• Nie Znaleziono Wyników

BFR505

N/A
N/A
Protected

Academic year: 2022

Share "BFR505"

Copied!
12
0
0

Pełen tekst

(1)

DATA SHEET

Product specification

File under Discrete Semiconductors, SC14

September 1995

BFR505

NPN 9 GHz wideband transistor

(2)

FEATURES

• High power gain

• Low noise figure

• High transition frequency

• Gold metallization ensures excellent reliability.

DESCRIPTION

The BFR505 is an npn silicon planar epitaxial transistor, intended for applications in the RF frontend in wideband applications in the GHz range, such as analog and digital cellular telephones, cordless telephones (CT1, CT2, DECT, etc.), radar detectors, pagers and satellite TV tuners (SATV).

The transistor is encapsulated in a plastic SOT23 envelope.

PINNING

PIN DESCRIPTION Code: N30

1 base

2 emitter 3 collector

Fig.1 SOT23.

fpage

MSB003 Top view

1 2

3

QUICK REFERENCE DATA

Note

1. Tsis the temperature at the soldering point of the collector tab.

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

VCBO collector-base voltage open emitter − − 20 V

VCES collector-emitter voltage RBE= 0 − − 15 V

IC DC collector current − − 18 mA

Ptot total power dissipation up to Ts = 135°C; note 1 − − 150 mW

hFE DC current gain IC = 5 mA; VCE = 6 V 60 120 250

Cre feedback capacitance IC= ic= 0; VCB= 6 V; f = 1 MHz − 0.3 − pF

fT transition frequency IC = 5 mA; VCE = 6 V; f = 1 GHz − 9 − GHz

GUM maximum unilateral power gain

IC = 5 mA; VCE = 6 V;

Tamb = 25°C; f = 900 MHz − 17 − dB

IC = 5 mA; VCE = 6 V;

Tamb = 25°C; f = 2 GHz − 10 − dB

S212 insertion power gain IC = 5 mA; VCE = 6 V;

Tamb = 25°C; f = 900 MHz 13 14 − dB

F noise figure Γsopt; IC= 1.25 mA; VCE= 6 V;

Tamb= 25°C; f = 900 MHz − 1.2 1.7 dB Γsopt; IC= 5 mA; VCE= 6 V;

Tamb= 25°C; f = 900 MHz − 1.6 2.1 dB Γsopt; IC= 1.25 mA; VCE= 6 V;

Tamb= 25°C; f = 2 GHz − 1.9 − dB

(3)

LIMITING VALUES

In accordance with the Absolute Maximum System (IEC 134).

THERMAL RESISTANCE

Note

1. Ts is the temperature at the soldering point of the collector tab.

SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT

VCBO collector-base voltage open emitter − 20 V

VCES collector-emitter voltage RBE= 0 − 15 V

VEBO emitter-base voltage − 2.5 V

IC DC collector current continuous − 18 mA

Ptot total power dissipation up to Ts= 135°C; note 1 − 150 mW

Tstg storage temperature −65 150 °C

Tj junction temperature − 175 °C

SYMBOL PARAMETER THERMAL RESISTANCE

Rth j-s from junction to soldering point (note 1) 260 K/W

(4)

CHARACTERISTICS

Tj = 25°C unless otherwise specified.

Notes

1. GUM is the maximum unilateral power gain, assuming S12 is zero and

2. IC= 5 mA; VCE= 6 V; RL= 50Ω; Tamb= 25°C;

fp = 900 MHz; fq= 902 MHz;

measured at f(2p−q)= 898 MHz and f(2q−p)= 904 MHz.

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT

ICBO collector cut-off current IE = 0; VCB = 6 V − − 50 nA

hFE DC current gain IC= 5 mA; VCE = 6 V 60 120 250

Ce emitter capacitance IC = ic= 0; VEB = 0.5 V; f = 1 MHz − 0.4 − pF Cc collector capacitance IE= ie= 0; VCB= 6 V; f = 1 MHz − 0.4 − pF

Cre feedback capacitance IC= 0; VCB= 6 V; f = 1 MHz − 0.3 − pF

fT transition frequency IC = 5 mA; VCE = 6 V; f = 1 GHz − 9 − GHz

GUM maximum unilateral power gain (note 1)

IC = 5 mA; VCE = 6 V;

Tamb = 25°C; f = 900 MHz − 17 − dB

IC = 5 mA; VCE = 6 V;

Tamb = 25°C; f = 2 GHz − 10 − dB

S212 insertion power gain IC = 5 mA; VCE = 6 V;

Tamb = 25°C; f = 900 MHz 13 14 − dB

F noise figure Γsopt; IC= 5 mA; VCE= 6 V;

Tamb= 25°C; f = 900 MHz − 1.2 1.7 dB Γsopt; IC= 5 mA; VCE= 6 V;

Tamb= 25°C; f = 900 MHz − 1.6 2.1 dB Γsopt; IC= 5 mA; VCE= 6 V;

Tamb= 25°C; f = 2 GHz − 1.9 − dB

PL1 output power at 1 dB gain compression

IC= 5 mA; VCE= 6 V; RL= 50Ω;

Tamb= 25°C; f = 900 MHz − 4 − dBm

ITO third order intercept point note 2 − 10 − dBm

GUM 10 S212

1– S112

 

 1– S222 ---dB.

log

=

(5)

Fig.2 Power derating curve.

handbook, halfpage

0 50 100 200

200

150

50

0 100

MRA718 - 1

150 Ptot

(mW)

Ts(oC)

Fig.3 DC current gain as a function of collector current.

VCE= 6 V.

handbook, halfpage

MRA719

0 250

50 100 150 200 hFE

IC (mA) 102 101

103 1 10 102

Fig.4 Feedback capacitance as a function of collector-base voltage.

Ic = 0; f = 1 MHz.

handbook, halfpage

0 2 10

0.4 Cre (pF) 0.3

0.1

0 0.2

4 6 8

VCB (V) MRA720

Fig.5 Transition frequency as a function of collector current.

Tamb= 25°C; f = 1 GHz.

MRA721

102

101 1 10

4 8 12

fT (GHz)

IC (mA) VCE = 3V VCE = 6V

(6)

Fig.6 Gain as a function of collector current.

VCE= 6 V; f = 900 MHz.

handbook, halfpage

0 4

IC (mA)

8 12

25

0 20

15 gain (dB)

10

5

MRA764

MSG GUM

Fig.7 Gain as a function of collector current.

VCE= 6 V; f = 2 GHz.

handbook, halfpage

0 4

IC (mA)

8 12

25

0 20

15 gain (dB)

10

5

MRA765

MSG

GUM Gmax

Fig.8 Gain as a function of frequency.

VCE= 6 V; Ic= 1.25 mA.

handbook, halfpage50 gain (dB)

0 10

MRA766

102 103 104

10 20 30

f (MHz) 40

MSG GUM

Gmax

Fig.9 Gain as a function of frequency.

VCE= 6 V; Ic= 5 mA.

handbook, halfpage50 gain (dB)

0 10

MRA767

102 103 104

10 20 30

f (MHz) 40

Gmax GUM

MSG

(7)

Fig.10 Minimum noise figure and associated available gain as functions of collector current.

VCE= 6 V.

handbook, halfpage5

0 1

2 5

0

−5 10 Gass

(dB) 15 20

3 Fmin (dB)

IC (mA) 4

MRA726

1 10 2000 MHz 1000 MHz

2000 MHz 1000 MHz f = 900 MHz

Fmin 900 MHz

500 MHz

Gass

101

Fig.11 Minimum noise figure and associated available gain as functions of frequency.

VCE= 6 V.

handbook, halfpage5

0 1

2 5

0

−5 10 Gass

(dB) 15 20

3 Fmin (dB)

f (MHz) 4

MRA727

102 103 104

Gass

5 mA

Fmin 5 mA IC = 1.25 mA

1.25 mA

handbook, full pagewidth

MRA728 0 0.2 0.6

0.4 0.8 1.0

1.0 5

2 1

0.5

0.2

0

0.2

0.5

1

2 5

0.2 0.5 1

180°

−135°

−90°

−45°

45°

90°

135°

stability circle

pot. unst.

region

F = 3 dB F = 2 dB

F = 1.5 dB ΓOPT

5 Fmin = 1. 2 dB

Fig.12 Noise circle figure.

Zo= 50Ω.

VCE= 6 V; IC= 5 mA; f = 900 MHz.

(8)

handbook, full pagewidth

MRA729 0 0.2 0.6

0.4 0.8 1.0

1.0 5

2 1

0.5

0.2

0

0.2

0.5

1

2 5

0.2 0.5 2 5

180°

−135°

−90°

−45°

45°

90°

135°

stability circle

pot. unst.

region

F = 3 dB

F = 4 dB F = 2.5 dB

ΓOPT

1

Fmin = 1. 9 dB

Fig.13 Noise circle figure.

Zo= 50Ω.

VCE= 6 V; IC= 5 mA; f = 2000 MHz.

(9)

MRA722 0 0.2 0.6

0.4 0.8 1.0

1.0 5

2 1

0.5

0.2

0

0.2

0.5

1

2 5

0.2 0.5 1 2 5

180°

−135°

−90°

−45°

45°

90°

135°

40 MHz 3 GHz

Fig.14 Common emitter input reflection coefficient (S11).

VCE= 6 V; IC= 5 mA.

Zo= 50Ω.

handbook, full pagewidth

MRA723

15 12 9 6 3

180°

−135°

−90°

−45°

45°

90°

135°

40 MHz 3 GHz

Fig.15 Common emitter forward transmission coefficient (S21).

VCE= 6 V; IC= 5 mA.

(10)

handbook, full pagewidth

MRA724 0.5 0.4 0.3 0.2 0.1

180°

−90°

−135° −45°

45°

90°

135°

3 GHz

40 MHz

Fig.16 Common emitter reverse transmission coefficient (S12).

VCE= 6 V; IC= 5 mA.

handbook, full pagewidth

MRA725 0 0.2 0.6

0.4 0.8 1.0

1.0 5

2 1

0.5

0.2

0

0.2

0.5

1

2 5

0.2 0.5 1 2 5

180°

−135°

−90°

−45°

45°

90°

135°

3 GHz

40 MHz

Fig.17 Common emitter output reflection coefficient (S22).

VCE= 6 V; IC= 5 mA.

Zo= 50Ω.

(11)

PACKAGE OUTLINE

UNIT A1

max. bp c D E e1 HE Lp Q v w

REFERENCES OUTLINE

VERSION

EUROPEAN

PROJECTION ISSUE DATE 97-02-28

IEC JEDEC EIAJ

mm 0.1 0.48

0.38 0.15 0.09

3.0 2.8

1.4

1.2 0.95

e

1.9 2.5

2.1

0.55

0.45 0.2 0.1 DIMENSIONS (mm are the original dimensions)

0.45 0.15

SOT23

bp D

e1 e

A

A1

Lp Q

detail X HE

E

wM

v M A

B

A B

0 1 2 mm

scale

A 1.1 0.9

c X

1 2

3

Plastic surface mounted package; 3 leads SOT23

(12)

DEFINITIONS

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Data Sheet Status

Objective specification This data sheet contains target or goal specifications for product development.

Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.

Product specification This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

Cytaty

Powiązane dokumenty

Młodzi nie spełnili więc oczekiwań, ale to właśnie — paradoksalnie — stało się ich atutem; nie realizowali „programu" młodej literatury sformułowanego przez

Warto zadać pytanie, jaka wizja epoki Młodej Polski jako całości wyłania się z książki Wojciecha Gutowskiego.. Inne, ściśle związane z

and v can not be together the extremal points. classical families of univalent functions, Trans.. Stankiewicz, J., Neighbourhoods of meromorpnic functions and Hadamard products,

The ability of a transformer based tank to show different differential and common mode resonance frequencies are exploited to introduce a wide tuning range oscillator with a size of

6 RANS simulation of model in the wind tunnel; upper left: set-up; upper right: vortical structures in the simulation; lower left: comparison of wall streamlines and oil flow;

A recently emerging approach based on the use of the cellular automata (CA) para- digm is aimed at addressing the automated combined analysis and design of one-, two-,

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright

The functionality provided by the DLF application is based on atomic services implemented by the dLibra framework. However, it is imported to note that any other digital