• Nie Znaleziono Wyników

BUW34

N/A
N/A
Protected

Academic year: 2022

Share "BUW34"

Copied!
8
0
0

Pełen tekst

(1)

BUW36

SGS-THOMSON

HIGH VOLTAGE POWER SWITCH

DESCRIPTIO N

The BUW34, BUW35 and BUW36 are silicon mul- tiepitaxial mesa NPN transistors in Jedec TO-3 me­

tal case. They are intended for high voltage, fast switching applications.

ABSOLUTE M AXIMUM RATINGS

Symbol Parameter

Value BUW34 BUW35 BUW36 Unit

V c E S Collector-emitter Voltage (Vbe = 0 ) 500 800 900 V

V c E O Collector-emitter Voltage ( Ib = 0) 400 400 450 V

Ve b o Emitter-base Voltage ( l c = 0) 7 V

l c Collector Current 10 A

IcM Collector Peak Current 15 A

b Base Current 5 A

P tot Total Power Dissipation at T cass < 25 °C 125 W

T stg Storage Temperature - 65 to 200

°C

Ti Junction Temperature 200 °C

November 1988 1/8

(2)

THERMAL DATA

R th j-Ci Thermal Resistance Junction-case max 1.4 “C/W

ELECTRICAL CHARACTERISTICS (Tcase = 25 °C unless otherwise specified)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

Ic e s Collector Cutoff Current> m II O for

BUW34

V Ce = 500 V 500 pA

for

BUW35

VCE = 800 V 500 pA

for

BUW36

V CE = 900 V 500 pA

Tease = 125 °C

for

BUW34

VCE = 500 V 3 mA

for

BUW35

VCe = 800 V 3 mA

for

BUW36

V CE = 900 V 3 mA

Ie b o Emitter Cutoff Current

(lc = 0)

>iiCDLU>

1 mA

VcEO(sus)* Collector-emitter Sustaining lc = 100 mA

Voltage (lB = 0) for

BUW34

400 V

for

BUW35

400 V

for

BUW36

450 V

VcE(sal)' Collector-emitter Saturation All Types lc = 5 A 1.5 V

Voltage

for

BUW35

Is = 1 A lc = 8 A lB = 2.5 A

1.5 V

for

BUW36

lc = 8 A lB = 2.5 A

3 V

VBE(sat)* Base-emitter Saturation All Types lc = 5 A 1.5 V

Voltage

for

BUW35

lB = 1 A lc = 8 A lB = 2.5 A

1.8 V

for

BUW36

lc = 8 A lB = 2.5 A

1.8 V

RESISTIVE SWITCHING TIMES (see fig. 1)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

t o n Turn-on Time |c = 5 A. l Bi = 1 A, V cc = 2 5 0 V 0.70 ps

ts Storage Time l c = 5 A, IB1 = 1 A

l B 2 = - 1 A V cc = 2 5 0 V

3 ps

t» Fall Time 0.8 ps

INDUCTIVE SWITCHING TIMES (see fig. 2)

Symbol Parameter Test Conditions Min. Typ. Max. Unit

t f F a l l T i m e

lc = 5 A I

b

1

=

1 A

V

be

= - 5 V Vcc

=

300 V 0.3

p s

Tcase = 1 00 °C

o li U1 > CD II >

V

be=

- 5 V Vcc

=

300 V 0.6

p s

Pulsed: pulse duration < 300 us. duty cycle < 1.5 %.

2/8

T SGS-THOMSON

“ ■/# MCWmECTBWra

(3)

Safe Operating Areas.

G- 3686

Vce (V ) X)

Clamped Reverse Bias Safe Operating Areas.

G-«*J

Forward Biased Accidental Overload Area (see Derating Curves, fig. 3).

Transient Thermal Response. DC Current Gain.

0.5 2 3.5 5 6.5 8 9.5 I C(A)

^ 7 SGS-THOMSON

MMSmJCTRSMC*

3/8

(4)

Saturation Voltages.

0 2 4 6 l c ( A )

Collector Current Spread vs. Base Emitter Voltage.

b-lHl

'c ( A )

12

10

8

6

4

2 VC £ = '”

C o n fid e n ce te vei . 9 0 1 .

/ I

$

i n

$ r

0 0l6 1 12

Switching Times Resistive Load (see fig. 1).

Collector-emitter Saturation Voltage.

0 -SJU

Switching Time Percentage Variation vs. case Temperature.

25 50 7b 100 '^ c e s e * * 0

Switching Time Inductive Load (see fig. 2).

0 2 4 6 6 I c < A )

10

0 13 3 4.5 6 7.5 9 Ic < A>

4/8 f Z T SGS-THOMSON

^ 7 # fMCa@BJCTROMCS

(5)

Switching Time Inductive Load vs. Case Temperature.

25 5 0 75 100 Tcase<*C>

Dynamic Collector-emitter Saturation Voltage (see fig. 4).

o ' 2 3 lo l)2 ( , » )

Fall Times vs. L

b

(see fig. 2).

0 2 3 4 5 6 Lb( pH)

SGS-THOMSON

tm ctnxm acm am icx

5/8

(6)

Figure 1 : Switching Times Test Circuit on resistive Load.

Figure 2 : Switching Times Test Circuit on Inductive Load with Ad without Antisaturation Network.

+ 6V

D1, D2 - Fast recovery diodes

Q1, 0 2 - Transistors SGS: 2N519 1 ,2N5195.

r r Z

SCS-THOMSON

^ 7 # fSICCSmBBTRMDB*

6/8

(7)

Figure 3 : Forward Biased Accidental Over Load Area Test Circuit.

vo

Figure 4 :

Vc e (sat)

Dyn. Test Circuit.

*vBB = n v

SCS-THOMSON

KlCT*0@ J!Cim ® »KS5

7/8

(8)

Figure 5 : Equivalent Input Schematic at Turn-on.

c

if C x>Cj AV0 = AVj s-6605/1

Figure 6

:

Remarks to

Vc e (sat)

Dyn. Test Circuit (fig. 4).

VCE M

90*/.-

Y <

^CE(sat)dyn-

T T V

vCE(sat) — r

1

*002 j

!b

1

t S-660 J

The speed-up capacitor decreases the Vce (sat) dyn. as shown in diagram (figure 6). The 50 nF capacitor modifies the shape of base current with a overshoot.

8/8

SGS-THOM SON

Cytaty

Powiązane dokumenty

Despite all the differences, many researchers aiming to create an intelligence test for blind (overall for both congenitally and late blind) or visually impaired individu- als

the width兲 is in agreement with the corner effect since the longer depletion length of the undoped silicon gives smoother potential variations and therefore wider channels along

These aspects consist of: linear ordering of landmarks and street segments along a route, cyclic ordering of landmarks and street segments around reference junctions, rel-

The databases compiled by means of MapInfo GIS software are the fundamental sources of spatial-digital information for Pomeranian Voivodeship: about 60 data

The results of the electrical measurements are summarized in Table 7.1, where three types of silicon-on-glass VDMOSFETs are compared to the ref- erence production-line

To determine whether silicate accumulation in yeast cells (i.e., in the cell or on the cell wall) takes place, and to choose the experimental conditions for the other experiments,

those which leave the exterior and interior region setwise invariant (called exterior diffeomorphisms), like the exchange of two diffeomorphic primes,.. special diffeomorphisms not

It follows that the class α is represented by the subscheme of B A corresponding to complete quadrics that are tangent to m i given codimension-i planes in general position in Q and