• Nie Znaleziono Wyników

Nonlinear second-order delay differential equation

N/A
N/A
Protected

Academic year: 2022

Share "Nonlinear second-order delay differential equation"

Copied!
7
0
0

Pełen tekst

(1)

TECHNICAL TRANSACTIONS 3/2019 MATHEMATICS

DOI: 10.4467/2353737XCT.19.038.10212 SUBMISSION OF THE FINAL VERSION: 21/02/2019

Ludwik Byszewski orcid.org/0000-0001-7227-8990 ludwik.byszewski@pk.edu.pl

Institute of Mathematics, Faculty of Physics Mathematics and Computer Science, Cracow University of Technology

Nonlinear second-order delay differential equation

Nieliniowe równanie różniczkowe rzędu drugiego z opóźnieniem

Abstract

The aim of this paper is to prove the theorem on the existence and uniqueness of the classical solution of the initial-boundary value problem for a nonlinear second-order delay differential equation. For this purpose, we apply the Banach contraction principle and the Bielecki norm. The paper is based on publications [1–7]

and is a generalisation of publication [6].

Keywords: second-order delay equation, initial-boundary value problem, Banach contraction principle, Bielecki norm

Streszczenie

W artykule udowodniono twierdzenie o istnieniu i jednoznaczności klasycznego rozwiązania zagadnienia początkowo-brzegowego dla nieliniowego równania różniczkowego rzędu drugiego z opóźnieniem.

W tym celu stosowane jest twierdzenie Banacha o punkcie stałym i norma Bieleckiego. Artykuł bazuje na publikacjach [1–7] i jest uogólnieniem publikacji [6].

Słowa kluczowe: równanie rzędu drugiego z opóźnieniem, zagadnienie początkowo-brzegowe, twierdzenie Banacha

(2)

1. Preliminaries

Is this paper, we study the following problem

x t ( ) f t x x t( , , ( )),t  t[ , ],0T T 0, (1.1) x0 , x T( )x( ),0 1, (1.2) where f :[ , ] ([ , ], )0T C 0    and C([ , ], ), 0 0, are given functions.

Therefore, for any function x:[ , ]T  and any t∈[ , ],0T we denote by xt the function xt :[ , ] 0  defined by the formula x s x t s st( ) (  ),  [ , ]. 0

It is easy to see that the condition x0  means that x s( )( ),s s [ , ].0 Moreover, for C([ , ], )0  we use the norm

 

0  0



  sup ( ) .

s s

2. Theorem on the existence and uniqueness of the classical solution Let C:C([ , ], )T  C2([ , ], ).0T

Definition 2.1. The function x C is said to be a solution of problem (1.1) – (1.2) if x satisfies equation (1.1) and conditions (1.2).

Now, we will prove the following lemma:

Lemma 2.1. Function x C  is a solution of problem (1.1)–(1.2), where f C ([ , ] ([ , ], )0T C  0    , ) if and only if x is a solution of the following integral equation:

x t

t t

t f s x x s dss t s f s xs ( )

( ), [ , ],

( ) ( , , ( )) ( ) ( , ,



 

    

 

 

0

0 1  









T



t x s ds t( )) , [ , ].0T

0 0

Proof. If x C is a solution of (1.1) – (1.2) then we have

x t ( ) f t x x t( , , ( )),t  t[ , ].0T (2.1)

(3)

Integration by parts gives

x t( )x( )0  tx( )0 



t(t s x s ds ) ( ) .

0

(2.2) Differentiating (2.2), we get

   





x t( ) x( )0 t x s ds( ) .

0

Thus,

   





x T( ) x( )0 Tx s ds( ) .

0

Applying the boundary condition we obtain

 



   x x s ds x

T

( )0 ( ) ( ).0

0

 Thus,

 







x( )0 1 Tx s ds( ) . 10

 (2.3)

Equation (2.2), together with (2.1) and (2.3), imply

x t( ) ( ) t T f s x x s ds( , , ( ))s t(t s f s x x s ds) ( , , ( )) .s





 



 

0 

10 0 (2.4)

Conversely, if x is a solution of equation (2.4) then direct differentiation of (2.4) gives

  



 





x t( ) 1 T f s x x s ds( , , ( ))s t f s x x s ds( , , ( )) ,s

10 0



   

x t( ) f t x x t( , , ( )),t t [ , ].0T Thus,

 







x( )0 1 T f s x x s ds( , , ( )) ,s 10



(4)

 

    

 



x T f s x x s dss f s x x s ds f s x

T

s T

( ) 1 ( , , ( )) ( , , ( )) ( , s

10 0 1





 00

T

x s ds



, ( )) ,

which gives

  

x T( )  0x( ).

The proof of Lemma 2.1 is complete.

Now, using Lemma 2.1 and the Banach contraction theorem, we shall prove the existence and uniqueness of the solution for problem (1.1) – (1.2).

Theorem 2.1. Assume that f C ([ , ] ([ , ], )0T C 0    , ) and there exists m L 1([ , ],0T) such that

f t u z( , , )f t u z( , , )  m t u u( )(  0 z z) (2.5) for all t∈[ , ],0T u u C, ([ , ], ), 0  z z,  ∈ and

M T

( ) ln ,T





1 (2.6)

where M t( ) :



tm r dr( ) .

0

Then problem (1.1) – (1.2) has a unique solution x C . Proof: for x C1([ , ], )0T  let

x e x r x s

s T

M s

r s

1: max0 (max ( )0 ( ) ) ,

[ , ] ( )

[ , ]

 



   



where

T

  1  M Tln

( ). (2.7)

Define an operator

F C: ([ , ], )1 0T  →C1([ , ], )0T

(5)

by the formula

( )( )Fx t ( ) t f s x x s ds( , , ( )) (t s f s x x s d) ( , , ( ))

T

s s

t

 





 



 

0 

10 0 ss,

where x rs( )x s r(  ) (s r ) for s r  0.

For any x y C, ∈ 1([ , ], )0T  and t∈[ , ],0T by (2.5), we have

( )( ) ( )( )Fx t  Fy t  t T f s x x s( , , ( ))s f s y y s ds( , , ( ))s





  

 10





(t s f s x x s ) ( , , ( ))s  f s y y s ds( , , ( ))s 

t 0

 1t T



0m s x y( )



s s 0   x s y s ds( ) ( )







t(t s m s x y ) ( )



s s 0   x s y s ds( ) ( )



0

 1T



Tm s x y



s s 0   x s y s ds



0

( ) ( ) ( )

T m s x y



t



s s    x s y s ds



0 ( ) 0 ( ) ( ) .

Observe that (see[6])

x ys s 0max{ ( )x r y r r ( ) , [ , ]}0s if s [ , ]0  and

x ys s  x r y r r  s

0 max{ ( ) ( ) , [ , ]}0 if s( , ].T

(6)

Therefore,

( )( ) ( )( )Fx tFy t

T1



Tm s eM seM s



r s x r y r    x s y s



0 ( ) ( ) ( ) max ( )0 ( ) ( ) ( )

[ , ] dds

T m s e



t ( ) M s( )eM s( )



rmax ( ) s x r y r ( )   x s y s ds( ) ( )



[ , ]

0 0

 

 T x y m s e ds T x y e ds 



T M s  



t M s



 

1 10 ( ) ( ) 10 ( )

T x y e   M s TT x y eM s t

 

1

1 1

1 0 1 0

( ) ( )

  

 



 

 T x y e M T eM t





 

1 1

( ) ( ) .

It follows from (2.7) that

eM T( )  0 . Consequently,

( )( ) ( )( )Fx t  Fy t T x y e M t( ).





1 (2.8)

Observe that

( ) ( )Fx t f s x x s ds( , , ( ))s f s x x s ds( , , ( )) .

T t

  s





 





1

10 0

 Thus,

( ) ( ) ( ) ( )Fx t  Fy t 1 x y e M t( ).

 1

 (2.9)

(7)

From (2.8), (2.9) and from the definition of the norm ⋅

1,we have

Fx Fy T x y

1 1

1

 . (2.10)

By (2.10) and (2.7), F is a contractive operator. Consequently, by the Banach fixed point theorem, the proof of Theorem 2.1 is complete.

References

[1] Balachandran K., Byszewski L., Kim J. K., Cauchy problem for second order functional differential equations and fractional differential equations, Nonlinear Functional Analysis and Applications, 2019 (in press).

[2] Jankowski T., Functional differential equations of second order, Bull. Belg. Math. Soc. 10, 2003, 291–298.

[3] Li Long Tu, Zhi Cheng Wang, Xiang Zheng Qian, Boundary value problems for second order delay differential equations, Appl. Math. Mech. (English Ed.) 14.6, 1993, 573–580.

[4] Lin Xiao Ning, Xu Xiao Jie, Singular semipositive boundary value problems for second-order delay differential equations, Acta Math. Sci. Ser A (Chin. Ed.) 25.4, 2005, 49–502.

[5] Liu B., Positive solutions of second-order three-point boundary value problems with change of sign, Comput. Math. Appl. 47. 8-9, 2004, 1351–1361.

[6] Skóra L., Second order delay differential equations, Monograph of the Cracow University of Technology, Collective work edited by Jan Koroński, Cracow 2017, 215–229.

[7] Wang Jie, Liu Bing, Positive solutions of boundary value problems for second-order delay differential equations, Ann. Differential Equations 23.2, 2007, 199–208.

Cytaty

Powiązane dokumenty

In this section we establish sufficient conditions for the oscillation of all solutions to (1.2), and give a comparison theorem for the oscillation with the limiting delay

The results obtained in this paper generalize previous ones in [8], where the initial value problem (1.3), (1.4) was considered with g satisfying (1.6) with m = 1/2.. 1991

Ntouyas, The lower and upper solutions method for first order differential inclusions with nonlinear boundary conditions,

We study a nonlinear filtering problem with delay using an approximation result of the Wong-Zakai type for the corresponding Zakai equation with delay.. Their studies

Ibrahim, On existence of monotone solutions for second-order non-convex differential inclusions in infinite dimensional spaces, Portugaliae Mathematica 61 (2) (2004), 231–143..

Key words and phrases: nonlinear differential-functional equations of parabolic and elliptic type, monotone iterative method, method of lower and upper functions, stability

In [4, 7] the authors studied the existence and uniqueness of solutions of classes of initial value problems for functional differential equations with infinite delay and

In this paper, some fixed point principle is applied to prove the existence of solutions for delay second order differential inclusions with three-point boundary conditions in