermal solutions. Full succession

ot

the minerals in lawnonite-bearlng veins from the Strze1in granitoids is subsequently presented.

INTRODUCTION

Laumantite, the fibrous or prlsmatic

c8lclc

zeo:Jite with C2 space group symmebry (Amirov & DJ. 1971), is known from veins and cavities

in

magmatic rocks; it also occurs hi metamarpbosed and metasomatosed rooks. Laumontite has been found

·in

a large scale :m sedimentary rocks as 8:uthigemc mmeral (for references see Deer

&

al.

1963).

Occurrences of laumoDltite in

the

Sudetes Mts and Lower Silesia

in southern Poland

have !been reported by 'Draube (1888).

Of

the several

.noted

localities, appearance a1 laumontite :in association. with diverse minerals of

dTuBy

caVities

jn

pegmatites from Strzegom

granitoids lis of

a particular interest

(Bee alBo

Schwantkle 1896_

Giirf,.h

1915, Michel1

1941)~

Laumantite from fractu.res. and hydrothermal veins cutting gran- i!tiQi~

in

the mam. quarry at stDelin~curs with quartz, prehnite,

.calcite.

chloriie,epi~ote,

stilbite,

sphene.

and apatite

i(cf~

PI. 1, Fig .

.

8 and PI. 2,

~gs) ~~). ~e

fust

~

on

~

qocurrenoe 1 has been Presented

form-

eriy

by the present author

(StcrinsiewicZ 197'1).

. Acknowledgements. The author is greatly indebted to Dr. A. Kozlowski and Dr. L. Kar'W'Owski for their ·kindhelp, advice and diScussions· in the course

ot

the

presemlc:t.d .stvdies.:~·· .. .

(2)

22,4.'

ANALYTICAL DATA

PH'lrSICAL AND OPTICAL PROPERTIES

: " \ . . . ' , '

The investigated

laumontire

is

white with

silk lustre, and iD. thin

section it

is

colorless. It

:farms

acicular ami fib:rous

crystals

up to 10 mm Joog with good (010) and (110) cleavages. Density

of examined

Iaumontite was measured by picnometer methOO as equal 2.254 g/cm

l .

Optical properties, measured at room temperature in yellow light, are' as follows: Cl = U04±O.OOl; '{J - 1.51ai:O.OO1;

r =

1.514±o.OOl; A:~\o.oM,; ,wc"" '~~

Zlr "" 3Q±20 The indiCes of refraction match those given by Coombs (1952) for

leonhardite, a partially, dehydrated variety of laumontite; the partial loss of water in the investigated minerals has probably been caused by its keeping under room conditions. '

CHEMICAL COMPOSITION

The

crystallochemical formula

was

calculated upon

the

chemical

analysis

(Table 1), accepting the number of 48 oxygen

:ioos

per

rable,l

CheiDicaJ. composition: and ci-ystallochem1cal, fwmulaof laumontite ·from Str7.eUn ..

9

011ponent, 1n weight I, on,48 ,oxygen.

S10

2 ' '51.01 16.92

T102 0.05 0.01

A1203 ~1.2~ 7.80

Fe203 O.~ 0.08

~, O.~ 0.01

. '

f'9

~2.36 -..13

~~ <0.'03

-

;~20, ,O~'20, 0.12

,~O 0.60 0.24,

~20+ 12.97

~.o- 1.41

l

14.98

Tote! ' 100.17

-_._ ..

(Ctl4 :.,,3~O~I~~'.2

..

)(Al?~F~O.Pe)~1~.5.,92.°48~14.98

H2O

"

unit cell,

according to

general formula (Coombs 1952)

of

laUmontite Cax{Na; K)yA1'2~~~Sj~~~(di~,.P~·16HaO. Uowcimten't of 'al'kfiliEs

in the

veStigated

,1aumootite':ri!sUlUi

'froin'dUficUl11es to siJbS1:i:tuticmS ' iD ' its structure '(An:iii:ov & at 1967, Miller

&

Gheiit ' 1973).: Sniall

eXJCeSS

of

ea.:.rons;'is ~ly ~uSed by an iin~bleadnibdure

'of

~ci;.te iD: ,

the

analysed

sample. ' " ,

Aii., ~L1oWf4~ f;rom CoOmbs'inVestigatiO.n.s;' lai:tmoDtitel'OlJes up to 1/8 of its

water when eXPOsed

to

the atmoSphere proViding

the

leOnh8rdite

form.

The

de-

(3)

hydration-hydration reaction is reverSiblei -and the content of water in mineral structure may theref~ ~, eveJl..

witJ:l

a~osph~~ CQndi~. Chemical analysis of a sample from Strieliri.

shoWs

'thaCthe . water content

" -'coDtorms

to the inter- mediate variety. SinCe. the s.pecmens were stored uncovered, otlie partial loss of water cannot be precluded. The. investigated mineral is believed to be called generally as ·laumontite.

X-RAY. IR ABSORPTION AND DTA iNVJI:STIGA,TIONS

The X-ray analysis (Fig. 1 and Table ... 2) was carried out on DRON-l dif- fractometer using CuKa radiation. The refraction intensity values were calculated from the area under the peak, and the obtained X-ray data agree well with those given by Coombs (1952), Kaley & Hanson (1955), Lapham (1963) and Nativel (1974).

Differences in intensity of .some reflections are most likely due to the laumontite habit resulting in texture of the preparate.

52

18

2.0

2.3

48 44

40

d,A

2.6 an 3.5 4.5

36 . 32 2824 . 20

e>26,CuKa

6.0

16 12

Fig. 'I'. X-ray powder diffraction pattern of liiumontite from 8trzelin

11.0

8

The IX absorption spectra were recorded on the UR-ZO . spectrophotometer.

The IX spectrum of the studied laumontite has several characteristic absorption bands {Fig. 2). The broad band in the region 3700-3200 cm-1 with peaks at 3300 and:· 3550 ·ciD-1:;is generated by

asymmetrical'

8iid:ty~ stretchiD.g"'I71brations of'

the·

(OH)-gtoujis·lli Water rflOlecUl6s included 'ilfio' 'the· crystal' structure (Bbldy~:

rev & Povarennykb 1968). The explicit band 1665 cm-1 is due to -bending vibratiOns~

of

Water

moleculeS~ The five distinct bands in the rimge"1200--000 cm-1 are caused b)r, 'ti'lpli! '·disorder • asyimDetric streteb.ftig· ~brati.dDs .. ~ori silica .'Wtrahedra "rpovaren;';·

nykb & Gevorkyan 1971). The strong· band at 775 cm,.,1 and bands in the range

~30

' cm-

1: ."generatedtrom'beri.ctiog· ~brations· "of bands iil(AlO~-'

and

(8i04>·- tetrahedra. Carbonate ion vibratiOilS' resUlt 'iD: 'the band at 1430em",1

and

(4)

'Table'~

X-rflY ~el" diffraction data· ~ I&umontlte

Oilbburg. : . Ci~oe~' .. ,.

fhkI)

Penna •• USA· ".union STRZELIN

L4p/uur1(J96~ !IatI.a (1914)

cl, A 1/10 .,.fl.A 1/10 d.A lA

'110 8.,48 100 9.110 100 8.150 100

200 .. ' '8 • • ' '36 8:.01

..

·30' '8'.1115

80 020 S.·1I4 12

101 02.1 8.18 2- .21 .2 : 8.18 2

~:. 8.81' 1-.7 ..

1.11 15.082 15- 15 .• 08~ 7 .' 15.(JjJ 15 220 4.731 19.EI~ 4.7151 .:215 .4.72 .16

221 4.1500 4.1507 12 4.49 7

atO 4.314 2.8 '4.30 1

130 201 4.1158 81 ".171 158 4.15 75

131 3.788 2.,4 3.782 2 3.78 1

:iot 3 • • 7 13 3.87'" 12 3.88 ·10

002 221 3.510 31.7' 3.617 32 3.150 30

131 3 .... 11 7 •. 7' 3.418 12 3.41 3 312 012 3.387 3.7" 3.373 13 3.38 3

0.0 3.272 21

.

3.2715 U 3.27 21

331 311 421 3.2015 7.1t 3.2115 22 3.20 6

320 3.1152 18' : 3.181 27 3.14 11

402 .3.033 27 : 3.0.0 31 3.03 150

420 ~12 . 2.8150 3.4 2.970 4 2.915 1

UO 041 2.881 13.7 2.882 12 2.876 9

5111011 ::I!.NB 2.7 2.eol 15 2.794 2

2.829 3 2.630 4 2.826 1

2.1578 14' 2.572 12 2.1172 8

2.1521 4 2.1520 S 2.6115 2

2.~· 3 2.483 1

2.G9 ' 14 2.U4 19 2.438 9

2.361 12.3 2.385 14 2,3157 7'

1500 2.278 2.7 2.273 7

2.288 15.15 2.2114 4

.' 2.217 4.8 2.215 2 2.218 2

oeo 2.180 6.4 2.183 7 2.178 2

2.1153 . 18.8 2~1114 115 '2.147 14

2.082 1.6 2.082 2 2.084 2

.2.DeO. 1.6

2.042 1.15 2.0.0 2 2.044 1

' •. _ preferred' orientation

very slight band. at 880 cm .. 1 testifying to a calcite admixture in the studied sample. Microscopic observations confil:med Ule pres~CC1i of calclte intergrowths in.

laumontite C?J=1Stal$. .

. Th~ DTA·were ~arried . out . OQ .Derivatograph 01) 102 A in the temperature range ·2o-,lOOOoC.-:flve .• dothermic . effects:·were· recorded on· the

,ur

A curve.

(Fig. 3) at the following temperatures of the peak maxima: 120°, 250°, 460°, .800°·

and. 960~C •.

1he

IXl8Slfdeere.ase· a~ the ~t fo~. ~othwnic effects and

it

~ c~ withn~~Y4ratlon ~cUon;

(5)

227

1500 : :

QIO

\Yale . Dumber, cm-

t

500

Fig. .2. ·lR absorption spectrum of laumontite from Strzelin

The X-ray patterns of a sample heated

to

150°, 300°, 500°, 840° and lOOOoC were made for elucidation of the thermal behaviour of laumontite and its .trans- formation. phases (Fig. 4). The sample beated up

to

300°C has not demonstrated any substantial differences and it has

been

attributed to '-leonhardite. Heating of the sample

to

5000C

results

in the arising of a new mineral phase called '-leon- hardite II (Belltsky & al. 1966). Further heating to 840°C followed the formation of weakly crystalline substances, being the most likely a mixture of "amorphous"

SiO:.

heated and oxides of

to

lOOOoC, visible AI and Ca. ~ one dfstlnct (3.19 A) and several On the X-ray diffraction pattern of the sample weak: reflections of aOOrthlte, lIS well as a wide reflection typ.ical. of ~morphous" sillca (29"'" 16-32°).

DTG DTA

100 300 . 500 .. . _.100

~perature, ~

Fig. 3. DT A, TG and DTG curVes· of laumontite from Strzelln

(6)

228

d,A

2.3,

2.6 3.0 3.5 " 4.5

,'6.0

10.0

1000'C

40

36

32 28 24 2D

16 12 8

'W,CuKa

Fig. 4. X-ray powder diffracUon 'patterns of products of the thermal destruction of laumontite from Strzelin '

Conclusions based on the X-ray analysis were confirmed by the IR absorp- tion studies of respective samples (Fig. 5). Generally, the dehydration ~ction of the examined mineral lasts gradually until the temperature of about aoOoC. Lau- montite, being heated to sooOC still .preserves its structure, forma p-leo.nhardite as a result of partial dehydration. In the temperature range 30~000C the mineral ' transforms its lattice into p-leonhardlte II. Between 700° and 8000C 'destruction of its structure takes place, and anorthite crystallizes from the products of such a destruction.

ENVmONMENT OF LAUMONTITE' CRYSTALLIZATION

ThermometriC

and' barometric

studies

of

flukl iDclusloos lID quartz

occurring with laumontite

permitted

to define indirectly

oonditiOO8

of

crystallization

of thes~:

:two

,~erals.

'

(7)

LAUMONTITE :nOM: THE:-'$TBZKLlN GRANITOmS 229

:: i

! i

3500 1500 011 . 500

Wne IIIIm.er, em-t

Fig. 5. IR abSorption from Strze1inspectra ' (transmittancy level 9(11/, for each sample) of products of the thermal destruction of laumontlte

Primary

gaseous and

gaseous-liquid inclusions bearing liquid Co.

as well as eecO.n.dary gaseous-liquid mclusions were observed

(PI.

I,

Figs

1-7;

Bee alBo St~cz

.. 1977). l'he

mclusions homogenized. in

temperature ranges 280-245°C

and

170-145°C, although they

decrepi-

tated .

in

range 35{}-l280°C.

The

pressure was de!berm:ined

by

the Nau- mow

& Malinin

method (1968) .availing oneself of

inclusions

with COr

~as

730::t;70

bars

at 280°C.:rheestimated value of ,the pressure at 170°<:: amounted abOut 500baTs.

Coosi.~

tbe pressure :ool'Tectian to 1ftle

tbomogeDiza~

'temperatuoos (er Lemmleln 1973), .. ' the real tem-

peratures of

entrappilng the inclusions into quartz crystals were de- ternrlnM

'to be34~OO°C'8nd 200~175°C,

respectively.-

As it

~

apparent n:om.

th~.

published

exper:imell~ data

(Tbompson 1971,

Ohent & Mill~~97~),_·t~.studied

1aumontite

presUIDSlbly' eqUlili-

brated with fluids

halving mole-:tr.~

of

COl

about 0.0075. The absence

of solid

phaseS

m the observed jnclusiOnsas . well as .. data

011.

cbenlical

composition

Q:f inclUSion fillings

in ,relalted quarlzes (Bee · Stt:plsiewi.Cz

iw7·1)

. ...

.

~a1;q.-., 1ow

concentration · of · hydrothermal soiUtions ..

" ... " .

- . . .

.. . The 'evaluated P-T values of quartz crystallization referred

in-

directly to

laumontite m-e co.rnpa:rab1e with the published

data.

(Coombs.

&

at 1959; Zen 1961; . Liou 1970, 1971a,b). 'Dhe P-T diagram

of

lau-

manitite

stabililty in the system CaAl

I

Sit08 - 8iO

I ,..;;..

Ht<> - '

C~was

applltid': afber

~v '(1973),' t.8kiiiig'

mto accOunt" the presence o{

CO~

in fluids. The extent of the

P.,-T.

fiekiof laumontite from Strzelin,·on

that

d:iagranl' (Fig.

6;

,P7"'T

vaJW~ :wer~1imiw.c:I -~ · baaisof. ~e.l11l

~~~on·.~~derations) ~.

reali,ty of. , the.

~ted par~xnet.ers

obtained :&-om the

:incluslon

studies.

(8)

130 JIIAilUIl['I'ST2tPIBImWICZ

3 Lawsonite

fij

...

~2

~

:!

...

~

1

· 0.,... .

_.__-..,-...,...----'..,...---'----.0-<'---... ....---. .... . ~,.... ...-I

100· 200: 300.

Temperature, QC

- - 1 2 3

Fig.' 6.P-T dtagtamof laumontite stability {1Tom SE!ndetov l.D'I3)' in

thesyskUJ

CaAI~i.A.~ Sio, - .H20. (1) and CaAl:aSJ...Os ~Sio, -:-.H,o.,....Co, (%) P-T field for laumonUte from Strzelin is shaded (3)

MINERAL SUCCESSION OF LAUMON'fl'l'E-:BEARING.· ASSEM;SLI\GE As

follOws

from IDIlero-

and micrO$OOpic observations. of the

in-

VE!Stigllted ~UIl).OIllti:te and' ~tedmiile.re:ts, the ~ qu~rtz maSs Qf the

investigated

assemblage

pr~pitated':rrom

COrbearlng flUids at

te~~atUires 34Q:-300°C

under the

pi~.

of

800-660

bars.. Appro- ifrnate'

P-fl'

v8Iues presumably attended . the formation of aPatite

and

spbene. An

irisi~ificarit

decrease' of 'temperatun! and' preSsure led to

PLATE 1

1-7

Inclusions ·

in

quartz; magn. X 200 (except of Fig. 6' taken X 150)

1, One,.phase g$seous inclusion . .

2-3 ~ three-phaseinclusi~ bearing liquid Co, (TH 280--:-2~5°C, THCo,

250C) . . . . . . ..

4-7 SecoW:lary gaseous-liquid inclusions <TH 170-:-1450C)

g" HaiOcf Speciinen of hydrothermal .

Iatin10Iit:i.te~bealing·

mmeral: _em:":

blageofrOin' Strzeliri(q quBttz; ch chlorite;pr prehnite, 'Zm'

laU:rriontite);·

X 1.5

(9)

ACTA GEOLOGICA POLONICA, VOL. 28 M. STF<PlSIEWICZ, PLo 1

1 2 3

(10)

ACTA GEOLOGICA POLONICA, VOL. 28 M. STE;PISIEWICZ, PLo 2

(11)

LAUMONTITE :FilOM THE ·STRZELn\l GRANITOIDS

23i

crystallization of prehnite. Epldote

ID<Bt. ·liklely

appeared at final stage of the proceedfl:tg

!llin~alization.

A next lowering of

P-:-T

parameter.s oombined "with·ch8;ng~ : ~f ·ion ~tivities brought to the formtation · of

laumontite and

calcite

(first generation), probably ·at the expense of prebniie and quartz,accordiIig to the reacMon

(see

Winkler 1967):

prehnite

+

quartz

+

3H20

+

c~ -laumontite

+

calcite

The apparent stability of these association suggests that the natural

COliditions

approaching the univariant relations were achieved. The fractures

dn

quartz

crystals

were then

cl~ed

up at the temperature range 2o.O-175°Cunder

the

pressure of 50.0.

,bars, as

it

is

.indicated by

th~

presence of fluid inclusians. Stilbite most likely originated subsequently

to

that latter ipIOOcess. The mode of can'tact

of

chlorite flakes with diverse minerals .9Uggests a subsequent character of chIoritization (PI. 2, Figs 1 aind 3) that developed

.

within quartz, laumontite, and particularly within prehnite

and.

calcite. It

is also

evident 1:hat

finally

the calcite mineralizatian

of

the second generation took

place

(PI. 2,

Fig.

4).

It

lasted until the temperature lower

than

lo.o.

o

C (cf.

St~pisiewicz

1977).

Crystallization of calcite could perhaps be a consequence of the increase

of

COl partial pressure in the discussed enviromrien.t. .

The examined assEm).blage

of laumontite-prehni~uartz

plus

cal~

cite is

rather rarely met since it requires

special

physic~hemical con- ditions (Zen 1961, Thompson 1971). Nevertheless, the coexistence

of

these minerals in the hydrothermal association at Strzelin excludes unstability of such an assemblage under the a, hove determined conditions what pre- . viously

was

alleged. by Rusinov (1965). The absence

of k~linite

in

the

assemblage confirms Senderov's (1973) calculatiOns claiming that kaolj- nite could not be

in

oontact with COrbearing aqueous phase under the above mentioned

P-T

conditions.

Institute of Geocn(!mi.Btf'tl1 Mi.neN1ol11l and Pet7'ograJJhv of the Warsaw Un"iw,.sity . .

Al •. Zwi,.1ci

iWtQ'''·v

93, 02-089 Waf'Szaw(I. Poland

PLATE 2

1 - Cracked automorphic· quartz ~ystaI in the first generation calcite with chlo-

rite~ corrosion of quartz by chlorite is also visible; nieals crossed, X40 2 - Acicular crystal of eptdote in prehnite,· both cutbyealcite veins; nicols.

croSsed, X 40

3 - Vermicular

aggregates

of. ~hlorite in laumontite; nieols crossed,X4O

4 - Chip of laumontittt" crystal surrounded l>y

c8J.cite

of the .second generation;

nicols c:rosaed. X 40 .

(12)

%32 MAREK ST;PJPISDl:WICZ .

REFERENCES

AMIROV S. T., ILYUKHIN V. V. & BELOV N. V. 1867. Crystal structure'of Ca-

~zeolite - ' 18umontite (leonhardite) C~S40i2'nH:P" ~n<4). ·Dokl. AN SSSR,' ·114 (3), 6W1...a'1o. l\Iloskva.

, - & -

unl.

Deciphering of the laumontite structure according to the ana- iysis of the in.teraction of peaIa;. Zap. V.es. Min. qb.hch., Ser. 2, 101 (10), 20--3u. Leningrad.

BELITSKY I. A., BVKIN G. G. & ZYUZIN N. I .. 1966 .. X-ray structural study of laumontite with d~ydration. Geol. i Geoph., AN SSSR, Sibir. Otdel., "

143-146. Novosibirsk.

BOLDYREV A. L & POV

ARENNYKH

A. S. 1968. Infra-red absorption sp~ctra of important minerals from carbonate and nitrate classes. Min. Bb. Lvov. Uni".,

!2 (1), 11-21. Lvov. · · . . .

COOMBS D. S. 1951 Cell size, optical properties, and chemical' composition of laumontite and leonhardite. Amer. Min.,' 37 (9-10), 81~-330. Washington.

, .ELLIS A. ~., FYFE W. S. &TAYLOR A. M. 1B59.The·.zeolite facies, with comments on the interpretation of· hydrothermal syntheses .. Geochim. Cosmo- chim. Acta, 17 (1-'-fA), 53-Im. Oxford - London - New York -:-Paris.

·DEER

W.· A., HOm·R. A. & ZUSSMAN J.

1003.

Rock-forming minerals, Vol. 4- Longmans, London.'

.

GHENTE. D. & Mn.LER B. E. -1974. Zeolite and. clay-carbonate assemblages in the Blairmore Group (Cretaceoull) Southern Alberta Foothills, Canalia. Contr.

Minend. Petrol~~ '" (4), 313-339. Berlin - Heidelberg - New Yor~. . GORICH G. W15. Zur Geologie der Striegauer und Jenkauer Berg~. Jb: Kanigl.

Preuss. Geol;Lcindesanst., 36 (2).' ~. Berlin.

KALEY M. E. &; HANSON R. F. 1955. Laumontite and leonhardite cemelit in Mio- cene sandstone from a well in San Joaquin ,Valley, California. Amer. Min.,

40, gm...4)25. Washington. '

. LAPHAll

D. ~. M. 1 _ " Leonhardite and laumontite'.. " , ·.

iil

~: .diabaseJ ,. , , . from Dmsburg, Pennsylvania., Amer. Min.,··~ (6;--:6), 883---68&.' WashiDgtop.

~MMLEI:tf

G.

G. 1973 .. 'Morphologia i geneziskriStallov:' Nauka, Moskva.

LIOU j; G. lB70. Synthesis and stabilitY relations of wairakite, CaAl~40t2·~O.

Contr. MinerGl. Petrol., 27 (4), ~/;B.ediil':"r.: Heidelberg -N(!W·:yprk . .

·WMa. P-T stabilities of laumontite, wairakite, and lawsonite in the system CaAhSi2

0s -

Si~ -'H20~ ·.J.~Petf'Ol;, 12: (2), ~£: Oxford:

1971b. StUbite-laumontite equilibrium Contr.Miner"i: Petf.oi~~

..

(3), 171-1'1'7.

Berlin - Heidelberg - New York.

MICHELL W. D. 1941. Paragenesis of the pegmatite minerals of Striegau, Silesia.

Amer. Min., 28 (4), 28'lr-275. Menasha.

MILLER B. E. & GHENT E.

D. una.

Laumontite and barian-strontian heuIandite from the Blairmore Group (cretaceouse), Alberta. Canad. Min., U (3), .L88- 192. Ottawa.

NATIVEL P. 1974. Sur l'existence et· la signification min~ra1ogique d'une variete de laumontite danS le c~que cie CUaos (ne"de La Reunion). BuZZ. Soc. Fr.

Minh~. CTistaUogr., 97 (1), ~J'

1?8rls. .

·NAUMOV V. B;' &<MALININ S. D. 1-9618-,;:':A ·ne.w method ',of pressure:,~mi­

natiQn by.: gaseous-liquid) ,jncluaions:.:·,.QeolChi7ll.ia,.\,iI., ~~ .. Moskva.

:PO¥ARENNYKB A. ~ & ·GEV:O~YAN.·.!$.. rV. ·.lQ71."~Infl'a..red spectra: of SOm'e isostructural groups of minerals. Min. Sb.L"ov. Uni"., 25 (2), 10(}-:--1:10. Lvov.

RUSINOW V. ,L.:!l886. Finds Qfi;prehnite aQd.the,clastic.natur.~:of epidote in rocks confined :.·to: ,certain:. m:us.·of'( Ilr(!$ent: '~drotherQlal :meiamorphism.· :1%'0. AN SSSR, Su. GeoL., 2, 3&--t3. Moskva.

(13)

LAUMONTlTE FROM THE STRZELIN GRANlTOIDS 233

SCHW ANTKE A. 1886. Die Drusenmineralien des Striegauer Granits. Leipzig.

SENDEROV E. E. 19'1'3. Effect of. ~ on laumontite stability. Geokhimia, I, 100- 200. Moskva.

STF,iPISIEWICZ Mo U117. Physico-chemical condItions of post-magmatic mineral formation in Strzelin granitoids. Arch. Min., 33 (2), 61-74. Warszawa.

THOMPSON A. B. :l.P11. P

co..

in low-grade metamorpbism: zeolite, carbonate, clay mineral, prehnite relations in the system CaO-Al20s--SiOr-Co,-~.

Contt'. Mineral. PetroZ., 88 (2), 145-'161. Berlin - Heidelberg - New York.

TRAUBE H. 1888. Die Minerale Schlesiens. Wroclaw.

ZEN E-AN 1961. The zeolite facies: an interpretation. Amer. J. Sei., fIlI9 (6), 401- 400. New Haven.

M. STF,iPISIEWICZ

HYDROTERMALNY LOMONTYT Z GRANITOIDOW STBZBLINA

(Streszczenie)

Przedmiotem pracy jest analiza lomontytu rozpoznanego po raz pierwszy wSr6d mineral6w pomagmowych granitoid6w Strzelina (patn pI. ~). Cechy fl- zyczne i optyczne, sklad chemiczny (tab. 1) oraz wyniki analiz: re~tgenowskiej (fig.

1 oraz tab. 2), absorpcji w podczerwieni (fig. 2) i termicznej (fig. 3;-'5) badanego mineralu wskazaly na lomontyt lub jego cz~sciowo odwodniolUl od~ (leonar-· dyt).

Na podstawie badafJ. gazowo-cieklycb inkluzjl w kwarcu towarzyszl;J,cym 10- montytowi stwierdzono, .iZ lomontyt wraz z towarzysUlcymi mu mineralami krysta- lirzowal z rozcienC2xmych ro~r6!w bydrotermainych zawieraj!l(:YClh CO2 gl6wnie w zakresie 34()-"1'1IJDC pod ci§nieniem r~u 800-600 bar6w. PowyZsze parametry Sl;J, zblizone do parametr6w srodowiska tworzenia 8i~ lomontytu podawanych przez innych autor6w (por. fig. 6).

Ustalono IlaBt4;pujllCl;J, kolejnosc powstawania mineral6w badanej paragenezy hydrotermalnej z utwor6w zylowycb granitoid6w Strzelina: kwarc (gl6wna masa), apatyt, tytanlt, prenit, epidot, lomontyt, kalcyt (pierwsza generacja), kwarc (ilosci

podrz~e), oesmin, ohloryt i jako ostatni - kalcyt drugiej generacji.

Cytaty

Powiązane dokumenty

Table 2 shows that the increase of the fillers concentration leads to the decrease of the shortest interatomic distance, accompanied by the growth in the average size of

land in the years 2006–2009, which resulted in a weak negotiating position of Po- land against GAZPROM in 2010. A negative assessment of the annexes to the “Yamal Contract”,

The paper explores the theme of spiritualism in two neo-Victorian texts: In the red kitchen by Michèle Roberts and “The conjugial angel” by A.. In recreating the Victorian setting,

It must thus be concluded that the breccia infilling of the graben was not caused by a series of successive seismic shocks; only the faulting resulting in

The method of reduction proposed by Mozzi- Warren with the modifications introduced by the Drozdowski [1]-[3] applied in analysis of the scat- tered radiation intensity

The XRPD technique gives information about the chemical composition of the analyzed samples while the WDXRF studies allowed on the fast elemental analysis, simultaneously in wide

The XRD data after phase sensitive analysis exhibit only the very subtle changes associated with the signals responding to the modulation experiment. The sole

We report the results of the investigations of the blood serum samples which were collected from the patients who suffered from neoplasmic diseases by the