• Nie Znaleziono Wyników

Unveiling the consequences of your breach growth model choice

N/A
N/A
Protected

Academic year: 2021

Share "Unveiling the consequences of your breach growth model choice"

Copied!
6
0
0

Pełen tekst

(1)Delft University of Technology. Unveiling the consequences of your breach growth model choice Peeters, Patrik; Heredia Gomez, M.; van Damme, Myron; Visser, Paul DOI 10.1051/e3sconf/20160703005 Publication date 2016 Document Version Final published version Published in Flood Risk 2016. Citation (APA) Peeters, P., Heredia Gomez, M., van Damme, M., & Visser, P. (2016). Unveiling the consequences of your breach growth model choice. In M. Lang, F. Klijn, & P. Samuels (Eds.), Flood Risk 2016: 3rd European Conference on Flood Risk Management, Lyon, France. Lyon, France, October 17-21, 2016 (Vol. 7, pp. 1-5). (E3S Web of Conferences; Vol. 7, No. 03005). EDP Science. https://doi.org/10.1051/e3sconf/20160703005 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above.. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10..

(2) E3S Web of Conferences 7, 03005 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703005. Unveiling the consequences of your breach growth model choice P. Peeters. 1,2,a. 3. 2. , M. Heredia Gomez , M. van Damme , P.J. Visser. 2. 1. Flanders Hydraulics Research, Flemish Authorities, Antwerp, Belgium Department of Hydraulic Engineering, Delft University of Technology, Delft, The Netherlands Antea Group, Ghent, Belgium. 2 3. Abstract. Within the frame work of the realis 

(3)    

(4)       large-scale dike breaching experiment following overflow was held at Lillo (Antwerp) in 2012. The outcomes of the breach test serve to unveil the impact of a chosen breach growth model, to set application limits, to come up with guidelines for proper selection and usage of the model to be applied.. Breach growth models are used to predict the breach dimensions and to estimate the flow through the breach. All assessed models pretty well succeed in this. However, starting from various premises and taking into account a (limited) set of different breaching mechanisms, the use of today  -of-the-art breach growth models is not entirely trouble free. 1 Introduction Within the frame work of the realization of the

(5)      

(6)        large-scale dike breaching experiments following overflow are organised. The setup and outcomes of one of these field tests, the so-  ! "   described by [1]. In this study, 6 breach growth models           ! #     $ Following these simulations, results, limitations and pitfalls are discussed in this paper.. 2 Applied breach growth models   

(7) 

(8)     

(9)               

(10)  

(11)    

(12)     

(13)         

(14)     

(15)     

(16)    

(17)   

(18)            

(19) 

(20) 

(21)    

(22) 

(23)   

(24)            

(25)     

(26)       

(27)    

(28)      a. 2.1 Breaching module in MIKE (DHI) !  "##  

(29)     

(30)      

(31)

(32)   

(33)  

(34)     

(35)    

(36)    

(37)                $  % &  

(38)   $%   '( ))( * +( ( 

(39)       ,      -  $./%       $ %

(40)       

(41)  

(42)          $W% 0 

(43) 

(44)    1     2  

(45)  

(46) 

(47)     

(48)  

(49)  

(50)    

(51)  

(52) 

(53) 

(54) 

(55)        

(56)    

(57)     

(58)    

(59)   

(60)  * 1

(61) 

(62)   $*1% 2.2 Breaching module in IWRS (HR Wallingford) ! 234

(63)   

(64)       

(65)    

(66)     

(67) 

(68)   

(69)     &  

(70)  

(71) 

(72)       , 

(73)    

(74)     , 

(75)      

(76)     

(77)  

(78)   

(79)    

(80)    2  23 4       

(81)  2 . Corresponding author: patrik.peeters@mow.vlaanderen.be. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(82) E3S Web of Conferences 7, 03005 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703005.      

(83) 

(84) 

(85) 

(86)    

(87)      

(88)       

(89)      

(90)          

(91)   

(92)            

(93)  

(94) -

(95)  

(96)  

(97) 

(98)  B      

(99)     

(100)   

(101)         

(102)         

(103)  

(104) -

(105)  

(106) 

(107) 

(108)      

(109)  4 

(110)   

(111)                 

(112) 

(113)  $         % 

(114)   

(115)    

(116) 

(117) 

(118)     

(119) 

(120)    

(121)  

(122)     

(123)      

(124)   

(125)     

(126) 

(127)      

(128)          

(129)  

(130)  

(131)  

(132)    

(133)    

(134)         

(135)   

(136) 

(137)   567    

(138)         #C//    

(139) 

(140)   . 

(141)  

(142) 

(143) 

(144)  

(145)    

(146)  

(147) 

(148) 567 

(149) 

(150) 

(151)      

(152)     2

(153)    

(154)  

(155) 

(156) 567 

(157) 

(158)  

(159) 

(160)     

(161)    

(162) 

(163)  

(164)      

(165)  *   

(166) 

(167)    

(168) 

(169)      

(170)  &    

(171)     

(172)    

(173)  

(174)   

(175)    

(176) 

(177)  89! 

(178)  : 

(179) 

(180) 

(181)   

(182)   

(183)         

(184) 

(185) 4

(186)    

(187)   

(188)    

(189)   

(190)  2.3 Breaching in accordance with the Verheijvan der Knaap (V-vdK) breach growth formula  ;<   =   

(191) 

(192)   5>7    

(193) 

(194)        ;=

(195)  .   

(196)  

(197) 

(198)       

(199)           

(200) 

(201)   

(202)            

(203)              *

(204)     

(205) 

(206) 

(207)      

(208)           #   6  

(209)  

(210)  

(211)       

(212) 

(213)   8

(214)   

(215)  

(216) 

(217)  

(218)     

(219)  

(220)    

(221)  

(222)    

(223)   

(224)  

(225) 

(226)        

(227)           

(228)     . 3 Site-specific input data 3.1 Dike/Breach geometry Lillo A experiment  #     #        

(229) 

(230)  

(231)                

(232)  6

(233)  

(234)   

(235) 

(236) 

(237)            

(238)   . 2.4 BRES-Visser (TU Delft) [4]. 8  

(239) 

(240)  8  :   

(241)  3  

(242)     I. &!  G/ &!  E. &!    

(243)    I. &!   G/ &!  $% J

(244)  J

(245) &. &     

(246)       .      

(247)   * 

(248)  "##   

(249)   $%          

(250)  

(251)   

(252)     

(253) 

(254)        $W%         

(255)   

(256) 8?$    . 

(257) 

(258) 8./%        

(259)  

(260) 

(261) 

(262)      

(263)    *  0  *              

(264)        

(265)  

(266)      *  ;  ;

(267)    

(268) 

(269)    

(270)     

(271) 

(272) 

(273)  @+ ( 

(274) (  ( ( 

(275) (  

(276)  

(277)      

(278) *    

(279)   

(280) * ; ;   

(281)       8      

(282) 

(283)      

(284)   

(285)  *   

(286)  ; $ %  

(287) 

(288)    

(289) 

(290)     

(291) 

(292) . $%.  2.5 AREBA (TU Delft) &

(293)  

(294) 5.7 

(295) 

(296)  &314& A8

(297) 

(298)   

(299) 

(300)  > 

(301)      

(302)   

(303) 

(304) 

(305)  8    

(306)      

(307)  

(308)      

(309)   

(310)    . 2. DE.&!$% 6F&! D./ D>6$.GH% D>6$.GH% DI.&! D#/ D6.$% DC/ D6#$G>H%$% DC$%% DE/ D6// I/&! #>.  8 

(311) 

(312)    

(313) . ! 234 

(314)   , 

(315) G/&! $% 3   

(316) E.&!, 

(317) I $%   

(318) 

(319)      

(320) "=1 $%   

(321) 234.

(322) E3S Web of Conferences 7, 03005 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703005. Figure 2. Position of the headcut. 4.2 Vertical and lateral breach growth. . 

(323) 

(324)  

(325)    

(326)   

(327)      > I 

(328)  

(329)   "=1   23 4 

(330)       

(331)  

(332) 

(333)       ;= 431*;   &314&A8

(334) 

(335) 

(336)  ,  

(337)  

(338)  

(339)   =  

(340)  

(341)      

(342) >6&! 66        

(343)               

(344)     

(345)   

(346)  

(347)  

(348) 

(349)   

(350)     431*;       ,   

(351) 

(352)      

(353)     

(354)   

(355)  23 4   &314&   

(356)     

(357)     4

(358)  

(359) 

(360) 

(361)        "=1  

(362)  

(363)    

(364)  

(365)  

(366)  

(367)        

(368)  

(369)      3   

(370)        

(371)   ;=    23 4 

(372) 

(373) 

(374)  

(375) 6/

(376) 

(377)    "=1 431*;    &314&A8 .     .  Figure 1. * 

(378) 

(379)  

(380) 

(381)  

(382)  $

(383)   / /% 

(384)    

(385)   .$

(386) 

(387)  

(388) :

(389) &

(390)   *%$8   

(391)  

(392) 

(393)     

(394) %. 3.2 Dike material characteristics !       

(395)        

(396)       

(397)           

(398)   6. 4 Results and discussion 4.1 Headcut migration 

(399)    6        23 4   &314&A8      

(400)    .     

(401)  A     

(402) 

(403) 

(404)   431*;  

(405)

(406)  , $ % . Figure 3. Breach crest level. 3.

(407) E3S Web of Conferences 7, 03005 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703005. "## $"

(408) %. 234. ;=. 431* ; . &314& A8. 8A !$09K%. . #E/. . . . * @9 * 8 $9L%.

(409) . . .

(410) . . 8#/$%. . . . ///6. . 8./$%. //I. //I. . //.I?. . 8F/$%. . . . /#>. . >.. >.. . >.. . 

(411) & 9& 

(412) 

(413) $H%. . 66. . 66. 66. N

(414)  

(415) $09K%. . 6/. . . 6/. . >#. . . . . . . . ///. /6. . . F. "   +( . . . . . . $9 %. . . /# #//. . . W$09K%. . . .  . . . #> /#6.. "

(416) . . #$%%&. . . /../. . . . //# #/. . . 

(417) 

(418)  $ %. . 66. . . 

(419) 

(420)   N . . .

(421) . . . J

(422) 

(423) $M%.  >. 1

(424) N

(425)   $ O0P Q 2 

(426) 

(427)   . *  

(428)  *1#98!

(429)  # 6.     . 

(430) 

(431)     # ''     8./   431*;    J

(432)  

(433)     

(434) 

(435) . . 4.   !.

(436) E3S Web of Conferences 7, 03005 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0703005. The good news is that most/all models provide useful results starting from the same input regarding the strength parameters. In some cases (HR Breach, V-vdK) foreknowledge comes in handy or is even needed. It should be clear that although there is a tendency towards a general consensus for the (whole) breaching process, the sequential approach is not hard coded in every breach model. Except for V-vdK, lateral growth is directly related to the vertical growth. Only AREBA-TUD and HR Breach take a varying discharge coefficient into account in order to account for the occurende of so-called converging flow. Taking into account retrograde erosion/headcut migration has an important influence on the timing of the peak flow through the breach. Finally, it is recommend not to use terms like inner and outer slope, but rather river- and landside or core and top layer..  Figure 4. Breach growth in width.. 4.3 Breach flow    

(437)      

(438)    $

(439)   %  

(440) 

(441)    $   9   

(442)    % 

(443) 

(444)   

(445)  

(446)  $ .% 4

(447)     

(448)  

(449)        

(450)  

(451)    66     

(452)       

(453)   

(454)    ;= &

(455)  

(456)     

(457)      

(458)    2

(459)   

(460)   

(461) 

(462) 

(463) . 6 References #. 6. > I . Figure 5. Breach Flow.. 5 Conclusions Prior to discussing the results and differences between the applied breach models, it is stressed that all breach models should be used with care as well as caution and do need specialised expertise and relevant experience. Whether certain software does not allow for negative flow conditions (HR Breach, BRES-Visser, AREBATUD), how downstream water levels are calculated (BRES-Visser) and that too large differences between dike and breach crest result in instabilities (HR Breach, AREBA-TUD), if a  

(464)     

(465) 

(466)     

(467)     is taking into account (HR Breach) can hardly be derived when reading manuals only.. 5. J  JR S

(468)  @R  ;

(469)  :R ;  JT $6/#I% :          :

(470)  4  N :$1%$6/#.% J

(471)   

(472) E  

(473) N

(474)  

(475)  *

(476)  1

(477) 

(478) N*16/#IA  

(479)  !   & J & 6I8 6/#I6CF6FE  8" 2

(480)  @T 0   ":   N

(481)

(482)  =3 $6//.% U*       

(483) 

(484)  

(485) 

(486)  

(487)      J # 4

(488)    

(489)  

(490) 

(491)   U 6. &  A**8 N

(492)   * : N A A*& G #/T 6//. ;< 2 T $6//>% &        

(493) 

(494)    2*B"    3

(495)  V>6FF8 2  8  ;  JT $#FFC% 4 

(496)       J8    8  A  

(497)  

(498) 

(499)  8  " ;  8 $6/#.% 3    

(500)  &314&.

(501)

Cytaty

Powiązane dokumenty