• Nie Znaleziono Wyników

Vertical plane motions of SWATH ships in regular waves

N/A
N/A
Protected

Academic year: 2021

Share "Vertical plane motions of SWATH ships in regular waves"

Copied!
110
0
0

Pełen tekst

(1)

/ /

D A V I D W . T A Y L O R N A V A L S H I P

R E S E A R C H A N D D E V E L O P M E N T C E N T E R

Bethesda, Maryland 20084

VERTICAL PLANE MOTIONS OF SWATH SHIPS I N REGULAR WAVES By K.K. M c C r e i g h t and Ralph S t a h l Approved f o r P u b l i c Release: D i s t r i b u t i o n U n l i m i t e d

Ship Performance Department

(2)

D T N S R D C COMMANDER 00 T E C H N I C A L D I R E C T O R 01 O F F I C E R - I N - C H A R G E C A R D E R O C K S Y S T E M S D E V E L O P M E N T D E P A R T M E N T I! SHIP P E R F O R M A N C E D E P A R T M E N T 15 S T R U C T U R E S D E P A R T M E N T 1/ SHIP A C O U S T I C S D E P A R T M E N T 19 SHIP M A T E R I A L S E N G I N E E R I N G D E P A R T M E N T O F F I C E R - I N - C H A R G E ANNAPOLIS 04 A V I A T I O N AND S U R F A C E E F F E C T S D E P A R T M E N T Ki COMPUTATION, MATHEMATICS AND L O G I S T I C S D E P A R T M E N T 18 PROPULSION AND A U X I L I A R Y S Y S T E M S D E P A R T M E N T 27 C E N T R A L I N S T R U M E N T A T I O N D E P A R T M E N T 29

(3)

UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Date Entered)

R E P O R T D O C U M E N T A T I O N P A G E R E A D I N S T R U C T I O N S B E F O R E C O M P L E T I N G F O R M 1. R E P O R T N U M B E R DTNSRDC/SPD - 1076-01 2. G O V T A C C E S S I O N NO. 3. R E C I P I E N T ' S C A T A L O G N U M B E R «. T I T L E (and Subtitle)

V e r t i c a l Plane M o t i o n s o f SWATH Ships i n Regular Waves

5. T Y P E O F R E P O R T & P E R I O D C O V E R E D «. T I T L E (and Subtitle)

V e r t i c a l Plane M o t i o n s o f SWATH Ships i n

Regular Waves 6. P E R F O R M I N G O R G . R E P O R T N U M B E R 7. A U T H O R C s ;

K.K. McCREIGHT and RALPH STAHL

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E AND A D D R E S S David T a y l o r Naval Ship R&D Center Ship Performance Department

Bethesda. M a r y l a n d 20084 10. P R O G R A M E L E M E N T , P R O J E C T , T A S K A R E A a WORK U N I T N U M B E R S 11. C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S 12. R E P O R T D A T E June 1983 11. C O N T R O L L I N G O F F I C E N A M E A N D A D D R E S S 13. N U M B E R O F P A G E S 108

U . M O N I T O R I N G A G E N C Y N A M E & f',DDRESS(ll dlllerent Irom Controlling Ollice) 15. S E C U R I T Y C L A S S , (ol thIa report) UNCLASSIFIED

U . M O N I T O R I N G A G E N C Y N A M E & f',DDRESS(ll dlllerent Irom Controlling Ollice)

15a, D E C L ASSI n c A T I O N / D O W N G R A D I N G S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T Co/ (fi(s ReporO

Approved f o r P u b l i c Release: D i s t r i b u t i o n U n l i m i t e d

17. D I S T R I B U T I O N S T A T E M E N T (ol the abstract entered In Block 20, ll dlllerent Irom Report)

18. S U P P L E M E N T A R Y N O T E S

I 19. K E Y W O R D S (Continue on reverse aide ll necessary and Identlly by block number)

S m a l l - W a t e r p l a n e - Area, Twin H u l l S h i p s , Ship M o t i o n i n Waves

I 20. A B S T R A C T (Continue on reverae side II necessary and Identity by block number)

The v e r t i c a l p l a n e m o t i o n s o f SWATH s h i p s a r e t h e o r e t i c a l l y modeled. S t r i p t h e o r y i s used t o e v a l u a t e hydrodynamic f o r c e s . C o n t r i b u t i o n s due t o body l i f t c r o s s f l o w d r a g , and f i n l i f t dominate t h e damping c o e f f i c i e n t s . C o n s e q u e n t l y , t h e i r a c c u r a t e m o d e l i n g i s v i t a l t o t h e a c c u r a c y o f m o t i o n p r e d i c t i o n s ,

(4)

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Dale Entered)

have been u t i l i z e d i n t h i s development. C o r r e l a t i o n between p r e d i c t e d and e x p e r i m e n t a l r e s u l t s a r e p r e s e n t e d f o r hydrodynamic c o e f f i c i e n t s , e x c i t i n g f o r c e and moment, and r e s p o n s e s t o r e g u l a r waves.. The e x p r e s s i o n s d e v e l o p e d r e s u l t i n c o r r e l a t i o n w h i c h i s good and w h i c h i s n o t a b l y b e t t e r t h a n r e s u l t s r e p o r t e d p r e v i o u s l y .

(5)

TABLE OF CONTENTS Page LIST OF FIGURES ^ LIST OF TABLES . NOTATION AESTPACT I ADMINISTRATIVE INFORMATION ' . . . . l INTRODUCTION j EQUATIONS OF MOTION 2

HYDRODYNAMIC COEFFICIENTS AND EXCITING FORCES AND MOMENT 3

COMPARISON BETWEEN RESULTS FROM EXPERIMENT AND PREDICTION 4

ADDED MASS AND DAMPING 5 WAVE EXCITING HEAVE FORCE AND PITCH MOMENT 6

RESPONSES TO REGULAR WAVES 6

DISCUSSION 6

CONCLUSIONS AND RECOMMENDATIONS 9

ACKNOWLEDGEMENTS 9

REFERENCES 11

APPENDIX A - FREQUENCY DEPENDENT HYDRODYNAMIC COEFFICIENTS,

FORCES AND MOMENTS 74

AJ'PENDIX B - POTENTIAL FLOW COMPONENTS 83

APPENDIX C - VISCOUS COMPONENTS 87

LIST OF FIGURES

1 - Comparison between Experiment and P r e d i c t i o n f o r Added Mass and Damping C o e f f i c i e n t s o f t h e SWATH 6A (Bare H u l l ) f o r

(6)

Force and P i t c h E x c i t i n g Moment f o r t h e SWATH 6D 33

4 - Comparison between E x p e r i m e n t and P r e d i c t i o n o f Heave E x c i t i n g Force and P i t c h E x c i t i n g Moment f o r t h e SSP KAIMALINO i n

Head Waves •

6 - Comparison between E x p e r i m e n t and P r e d i c t i o n o f Regular Wave T r a n s f e r F u n c t i o n s f o r t h e SWATH 6B

7 - Comparison between E x p e r i m e n t and P r e d i c t i o n o f Regular Wave T r a n s f e r F u n c t i o n s f o r t h e SWATH 6C

8 - Comparison between Experiment and P r e d i c t i o n o f Regular Wave T r a n s f e r F u n c t i o n s f o r t h e SWATH 6D

a - Drag and I n e r t i a C o e f f i c i e n t s v e r s u s K e u l e g a n - C a r p e n t e r Number f o r C o n s t a n t V a l u e s o f t h e Frequency Parameter (From Reference 5)

10 - The Drag C o e f f i c i e n t o f F l a t P l a t e ( + ) , Diamond « » and C i r c u l a r ( O ) C y l i n d e r s a t Low KC (From Reference 6)

11 - E x p e r i m e n t - P r e d i c t i o n Comparison f o r Damping C o e f f i c i e n t w i t h No C o r r e c t i o n f o r C_, 12 - E x p e r i m e n t - P r e d i c t i o n Comparison f o r Damping C o e f f i c i e n t f o r Two-Dimensional C y l i n d e r s LIST OF TABLES 1 - F u l l - s c a l e P a r t i c u l a r s o f SWATH C o n f i g u r a t i o n s 2 - P a r t i c u l a r s o f S t a b i l i z i n g F i n s

3 - N o n d i m e n s i o n a l i z a t i o n F a c t o r s f o r Added Mass, Damping, Wave E x c i t i n g F o r c e , and Wave E x c i t i n g Moment

4 - R a t i o o f L i f t on A f t F i n t o L i f t on Forward F i n f o r V a r i o u s F i n S e p a r a t i o n s and O s c i l l a t i o n Frequency t o Speed R a t i o s

45

5 - Comparison between E x p e r i m e n t and P r e d i c t i o n o f R e g u l a r Wave

T r a n s f e r F u n c t i o n s f o r t h e SWATH 6A 51 56 61 66 80 96 97 14 15 16 82

(7)

NOTATION

A A m p l i t u d e o f i n c i d e n t wave

AR E f f e c t i v e a s p e c t r a t i o o f s t a b i l i z i n g f i n

A. . Added mass c o e f f i c i e n t f o r t h e i * ^ ^ mode due t o m o t i o n i n t h e j * ^ ^ mode ( j = 1 f o r s u r g e , j = 3 f o r heave, j = 5 f o r p i t c h ) A n P r o j e c t e d a r e a o f s t a b i l i z i n g f i n A o C h a r a c t e r i s t i c body a r e a A P P r o j e c t e d area o f body A w W a t e r p l a n e area a H o r i z o n t a l a x i s o f a t w o - d i m e n s i o n a l s e c t i o n a o V i s c o u s l i f t c o e f f i c i e n t

^33 S e c t i o n a l heave added mass c o e f f i c i e n t due t o heave m o t i o n

B S e c t i o n a l beam

Damping c o e f f i c i e n t f o r t h e i ^ ^ mode due t o m o t i o n i n t h e j ""^ mode

b V e r t i c a l a x i s o f a t w o - d i m e n s i o n a l s e c t i o n

^ 3 S e c t i o n a l heave damping c o e f f i c i e n t due t o heave m o t i o n

S Cross f l o w d r a g c o e f f i c i e n t SARPKAYA V a l u e s o f C^ o b t a i n e d by Sarpkaya li R e s t o r i n g c o e f f i c i e n t f o r t h e i ^ ^ mode due t o m o t i o n i n t h e j ""^ mode ^Lct ^ i f t c u r v e s l o p e w i t h r e s p e c t t o a n g l e o f a t t a c k f o r n^ n s t a b i l i z i n g f i n C_. C o r r e c t i o n t o C, Lz La n n

(8)

d T r a n s v e r s e d i m e n s i o n

d^ Center o f s u r g e f o r c e

d Average d e p t h s

D i s t a n c e between t h e mean w a t e r l i n e and t h e c e n t e r o f t h e l o w e r h u l l 1^ Fn Froude number U / ( g L ) ^ F^^'^ Wave e x c i t i n g f o r c e i n t h e i ^ ^ mode F V e r t i c a l f o r c e on a s l e n d e r m o d e r a t e l y i n c l i n e d body v GM^ L o n g i t u d i n a l m e t a c e n t r i c h e i g h t g A c c e l e r a t i o n due t o g r a v i t y i I m a g i n a r y u n i t ( ( - 1 ) ^ ) K e u l e g a n - C a r p e n t e r number (U^T/d) 2 k Wave number (= ë) k j ^ , Lamb's hydrodynamic c o e f f i c i e n t s L O v e r a l l s h i p l e n g t h X c o o r d i n a t e o f q u a r t e r c h o r d o f s t a b i l i z i n g f i n M Mass o f d i s p l a c e d volume

M' M' C o e f f i c i e n t s o f p i t c h moment due t o heave v e l o c i t y and p i t c h ^ v e l o c i t y

n^, n^ U n i t n o r m a l s

r H u l l r a d i u s

(9)

H o r i z o n t a l d i s t a n c e between s h i p ' s p l a n e o f symmetry and c e n t r o i d of s t a b i l i z i n g f i n Span o f n*^^ s t a b i l i z i n g f i n P e r i o d o f o s c i l l a t i o n T h i c k n e s s o f n^'^ s t a b i l i z i n g f i n D r a f t o f s t r u t Forward speed o f s h i p A m p l i t u d e o f h a r m o n i c a l l y v a r y i n g v e l o c i t y V e r t i c a l v e l o c i t y o f body r e l a t i v e t o t h e v e l o c i t y o f t h e f l u i d V e r t i c a l v e l o c i t y o f p o r t ( s t a r b o a r d ) l i f t i n g s u r f a c e r e l a t i v e t o t h e v e l o c i t y o f t h e f l u i d

C o e f f i c i e n t s o f v e r t i c a l f o r c e due t o heave v e l o c i t y and p i t c h v e l o c i t y Zl I + |z, I I s I p V e r t i c a l v e l o c i t y o f p o r t ( s t a r b o a r d ) h u l l r e l a t i v e t o t h e v e l o c i t y o f t h e f l u i d A n g l e o f i n c i d e n c e o f f l o w Used i n e v a l u a t i n g k^^ Heading o f t h e s h i p r e l a t i v e t o t h e i n c i d e n t wave (3 = 180 f o r head waves) 2 P e r i o d p a r a m e t e r (d /vT) Used i n e v a l u a t i n g Used i n e v a l u a t i n g a and 3 o o

(10)

p o s i t i o n i n t h e j ^ ^ mode

Mass d e n s i t y o f w a t e r

V e l o c i t y p o t e n t i a l

Wave e n c o u n t e r f r e q u e n c y

(11)

ABSTRACT

The v e r t i c a l p l a n e m o t i o n s o f SWATH s h i p s a r e t h e o r e t i -c a l l y modeled. S t r i p t h e o r y i s used t o e v a l u a t e hydrodynami-c f o r c e s . C o n t r i b u t i o n s due t o body l i f t , c r o s s f l o w d r a g , and f i n l i f t d o m i n a t e t h e damping c o e f f i c i e n t s . C o n s e q u e n t l y , t h e i r a c c u r a t e m o d e l i n g i s v i t a l t o t h e a c c u r a c y o f m o t i o n p r e d i c t i o n s . S e m i e m p i r i c a l methods d e v e l o p e d f o r e v a l u a t i n g t h e s e components a r e d e s c r i b e d . Data f o r o s c i l l a t i n g t w o -d i m e n s i o n a l c y l i n -d e r s , f l a t p l a t e s , an-d p a i r s o f f i n s as w e l l as s e m i e m p i r i c a l e x p r e s s i o n s f o r submarine hydrodynamic c o e f f i c i e n t s have been u t i l i z e d i n t h i s development. C o r r e l a -t i o n be-tween p r e d i c -t e d and e x p e r i m e n -t a l r e s u l -t s a r e p r e s e n -t e d f o r hydrodynamic c o e f f i c i e n t s , e x c i t i n g f o r c e and moment, and r e s p o n s e s t o r e g u l a r waves. The e x p r e s s i o n s developed r e s u l t i n c o r r e l a t i o n w h i c h i s good and w h i c h i s n o t a b l y b e t t e r t h a n r e s u l t s r e p o r t e d p r e v i o u s l y .

ADMINISTRATIVE INFORMATION

T h i s work was f u n d e d under t h e S h i p s , Subs and Boats Program Task Area SF 421-350-200, N62345. The f u n d i n g was a d m i n i s t e r e d by t h e E x p l o r a t o r y Development Programs O f f i c e , Code 1506, Ship Performance Department, David T a y l o r N a v a l S h i p Research and Development Center (DTNSRDC).

INTRODUCTION

The S m a l l W a t e r p l a n e Area Twin H u l l (SWATH) s h i p i s composed o f two h u l l s , each o f w h i c h has one o r two s u r f a c e p i e r c i n g s t r u t s c o n n e c t i n g them t o t h e above-w a t e r l i n e deck. T y p i c a l l y t h e l o above-w e r h u l l i s composed o f c i r c u l a r o r e l l i p t i c a l c r o s s - s e c t i o n s . Some h u l l s a r e s u b m a r i n e - l i k e i n shape and o t h e r s a r e composed of a s e r i e s o f c y l i n d e r s and c o n i c f r u s t u m s .

The m o t i o n s o f SWATH s h i p s a r e g r e a t l y d e t e r m i n e d by t h e s h i p ' s u n i q u e geome-t r y . S i n c e a l a r g e p o r geome-t i o n o f geome-t h e s h i p ' s buoyancy i s l o c a geome-t e d i n geome-t h e l o w e r h u l l s , t h e wave e x c i t i n g f o r c e s a r e r e l a t i v e l y s m a l l . The w a t e r p l a n e a r e a (A ) and l o n g i t u d i n a l m e t a c e n t r i c h e i g h t (CM^) a r e s m a l l i n comparison w i t h t h o s e o f c o n -v e n t i o n a l d i s p l a c e m e n t s h i p s . S i n c e t h e hea-ve and p i t c h n a t u r a l p e r i o d s a r e

i n v e r s e l y p r o p o r t i o n a l t o t h e square r o o t o f and GM^, r e s p e c t i v e l y , r e l a t i v e l y l o n g n a t u r a l p e r i o d s r e s u l t . Low r e s p o n s e s f o r o p e r a t i o n a t moderate speeds i n seaways o c c u r i n p a r t because most o f t h e energy o f a seaway t y p i c a l l y o c c u r s a t

(12)

c o n v e n t i o n a l s h i p s ^ * and SWATH s h i p s . ^ T w o - d i m e n s i o n a l t h e o r y assumes t h a t t h e r e i s no l o n g i t u d i n a l hydrodynamic i n t e r a c t i o n so t h a t hydrodynamic f o r c e s can be e v a l u a t e d by i n t e g r a t i n g t h e hydrodynamic c o n t r i b u t i o n s o f t w o - d i m e n s i o n a l s e c t i o n s

a l o n g t h e s h i p ' s l e n g t h .

For c o n v e n t i o n a l d i s p l a c e m e n t s h i p s and f o r c a t a m a r a n s , as w e l l , v e r t i c a l p l a n e m o t i o n s can be p r e d i c t e d a c c u r a t e l y u s i n g p o t e n t i a l f l o w t h e o r y . However, Lee^ r e c o g n i z e d t h a t f o r SWATH s h i p s v i s c o u s c o n t r i b u t i o n s t o t h e hydrodynamic damping c o e f f i c i e n t s a r e i m p o r t a n t . They can be d o m i n a n t , making t h e i r a c c u r a t e m o d e l i n g i m p o r t a n t . I n a t h e o r e t i c a l development Lee^ i n t r o d u c e d c o n t r i b u t i o n s

due t o l i f t and c r o s s f l o w d r a g o f t h e body and s t a b i l i z i n g f i n s . Hong i n t r o d u c e d p i t c h due t o surge and d e m o n s t r a t e d i t s i m p o r t a n c e i n m o d e l i n g l o w speed m o t i o n s . T h i s a p p r o a c h was g e n e r a l l y s u c c e s s f u l i n p r e d i c t i n g t h e v e r t i c a l p l a n e r e s p o n s e s of SWATH s h i p s . However, d i s c r e p a n c i e s between p r e d i c t e d and e x p e r i m e n t a l magni-t u d e s and u n c e r magni-t a i n magni-t y over magni-t h e a p p r o p r i a magni-t e v a l u e s o f c r o s s f l o w d r a g and l i f magni-t c o e f f i c i e n t s m o t i v a t e d t h e p r e s e n t s t u d y . The g o a l o f t h i s i n v e s t i g a t i o n i s t o

improve t h e q u a l i t y o f p r e d i c t i o n s and t o p r e d i c t v e r t i c a l p l a n e r e s p o n s e s o f a SWATH s h i p t o waves g i v e n o n l y t h e s h i p geometry, t h e l o c a t i o n o f t h e c e n t e r o f g r a v i t y , and t h e l o n g i t u d i n a l r a d i u s o f g y r a t i o n ( g y r a d i u s ) .

EQUATIONS OF MOTION

For t h e p u r p o s e o f t h i s d e r i v a t i o n , a SWATH s h i p i s assumed t o be moving a t a c o n s t a n t speed a t a f i x e d a n g l e r e l a t i v e t o a s i n u s o i d a l wave t r a i n i n i n f i n i t e l y deep w a t e r . The wave a m p l i t u d e i s assumed t o be s m a l l so t h a t t h e r i g i d body m o t i o n s can be d e s c r i b e d u s i n g a l i n e a r model. The s h i p i s d e f i n e d i n a r i g h t

-handed c o o r d i n a t e system h a v i n g i t s o r i g i n a t t h e mean w a t e r l i n e a t t h e s h i p ' s l o n g i t u d i n a l c e n t e r o f g r a v i t y and c e n t e r l i n e . The z - o r d i n a t e i s p o s i t i v e upward.

The e q u a t i o n s o f m o t i o n o f t h e s h i p f o r t h e v e r t i c a l p l a n e a r e :

(13)

F^^^e-^-(M + A33)^'3 + B33C3 + C33?3 + A35^3 + B35?5 + C33C5 = F^^^e"

( I 5 + A,,)ï, + 6 5 3 ^ + C33?3 + A33C3 + B3353 + C33?3 5

where M i s t h e mass o f t h e d i s p l a c e d volume and I 3 i s t h e p i t c h mass moment o f

I n e r t i a . A _ , B _ , and C_ a r e t h e added mass, damping, and r e s t o r i n g c o e f f i c i e n t s i n t h e i * " ^ mode due t o a s i n u s o i d a l m o t i o n o f u n i t a m p l i t u d e i n t h e j ^ ^ mode. The

(e)

s u b s c r i p t 1 d e n o t e s s u r g e , 3 heave, and 5 p i t c h . F)^ i s t h e complex e x c i t i n g f o r c e o r moment and w i s t h e wave f r e q u e n c y o f e n c o u n t e r .

I n e v a l u a t i n g t h e c o e f f i c i e n t s , f o r c e s , and moments, s t r i p t h e o r y i s employed. T h i s i s a r e a s o n a b l e a s s u m p t i o n f o r t h e SWATH s h i p w i t h i t s s l e n d e r and g r a d u a l l y changing geometry over i t s l e n g t h .

The hydrodynamic c o e f f i c i e n t s and e x c i t i n g f o r c e s and moment a r e composed o f 2

p o t e n t i a l f l o w , c r o s s f l o w d r a g , and l i f t t e r m s . Lee's development i n c l u d e d c r o s s f l o w d r a g and l i f t terms f o r t h e body and t h e s t a b i l i z i n g f i n s . These components a f f e c t t h e damping and r e s t o r i n g c o e f f i c i e n t s and t h e e x c i t i n g f o r c e s and c o n s e q u e n t l y t h e m o t i o n s a t a l l speeds s i n c e t h e c r o s s f l o w d r a g t e r m s a r e

independent o f speed and t h e l i f t t e r m s a r e p r o p o r t i o n a l t o some power o f speed. I n t h i s i n v e s t i g a t i o n , new e x p r e s s i o n s e v o l v e d f o r t h e c r o s s f l o w d r a g c o e f f i -c i e n t s , t h e body l i f t t e r m s , and t h e f i n -c r o s s f l o w d r a g and l i f t -c u r v e s l o p e c o e f f i c i e n t s . F i n a l e x p r e s s i o n s f o r t h e hydrodynamic c o e f f i c i e n t s and t h e e x c i t i n g f o r c e s and moments a r e g i v e n i n Appendix A. D e t a i l s o f t h e development o f t h e s e e x p r e s s i o n s a r e g i v e n i n Appendices B and C. I t i s u s e f u l t o b r i e f l y summarize t h e r e s u l t s .

C u r r e n t l y , t h e p o t e n t i a l f l o w components o f t h e added mass and damping can be

4

e v a l u a t e d u t i l i z i n g e i t h e r t h e F r a n k Close F i t Technique o r t h e D a l z e l l Approxima-t i o n T e c h n i q u e . * When Approxima-t h e D a l z e l l A p p r o x i m a Approxima-t i o n Technique i s u Approxima-t i l i z e d , as i Approxima-t i s i n t h e r e s u l t s i n t h i s r e p o r t , t h e d i s t r i b u t i o n o f t h e p o t e n t i a l on t h e t w o

(14)

and heave e x c i t i n g f o r c e s and t h e p i t c h e x c i t i n g moment a r e d e v e l o p e d . T h i s

development i n c l u d e s an e x p r e s s i o n f o r an a p p r o x i m a t e d e p t h used i n t h e heave e x c i t i n g f o r c e and p i t c h e x c i t i n g moment and an e x p r e s s i o n f o r t h e c e n t e r o f surge w h i c h f a c i l i t a t e s I n c l u s i o n o f surge i n t h e e x c i t i n g moment.

I n Appendix C a development o f t h e c r o s s f l o w d r a g and l i f t terms and t h e c o r r e s p o n d i n g c o e f f i c i e n t s i s g i v e n . The c r o s s f l o w d r a g c o e f f i c i e n t s f o r t h e ^ body a r e e v a l u a t e d u s i n g e x p e r i m e n t a l v a l u e s f o r o s c i l l a t i n g c i r c u l a r c y l i n d e r s . A f a c t o r t o r e f l e c t t h e e f f e c t o f a s t r u t on t h e c r o s s f l o w d r a g c o e f f i c i e n t i s developed f r o m o s c i l l a t i o n d a t a f o r t w o - d i m e n s i o n a l SWATH s e c t i o n s . * The c r o s s f l o w d r a g c o e f f i c i e n t f o r t h e s t a b i l i z i n g f i n s i s e v a l u a t e d u s i n g e x p e r i m e n t a l d a t a f o r o s c i l l a t i n g p l a t e s . ^ S e m i e m p i r i c a l e x p r e s s i o n s f o r t h e v e r t i c a l p l a n e hydrodynamic c o e f f i c i e n t s o f submarines** s e r v e as a b a s i s f o r t h e development o f t h e SWATH body l i f t components. The l i f t c u r v e s l o p e o f t h e f i n s i s g i v e n and a c o r r e c t i o n i s made f o r t h e f r e q u e n c y dependent i n t e r f e r e n c e e f f e c t o f t h e f o r w a r d f i n on t h e l i f t o f t h e a f t f i n . ^ ' ^ For a p p r o p r i a t e c o n f i g u r a t i o n s , an a d d i t i o n a l c o r r e c t i o n i s made f o r t h e e f f e c t o f t h e h u l l wake on t h e l i f t o f t h e a f t f i n .

COMPARISON BETWEEN RESULTS FROM EXPERIMENT AND PREDICTION

O s c i l l a t i o n , e x c i t a t i o n , and r e g u l a r wave d a t a a r e a v a i l a b l e f o r SWATH con-f i g u r a t i o n s denoted 6A, 6B, 6C, 6D, and SSP KAIMALINO. These r e s u l t s were used t o g u i d e t h e development o f t h e e x p r e s s i o n s i n t h i s r e p o r t . The f o u r c o n f i g u r a t i o n s i n t h e SWATH 6 s e r i e s employ t h e same l o w e r h u l l w h i c h i s a body o f r e v o l u -t i o n . The s -t r u -t s a r e d e s i g n e d so -t h a -t -t h e GM^ d i f f e r s f o r each s -t r u -t d e s i g n . C o n f i g u r a t i o n s 6A and 6B a r e s i n g l e s t r u t d e s i g n s , whereas 6C and 6D a r e t w i n

s t r u t d e s i g n s . P a r t i c u l a r s o f t h e c o n f i g u r a t i o n s and o f t h e l i f t i n g s u r f a c e s a r e

g i v e n i n T a b l e s 1 and 2.

C o r r e l a t i o n between e x p e r i m e n t and p r e d i c t i o n a r e g i v e n i n F i g u r e s 1 t h r o u g h 8. N o n d i m e n s i o n a l i z a t i o n f a c t o r s f o r added mass, damping, e x c i t i n g f o r c e , and

*As d e s c r i b e d by S t a h l i n a DTNSRDC r e p o r t w i t h l i m i t e d d i s t r i b u t i o n .

(15)

e x c i t i n g moment a r e g i v e n i n T a b l e 3. Open symbols a r e used f o r e x p e r i m e n t a l r e

-s u l t -s and -s o l i d -symbol-s a r e u-sed f o r p r e d i c t e d r e -s u l t -s u -s i n g t h e e x p r e -s -s i o n -s g i v e n 2

i n Appendix A. P r e d i c t e d r e s u l t s u s i n g Lee's e x p r e s s i o n s a r e g i v e n i n s o l i d l i n e on some o f t h e added mass and damping and a l l o f t h e r e g u l a r wave f i g u r e s . Hong's m o d i f i c a t i o n s a r e i n c l u d e d i n t h e r e g u l a r wave r e s u l t s .

I n s o l v i n g t h e c r o s s f l o w drag c o n t r i b u t i o n s , i t i s n e c e s s a r y t o know t h e m o t i o n o f t h e model r e l a t i v e t o t h e incoming wave. For r e g u l a r wave m o t i o n p r e -d i c t i o n s , t h i s component must be s o l v e -d i t e r a t i v e l y , u n t i l t h e responses o f t h e c r a f t converge; t h a t i s , t h e d i f f e r e n c e between t h e e s t i m a t e d and computed r e -sponses d i m i n i s h t o a c c e p t a b l e v a l u e s . However, i n t h e case o f f o r c e d o s c i l l a t i o n e x p e r i m e n t s , t h e m o t i o n o f t h e body i s known and t h e r e i s no i n c i d e n t wave. Con-v e r s e l y , f o r waCon-ve e x c i t i n g e x p e r i m e n t s , t h e body i s h e l d r i g i d and t h e m o t i o n o f t h e wave i s known. T h e r e f o r e , c a l c u l a t i o n o f t h e s e components i s s t r a i g h t f o r w a r d .

ADDED MASS AND DAMPING

Two s e t s o f d a t a f o r heave and p i t c h f o r c e d o s c i l l a t i o n t e s t s a r e a v a i l a b l e f o r t h e SWATH 6A. R e s u l t s f r o m a 1:51.2 s c a l e bare h u l l model f o r speeds c o r r e -sponding t o f u l l - s c a l e speeds o f 10, 20, and 35 k n o t s ^ ^ a r e p r e s e n t e d i n F i g u r e 1 a l o n g w i t h p r e d i c t e d r e s u l t s . R e s u l t s f r o m a 1:22.5 s c a l e model w i t h and w i t h o u t s t a b i l i z i n g f i n s f o r speeds c o r r e s p o n d i n g t o f u l l - s c a l e speeds o f 0, 20, and 28

12

k n o t s a r e p r e s e n t e d i n F i g u r e 2. I n c l u d e d a r e p r e d i c t e d r e s u l t s based on t h e e x p r e s s i o n s i n Appendix A and Lee's p r e d i c t e d r e s u l t s w h i c h were p r e s e n t e d i n R e f e r e n c e 12. These l a t t e r p r e d i c t e d r e s u l t s do n o t i n c l u d e t h e c r o s s f l o w d r a g c o n t r i b u t i o n s . I n c l u s i o n o f t h e s e t e r m s would i n c r e a s e t h e m a g n i t u d e s o f t h e damping t e r m s , most s i g n i f i c a n t l y a t z e r o speed.

I t i s u s e f u l t o compare e x p e r i m e n t a l r e s u l t s g i v e n i n F i g u r e l a (Fn = 0.38A) w i t h t h o s e i n F i g u r e 2e ( b a r e h u l l ) . I t i s expected t h a t t h e s e r e s u l t s s h o u l d be c l o s e i n v a l u e s i n c e t h e y a r e f o r i d e n t i c a l c o n d i t i o n s . Only t h e model s c a l e s d i f f e r . However, t h e r e s u l t s f o r A^^ g i v e n i n F i g u r e l a a r e s m a l l e r t h a n t h o s e g i v e n i n F i g u r e 2e. The d i f f e r e n c e i n r e s u l t s f o r A^^ i s p a r t i c u l a r l y i m p o r t a n t a t h i g h e r speeds as can be seen i n F i g u r e s l a and 2 1 . The p r e d i c t e d r e s u l t s a g r e e w e l l w i t h t h e measured r e s u l t s i n F i g u r e l a ; however, no e x p l a n a t i o n o f t h e

(16)

F e i n and Stahl"""^ c a r r i e d o u t e x p e r i m e n t s t o measure t h e surge and heave wave e x c i t i n g f o r c e s and t h e p i t c h e x c i t i n g moment. They i n v e s t i g a t e d f i v e speeds i n head and f o l l o w i n g seas f o r a 1 : 2 2 . 5 s c a l e model o f t h e SWATH 6D and f i v e speeds i n head waves f o r a 1 : 7 . 8 s c a l e model o f t h e SSP KAIMALINO. The d a t a g i v e n i n t h i s r e p o r t a r e p r e s e n t e d i n a d i f f e r e n t f o r m a t f r o m t h a t o f Reference 1 3 . To e l u c i d a t e t h e d a t a i n f o l l o w i n g seas, a l l d a t a have been p r e s e n t e d as a f u n c t i o n o f w a v e l e n g t h t o s h i p l e n g t h , r a t h e r t h a n e n c o u n t e r f r e q u e n c y . S i n c e t h e t h e o r y i s developed w i t h t h e p i t c h moment about t h e LCG a t t h e mean w a t e r l i n e , t h e measured p i t c h e x c i t i n g moment and surge e x c i t i n g f o r c e were used t o t r a n s f o r m t h e moment t o be about t h e LCG a t t h e mean

w a t e r l i n e , so t h a t t h e p r e d i c t e d and e x p e r i m e n t a l r e s u l t s were comparable. These r e s u l t s a r e g i v e n i n F i g u r e s 3 and 4.

RESPONSES TO REGULAR WAVES

K a l l i o ^ " ^ ' ^ ^ c a r r i e d o u t r e g u l a r wave e x p e r i m e n t s f o r t h e SWATH 6 s e r i e s . Heave, p i t c h , and r e l a t i v e bow m o t i o n responses as a f u n c t i o n o f w a v e l e n g t h t o

s h i p l e n g t h a r e g i v e n f o r f i v e r e l a t i v e wave headings f o r t h e 6A, 6B, and 6C and f o r head and f o l l o w i n g waves f o r t h e 6D. R e s u l t s a r e g i v e n i n F i g u r e s 5 t h r o u g h 8 Note t h a t two s e t s o f p r e d i c t e d r e s u l t s a r e g i v e n f o r a l l c o n d i t i o n s . One

2

s e t r e s u l t s f r o m t h e development i n t h i s r e p o r t and one r e s u l t s f r o m Lee's work

w i t h Hong's m o d i f i c a t i o n s i n c l u d e d .

DISCUSSION

I n i t i a l work by Lee i n d i c a t e d t h a t c o r r e l a t i o n between e x p e r i m e n t a l and p r e -d i c t e -d r e s u l t s a t z e r o spee-d f o r l o n g w a v e l e n g t h s was n o t s a t i s f a c t o r y . Hong's r e s u l t s d e m o n s t r a t e d t h e I m p o r t a n c e o f i n t r o d u c i n g t h e e f f e c t s o f surge and o f u s i n g t h e p r o p e r wave a m p l i t u d e i n e v a l u a t i n g t h e n o n l i n e a r t e r m s . The improved c o r r e l a t i o n t h a t r e s u l t s f r o m t h e i n c o r p o r a t i o n o f t h e e x p r e s s i o n s developed i n t h i s r e p o r t i s e v i d e n t l y due t o t h e method o f e v a l u a t i n g C^. P r e v i o u s l y , i t had been assumed t o be c o n s t a n t , whereas, f o r t w o - d i m e n s i o n a l s e c t i o n s ( o r s t a b i l i z i n g f i n s ) i t i s h e r e c o n s i d e r e d t o be a f u n c t i o n o f t h e m a j o r and m i n o r a x i s o f t h e

(17)

responses p r e d i c t e d t h r o u g h t h e p r e s e n t methodology a r e n o t a b l y c l o s e r t o t h e e x p e r i m e n t a l l y d e t e r m i n e d responses t h a n r e s u l t s f o u n d w i t h any o f t h e p r e v i o u s methods.

Responses o f SWATH c o n f i g u r a t i o n s t r a v e l i n g a t h i g h speed i n f o l l o w i n g waves has been a t o p i c o f i n t e r e s t . One p r o b l e m i n c o r r e l a t i o n f o r t h i s c o n d i t i o n i s t h a t i t i s d i f f i c u l t e x p e r i m e n t a l l y . As n o t e d by K a l l i o , " ' " ^ i n q u a r t e r i n g and f o l l o w i n g waves t h e r e was c o n s i d e r a b l e surge and c o n s e q u e n t l y t h e model s a f e t y

2

r e s t r a i n t l i n e s became t a u t . Lee r e p o r t e d e x t r e m e l y l a r g e p r e d i c t e d heave

responses f o r t h e 6A a t t h e w a v e l e n g t h c o r r e s p o n d i n g t o z e r o e n c o u n t e r f r e q u e n c y . * S i n c e t h e p o t e n t i a l f l o w t w o - d i m e n s i o n a l approach i s n o t v a l i d a t s m a l l e n c o u n t e r f r e q u e n c i e s , t h e o r e t i c a l work was u n d e r t a k e n t o overcome t h i s l i m i t a t i o n .

Hong ' a p p l i e d t o SWATH s h i p s u n i f i e d s l e n d e r body t h e o r y developed by Newman 18

and Sclavounos. R e s u l t s f r o m Hong's i m p l e m e n t a t i o n d i d n o t improve c o r r e l a t i o n and d i d n o t remove t h e s p i k e i n t h e 6A heave p r e d i c t i o n s . However, t h e r e s u l t s developed h e r e w h i c h f o c u s e d on t h e v i s c o u s components b u t r e t a i n e d t h e t w o -2 d i m e n s i o n a l p o t e n t i a l f l o w approach u t i l i z e d by Lee, do n o t i n c l u d e t h e s p i k e d r e s p o n s e . A l t h o u g h p i t c h i s o v e r p r e d i c t e d f o r t h e 6A and 6B, t h e s e r e s u l t s show g e n e r a l l y good c o r r e l a t i o n and s u p p o r t t h e h y p o t h e s i s t h a t t h e a b e r r a n t p r e d i c t i o n s f o r t h e 6A a r e n o t r e l a t e d t o t h e t w o - d i m e n s i o n a l p o t e n t i a l f l o w t h e o r y .

Since t h e p r e d i c t e d heave response s p i k e o c c u r s near z e r o e n c o u n t e r f r e q u e n c y , i t has been assumed t h a t t h e problems w i t h t h e p r e d i c t i o n s were due t o t w o

-d i m e n s i o n a l t h e o r y . However, F i g u r e 5e s u g g e s t s an a l t e r n a t i v e e x p l a n a t i o n . The 2

l a r g e heave r e s p o n s e r e p o r t e d by Lee o c c u r s near t h e w a v e l e n g t h w h i c h c o r r e s p o n d s t o z e r o e n c o u n t e r f r e q u e n c y ; however, t h i s a l s o o c c u r s i n t h e r e g i o n where t h e p i t c h response peaks. S i n c e heave and p i t c h a r e c o u p l e d , e r r o r s i n m o d e l i n g one

The r e g u l a r wave p r e d i c t i o n s w h i c h a r e a t t r i b u t e d t o Lee i n c l u d e a m o d i f i c a -t i o n w h i c h was an a -t -t e m p -t -t o remove -t h e s p i k e d b e h a v i o r . I n -t h e m o d i f i c a -t i o n when (JO i s l e s s t h a n 0.07 t h e p o t e n t i a l f l o w added mass and damping c o e f f i c i e n t s f o r each s e c t i o n have been assumed t o be e q u a l t o t h o s e f o r w = 0.07. G e n e r a l l y t h i s w i l l a l t e r p r e d i c t i o n s o n l y a t h i g h speeds i n f o l l o w i n g o r s t e r n seas. T h i s a p p r o x i m a -t i o n m e r e l y suppressed -t h e response. (See F i g u r e 5e.)

(18)

6A may be due t o i n a d e q u a c i e s i n t h e p i t c h p r e d i c t i o n s .

A n a l y s i s o f t h e r e l a t i v e i m p o r t a n c e o f v a r i o u s terms i n t h e p i t c h e q u a t i o n o f

m o t i o n I n d i c a t e s t h a t t h e t e r m C^^ may be dominant. For s i m p l i c i t y , c o n s i d e r t h e u n c o u p l e d p i t c h e q u a t i o n o f m o t i o n :

( I 5 + A55)53 + 853^5 + C35C3 = F3e-^^^

U t i l i z i n g t h e r e l a t i o n s h i p ^3 = ( 5 3 ^ + ±^^j)e~^^^, t h i s becomes

[-W ( I 3 + A33) + C^^IK^ + 633^3 = F3e

T w o - d i m e n s i o n a l t h e o r y i s n o t v a l i d a t s m a l l e n c o u n t e r f r e q u e n c i e s and A33 becomes 2

v e r y l a r g e i n t h i s r e g i o n . However, t h e presence o f w r e s u l t s i n a v e r y f o r t u n a t e 2

s i t u a t i o n f o r s m a l l (JO. That i s , when oo approaches z e r o , W A33 w i l l be s m a l l . The i m p o r t a n t t e r m i s C33. Whereas A33 and B33 a r e c a l c u l a t e d u s i n g two-dimen-s i o n a l t h e o r y , C33 i two-dimen-s n o t . C33 i two-dimen-s compotwo-dimen-sed o f a f i n l i f t t e r m , a body l i f t t e r m , and a t e r m w h i c h i s e s s e n t i a l l y GM^. Since t h e f i n l i f t t e r m w i l l be a p p r o x i m a t e l y e q u a l f o r a l l c o n f i g u r a t i o n s i n t h e SWATH 6 s e r i e s , i t can be n e g l e c t e d i n t h i s d i s c u s s i o n . I n a d d i t i o n , as c o n f i g u r e d i n t h i s r e p o r t , t h e body l i f t t e r m i s dependent on mass and p a r t i c u l a r s o f t h e l o w e r h u l l and w i l l be e q u a l f o r t h e 6A, 6B, and 6C c o n f i g u r a t i o n s . However, GM^ i n c r e a s e s s i g n i f i c a n t l y f r o m t h e f i r s t model i n t h e SWATH 6 s e r i e s t o t h e l a s t w i t h t h e 6A h a v i n g t h e s m a l l e s t and t h e

6D t h e l a r g e s t GM^. For s m a l l GM^ t h e l i f t t e r m s , and t h e body l i f t t e r m i n p a r t i c u l a r , w i l l be r e l a t i v e l y more i m p o r t a n t t h a n f o r a l a r g e GM^ c o n f i g u r a t i o n . T h i s argument i s c o n s i s t e n t w i t h t h e c o r r e l a t i o n w h i c h i n d i c a t e s t h a t t h e p r e -d i c t e -d heave s p i k e i n e a r l i e r work o c c u r r e -d f o r t h e 6A o n l y . Consequently, goo-d c o r r e l a t i o n between e x p e r i m e n t a l and p r e d i c t e d r e s u l t s f o r c o n f i g u r a t i o n s w i t h s m a l l GM/s w i l l be s t r o n g l y dependent on a c c u r a t e m o d e l i n g o f C33.

The body l i f t component used f o r t h e C33 development i s based on e x p e r i m e n t a l work on t h e 6A. T h i s i s an u n f o r t u n a t e l y s l i m d a t a base. I t i s expected t h a t

(19)

CONCLUSIONS AND RECOMMENDATIONS 2

1. Work by Lee has been used as t h e b a s i s f o r m o d e l i n g t h e v e r t i c a l p l a n e m o t i o n o f SWATH s h i p s . The g e n e r a l f o r m o f h i s work has been r e t a i n e d i n t h e p r e s e n t m o d e l i n g ; however, t h e e f f o r t r e p o r t e d h e r e has f o c u s e d on t h e v i s c o u s t e r m s . A l t e r n a t e s e m i e m p i r i c a l e x p r e s s i o n s f o r body l i f t t e r m s , c r o s s f l o w d r a g c o e f f i c i e n t s f o r t h e body and t h e f i n s , and l i f t c u r v e s l o p e c o e f f i c i e n t s f o r t h e f i n s have been d e v e l o p e d , and Improved c o r r e l a t i o n w i t h e x p e r i m e n t i s t h e r e s u l t .

2. C o r r e l a t i o n o f added mass and damping c o e f f i c i e n t s and t h e e x c i t i n g f o r c e and moment a r e g e n e r a l l y good. Zero speed r e s p o n s e c o r r e l a t i o n i s comparable t o

3 2 or b e t t e r t h a n r e s u l t s based on Hong's m o d i f i c a t i o n s t o Lee's work. H i g h speed c o r r e l a t i o n i s good and i s n o t a b l y b e t t e r t h a n p r e v i o u s r e s u l t s shown by Hong."'"^ F o l l o w i n g sea r e s u l t s no l o n g e r d i s p l a y t h e a b e r r a n t b e h a v i o r w h i c h o c c u r r e d i n

2 17

Lee's and Hong's SWATH 6A r e s u l t s .

3. The t w o - d i m e n s i o n a l p o t e n t i a l f l o w t h e o r y i s c e r t a i n l y adequate f o r t h e p r e d i c t i o n o f s h i p m o t i o n s o f SWATH s h i p s s i m i l a r t o t h e 6 s e r i e s .

4. F u r t h e r e x p e r i m e n t a l work would f a c i l i t a t e r e f i n e m e n t o f t h e v i s c o u s e x p r e s s i o n s d e v e l o p e d h e r e and would expand t h e r e g i o n s o f c o n f i d e n c e . The f o l l o w -ing i n v e s t i g a t i o n s a r e recommended: a. E x p e r i m e n t a l i n v e s t i g a t i o n o f C^ f o r SWATH s e c t i o n s and f o r c i r c u l a r c y l i n d e r s a t v e r y l o w would be u s e f u l . b. E x p e r i m e n t a l I n v e s t i g a t i o n o f t h e e f f e c t o f f i n - f i n i n t e r f e r e n c e f o r a d d i t i o n a l c o n f i g u r a t i o n s , i n c l u d i n g ones where t h e a f t f i n i s l a r g e r t h a n t h e f o r w a r d f i n would be u s e f u l . c. E x p e r i m e n t s o f t r u e f r e e - t o - s u r g e c o n d i t i o n s u s i n g r a d i o - c o n t r o l l e d models i n f o l l o w i n g waves would a i d i n t h e assessment o f p r e d i c t i o n

t e c h n i q u e s .

d. E x p e r i m e n t a l i n v e s t i g a t i o n o f C^^ f o r e x i s t i n g models, i n c l u d i n g t h e 6B, 6C, and 6D, would make i t p o s s i b l e t o d e f i n e t h e body l i f t component of C33 more p r e c i s e l y and t o improve t h e r e l i a b i l i t y o f p r e d i c t i o n o f r e s p o n s e s i n f o l l o w i n g seas a t h i g h speeds.

(20)
(21)

REFERENCES

1. S a l v e s e n , N., E.0. Tuck, and 0. F a i t I n s e n , "Ship M o t i o n s and Sea Loads," T r a n s a c t i o n s o f t h e S o c i e t y o f N a v a l A r c h i t e c t s and M a r i n e E n g i n e e r s , V o l . 78

( 1 9 7 0 ) .

2. Lee, CM., " T h e o r e t i c a l P r e d i c t i o n o f M o t i o n o f S m a l l - W a t e r p l a n e - A r e a , T w i n - H u l l (SWATH) Ships i n Waves," Report DTNSRDC/SPD-76-0046 (Dec 1976).

3. Hong, Y.S., "Improvements i n t h e P r e d i c t i o n o f Heave and P i t c h M o t i o n s f o r SWATH S h i p s , " Report DTNSRDC/SPD-0928-02 (Apr 1980).

4. Frank, W. and N. S a l v e s e n , "The Frank C l o s e - F i t S h i p - M o t i o n Computer Program," DTNSRDC Department o f Hydromechanics Research and Development Report 3289 (Jun 1970).

5. Sarpkaya, T., " I n - L l n e and T r a n s v e r s e Forces on C y l i n d e r s i n O s c i l l a t o r y Flow a t H i g h Reynolds Numbers," J o u r n a l o f Ship Research, V o l . 2 1 , No. 4 (Dec 1977).

6. Bearman, P.W. and J.M.R. Graham, "Hydrodynamic Forces on C y l i n d r i c a l Bodies i n O s c i l l a t o r y Flow," Second I n t e r n a t i o n a l Conference on B e h a v i o r o f O f f -s h o r e S t r u c t u r e -s , Paper 24 (Aug 1979).

7. Whicker, L.F. and L.F. F e h l n e r , "Free-Stream C h a r a c t e r i s t i c s o f a F a m i l y o f L o w - A s p e c t - R a t i o , A l l - M o v a b l e C o n t r o l S u r f a c e s f o r A p p l i c a t i o n t o Ship D e s i g n , " D a v i d T a y l o r Model B a s i n Report 933, Revised E d i t i o n (Dec 1958).

8. L l o y d , A.R.J.M., " R o l l S t a b i l i s e r F i n s : I n t e r f e r e n c e a t NonZero F r e -q u e n c i e s , " Royal I n s t i t u t e o f N a v a l A r c h i t e c t s , V o l . 117 ( 1 9 7 5 ) .

9. Cox, G.G. and A.R. L l o y d , "Hydrodynamic Design B a s i s f o r Navy Ship R o l l M o t i o n S t a b i l i z a t i o n , " T r a n s a c t i o n s o f t h e S o c i e t y o f N a v a l A r c h i t e c t s and M a r i n e E n g i n e e r s , V o l . 85 ( 1 9 7 7 ) .

10. Dempsey, E.M., " S t a t i c S t a b i l i t y C h a r a c t e r i s t i c s o f a S y s t e m a t i c S e r i e s o f S t e r n C o n t r o l S u r f a c e s on a Body o f R e v o l u t i o n , " Report DTNSRDC-77-0085 (Aug 1977).

(22)

C o e f f i c i e n t s o f a S m a l l - W a t e r p l a n e - A r e a , T w i n - H u l l Model," Report

DTNSRDC/SPD-744-01 (Jan 1977).

13. F e i n , J.A. and R. S t a h l , "Head and F o l l o w i n g Wave E x c i t i n g Force E x p e r i

-ments on Two SWATH C o n f i g u r a t i o n s , " Report DTNSRDC/SPD-0928-01 (Jun 1980).

14. K a l l i o , J.A., " S e a w o r t h i n e s s C h a r a c t e r i s t i c s o f a 2900 Ton S m a l l

Water-p l a n e Area Twin H u l l (SWATH), ReWater-port DTNSRDC/SPD-620-03 (SeWater-p 1976).

15. K a l l i o , J.A., "SWATH 6D Model E x p e r i m e n t s i n R e g u l a r Head and F o l l o w i n g Waves W i t h and W i t h o u t F l o o d a b l e S t r u t s , " Report DTNSRDC/SPD-0914-01 (Feb 1980).

16. Hong, Y.S., " P r e d i c t i o n o f M o t i o n s o f SWATH S h i p s i n F o l l o w i n g Seas,"

Report DTNSRDC/SPD-81-039 (Nov 1981).

17. Hong, Y.S., " P r e d i c t e d M o t i o n s o f High-Speed SWATH S h i p s i n Head and

F o l l o w i n g Seas," Report DTNSRDC/SPD-82-036 ( J u l 1982).

18. Newman, J.N. and P. S c l a v o u n o s , "The U n i f i e d Theory o f Ship M o t i o n , "

P r o c e e d i n g s o f t h e T h i r t e e n t h Symposium on N a v a l Hydrodynamics, Tokyo, Japan

(Oct 1980).

19. Lee, CM,, " A p p r o x i m a t e E v a l u a t i o n o f Added Mass and Damping C o e f f i c i e n t s

of Two-Dimensional SWATH S e c t i o n s , " Report DTNSRDC/SPD-78-084 (Oct 1978),

20. K o r v i n - K r o u k o v s k y , B,V, and W,R. Jacobs, " P i t c h i n g and Heaving M o t i o n s o f a Ship i n Regular Waves," T r a n s a c t i o n s o f t h e S o c i e t y o f N a v a l A r c h i t e c t s and

M a r i n e E n g i n e e r s , V o l . 65 ( 1 9 5 7 ) .

2 1 . Newman, J.N., " M a r i n e Hydrodynamics," The MIT P r e s s , Cambridge,

Massachu-s e t t Massachu-s ( 1 9 7 7 ) , pp. 362-371.

22. " I n c o m p r e s s i b l e Aerodynamics," E d i t e d by B. T h w a i t e s , O x f o r d U n i v e r s i t y

P r e s s ( 1 9 6 0 ) , pp. 414-421.

23. Keulegan, G.H. and L.H. C a r p e n t e r , "Forces on C y l i n d e r s and P l a t e s i n

an O s c i l l a t i n g F l u i d , " J o u r n a l o f Research o f t h e N a t i o n a l Bureau o f S t a n d a r d s ,

(23)

25. P i t t s , W.C, J.N. N i e l s e n , and C E . K a a t t a r i , " L i f t and Center o f P r e s

-s u r e o f W i n g - B o d y - T a i l C o m b i n a t i o n -s a t Sub-sonic, T r a n -s o n i c , and S u p e r -s o n i c Speed-s," NACA Report 1307 ( 1 9 5 7 ) .

(24)

P a r t i c u l a r 6a' 6B1 60^ 6D2 3 SSP L e n g t h o v e r a l l , m 73.15 73.15 73.15 73.15 26.40 D i s t a n c e between c e n t e r l i n e s , m 22.86 22.86 22.86 26.80 12.19 D r a f t , m 8.13 8.13 8.13 8.13 4.66 D i s p l a c e m e n t , m e t r i c t o n 2,946 2,946 2,946 2,946 2,946 L o n g i t u d i n a l CG, a f t o f nose, m 35.45 35.14 34.72 36.10 13.46 V e r t i c a l c e n t e r o f g r a v i t y (KG), m 10.36 10.36 10.36 9.00 4.28 L o n g i t u d i n a l m e t a c e n t r i c h e i g h t , m 6.10 11.60 13.70 26.40 5.03 As g i v e n i n R e f e r e n c e 14. As g i v e n i n R e f e r e n c e 15. As g i v e n i n R e f e r e n c e 13.

(25)

TABLE 2 - PARTICULARS OF STABILIZING FINS Conf i g u r a t i o n 6B1 6D2 SSP ' 3 4 Forward F i n , Each Chord, m 2 59 2.16 2.16 2.59 1.95 Span, m 3 11 2.59 2.59 3.11 1.83 L o c a t i o n , ^ m 17 15 17.15 17.15 17.15 2.82 A f t F i n Chord, m 4 48 3.73 3.73 4.48 2.38 Span, m 5 36 4.48 4.48 5.36 10.55 L o c a t i o n , ^ m 62 24 62.24 62.24 62.24 20.59 As g i v e n i n R e f e r e n c e 14, As g i v e n i n R e f e r e n c e 15. As g i v e n i n R e f e r e n c e 13. A f t f i n spans between t h e h u l l s .

(26)

DAMPING, WAVE EXCITING FORCE, AND WAVE EXCITING MOMENT V a r i a b l e Nond imen s i o n a 1 l z a t i o n F a c t o r ^33 M A A ML 2 ML ^33 M ( g / L ) ^ / ^ B33, B53 1/2 M ( g L ) ' ^ ^ ^ 5 M L ( g L ) ^ / ^ F ( e ) MgA/L F ( e ) MgA where A g Wave a m p l i t u d e A c c e l e r a t i o n due t o g r a v i t y L O v e r a l l s h i p l e n g t h M = Mass o f D i s p l a c e d volume

(27)

F i g u r e 1 - Comparison between Experiment and P r e d i c t i o n f o r Added Mass and Damping C o e f f i c i e n t s o f t h e SWATH 6A (Bare H u l l )

f o r V a r i o u s Speeds . o o ( u r . l U FiadicClm 0.113 O m O.IM a n o.ni A A Q • O Ö O Ö (.0' 0.192 O • O.Ut • • 0.672 A A A A 04,A 2.0 3.0

(28)

bp«rla«ot ro (tot .11) Fr»llctloi. 0,192 O • 0.672 A • 0 11 • • ° o n o o • O O O • ° 8 * 6 6 O 2.0 -5.0 bparüient Pa (taf. 11) Pradtctloo 0.192 O • o.3at • • 0.672 A A Ü O • A

° •

• O

(29)

»33 F i g u r e 1 ( C o n t i n u e d ) 4 * O 4 • • • • O 1,0 O O Exptrlflcnt

ro (tof. 11) rtoJ lotion

0.192 O e O.Mt • • 0.672 A A r/J o ' o O OÜ' ^53 O" • A • • • O," * * * n A bporlamc ro (Hot. 11) rtoJletloo 0.192 O • 0.38« • • 0.672 A A O 'o» O • • • • • I '. 1 ÜJ' F i g u r e l c - Damping C o e f f i c i e n t s B^^ and B^^

(30)

n (Uf.11) 0.19! O 0.314 • 0.672 A A ê a" A A A o • • • • • • FD (l.f.11) Fradiction 0.192 O

o.3at n • • 0.672 A A * 4 A A A A A A .A A ^ A A A A A A A a a a • • D% • • n" • Ü • IJ • • Q ° • 1 O *o • • 0 • • 1 0 O O O 2.0 F i g u r e I d - Damping C o e f f i c i e n t s B^^ and B^^

(31)

F i g u r e 2 - Comparison between Experiment and P r e d i c t i o n o f Added Mass and Damping C o e f f i c i e n t s f o r t h e SWATH 6A

1.4 1.2 1.0 .0 .6 l a r a HaU Q ^ Aft ria A ( )

rod aad Aft riaa A I I A .8 1.0 1.2 1.4 1.6 1. 2.0 2.2 2.4 . 2 h ' 5 3 - . 2 - . 3 J L J \ I _ L .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2,4

(32)

' 5 5 .16 .14 .12 .10 .08 .06 .04 .2 h ' 3 5 -.2 - . 3 C o . t U u r . t t o » ( H I . 1?) f t ^ i l c t l o . ( U . . H I .1 2 ) b r « Dull O M t Fill • rod •nd Alt F l m A „ CP o o O o .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 CJ ' J L J L J L .8 1.0 1.2 1.4 1.6 1,8 2.0 2.2 2.4 to'

(33)

F i g u r e 2 ( C o n t i n u e d ) '33 2.0 1.5 1.0 0.5 - 1 . 0 ^53 - . 2 h . I x p a r l M i t r r a d l c t l o n C o . t l i a r i t l i . « ( I . t. 1 2 ) F r « l l e t l . i i ( U i . Mt. 1 2 ) I l K HuU O M t r l n a f i

Fud aild M t Fin* A A

O O

J I I L J L

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

(34)

' 5 5 .4 .2 - . 4 ITcJiction C l l t u r . t l o n ' ( » . t . 12) f r . d l c t l . n < U . . tot.12) Uca Hull O 9 ~ * l t Fin O i !

Fwd and Aft Flna A A

J L J I L

.8 1. 0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

«35

8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

(35)

F i g u r e 2 ( C o n t i n u e d ) 1.4 1.2 1.0 l l . b p a r l M o t P r x l l c t l o n i : o . l l g i . r . t l o « {Ul. 12) r r» i l c t l o . i ( U i . tot. 1 2 ) •aca Hull O • » f t riB a Ü

Fud and Ut riaa A A

••• •

.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 . 2 h ' 5 3 -.1 - . 2 O O J L J L 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

(36)

C o ü H i u r . t l o . . (»«<• 12) F i . d l c t l o . < L . . , U t. 1 2 ) M t Fit) Fud «nd A f t F l n i O a A O r; • É A • • É J L J L 8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

(37)

F i g u r e 2 ( C o n t i n u e d ) 2.5 2.U 1.5 1.0 G.5 b p a r l n o t Pradlctlon C o B l l t u r . t t o » ( U f . 1 ? ) f t i d l e t l o . ( U « . »«f. 12) b r a Hull Q • * f t ria O S /\ ^ ^^'^ *" ^ ^ " ? ° T f f ^ O O 9 « J L J L O .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 .6 ^53 -.2 - . 4 -.6 ^ D J L .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 F i g u r e 2g - Damping C o e f f i c i e n t s B^^ and B^^ f o r Fn = 0,384

(38)

.6 ' 5 5 .2 CxparlMnt Prediction C o o t i i u r . t i o » (».<• 12) P r t d i e t i o n ( U . . b l . 12) b r a Hull O O Aft r i n a s

Fud and Aft FUa A A

" t ) * U * c» CP • n « n O f Q J I L .8 1.0 1.2 1.4 1.6 1.8 2.0 CO-2.2 2.4 1.2 1.0 .8 " 3 5 J L J L •°.B T o 1.2 . 1.4 1.6 1.8 2.0 2.2 2.4

(39)

F i g u r e 2 ( C o n t i n u e d ) 1.4 1.2 1.0 a! 33 .6 C i p a r l x n t Ptadlctlon C o o f l . u r . t l o n (»•<. 12) f r i d l c t l i i n ( U t . Ul. 12) S«r« Piull O • Aft Fin • g Fi«l tnd Alt Fln« A A — . A A A A A A A A • n ° • O D D , J L .8 1.0 1.2 1.4 1.6 1.8 2,0 2.2 2.4 O J ' a; .4 .3 53 -.1 ^ ^ f ^ ^ o ^ o O O O J I J _ L L .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 a)

(40)

.16 .14 .12 ' 5 5 .10 .08 .06 .04 Ü O O J \ \ L 8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2,4 ' 3 5 - . 2 - . 4 - . 6 - . 8 - 1 . 0 .8 / • / Sai< null ' a / ^ ' Fud .Dd Alt F i n . C o . f l . u . . t l o . ( t V t. 1 2 ) F H d U t l o a i u . . fMi.nx 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

(41)

F i g u r e 2 ( C o n t i n u e d ) 33 3.0 2.5 2.0 1.5 1.0 .B .6 .4 '53 - . 2 . b i x r l a m t Fradlctlon C o o t U u r i t U n ( l i t . 12) rr«<Hctlon ( U i . Ut. 1 2 ) b r . Hull O » f t Pin • • Pud .nd Ut Pla. A ,1 • m 5 - 5 ^ ° o o 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 « P « o » o » • o . Q W o ^ 0 . 0 0 © J L J L •8 1.0 1.2 1.4 1.6 1.8 2,0 2.2 2.4 F i g u r e 2k - Damping C o e f f i c i e n t s B^^ and B^^ f o r Fn = 0.538

(42)

'55 C « . t l l u t . t U n (»««• 12) < U . . » . f. l 2 ) b r * Hull O 9 Ait r i n • • Fvd md Alt Flna A A Ptcdletlon c O « ( y » C » O J L J . L .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 to' ' 3 5 1.2 1.0 Ö.8 0.6 O./} 0.2 J ^ \ L .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 co F i g u r e 2£ - Damping C o e f f i c i e n t s B^^ and B^^ f o r Fn = 0.538

(43)

F i g u r e 3 - Comparison between Experiment and P r e d i c t i o n o f Heave E x c i t i n g Force and P i t c h E x c i t i n g Moment

f o r t h e SWATH 6D 4 0 O O 3 O • O O O

• •

2 (J 9 E x p e r i m e n t O O Fn ( R e f . 1 3 ) P r e d i c t i o n 0 0.0 O

O • 0.077 O

1 - O O 0.192 O

O 0 0.384 <;> 0.538 A • O 0 1 1 1 1 1 1 1 1 2 3 /, 5 6 7

WAVELENGTH TO SHIP LENGTH

(DEGREES) 180

-

•O* %) • ^ O 90

-O 0

• «O • • • o • ^ O -90 O 180 1 1 1 1 1 I 1 1 2 3 A 5 6 7

WAVELENGTH TO SHIP LENGTH

(44)

Vn 0.0 0.077 0.192 0.384 0.538 E x p e r l j n e n t ( R e f . 1 3 ) O O O a A P r e d i c t i o n .5 3 4 WAVELENGTH TO SHIP LENGTH

18(1 h 9 0 (OEGRF.ES) -90 -180 O O 3 4 WAVELENGTH TO SHIP LENGTH

(45)

F i g u r e 3 ( C o n t i n u e d ) , 0 » , 0 » u O < o l O O < _) O Fn E x p e r i m e n t ( R e f . 1 3 ) P r e d i c t i o n <>• O 0.0 O

om o 0.077 0.192 Ü O

i 1 I *

O 1 0.384 0.538 < i;i A i A 1 2 3 4 5 6 7 WAVELENGTH TO SHIP LENGTH

180 90 (DECREES) • O -180 h O 4-3 4

WAVELENGTH TO SHIP LENGTH

(46)

E x p e r i m e n t .9 Fn ( R e f . 1 3 ) P r e d i c t i o n 0.0 0

.8 0.077 O

0.192 O 0 .7 0.384 n 0.538 A .6 0 .5 O ^ È O O Q t .4 ( ) O O O ^ 8

• te

Ê O O .3

-%

.2 .1 1 1 1 0 0 1 2 3 1, 5 6

WAVELENGTH TO SHIP LENGTH

(DEGREES) "

-90

-180

O

3 4 WAVELENGTH TO SHIP LENGTH

(47)

F i g u r e 3 ( C o n t i n u e d ) 4 3 1 0 -A • • B A A iJ A A A • • U A U A E x p e r i m e n t A ( P Fn ( R e f . 1 3 ) P r e d i c t i o n (.1 A A A A 0.0 0.077 O O

n 0.192 O 1 Ü L l A 1 0.384 0.538 I A 1 • • 1

WAVELENGTH TO SHIP LENGTH

(DEGREES)

3 4 5 WAVELENGTH TO SHIP LENGTH

(48)

1.0 E x p e r i m e n t A Fu ( R e f . 1 3 ) P r e d i c t i o n 0.0 O

A 0.077 O ( ) 0.192 O O 0.384 n ^ A 0.538 A /\ A A • • " 3 4 WAVELENGTH TO SHIP LENGTH

"5 (•1VXKEES)

UAVELENCTH TO SHIP LENGTH

(49)

F i g u r e 3 ( C o n t i n u e d ) It A •O O

3 0 () O 0 O F' 2 0 O c9 o° o • V O O Fn 0.0 0.077 E x p e r i m e n t ( R e f . 1 3 ) O O P r e d i c t i o n 1 O O Ü C) O O 0.192 0.384 0.538 O L i A • • • 0 1 1 1 1 1 1 1 1 2 3

WAVELENGTH TO SHIP LENGTH

5 5 7 180 0 90 O "3 (DEGREES) ° O •o • O » • O • O 0 • O -90 -180 C ^ 0 8 p 1 1 , 1 1 2 3 A 5 6 7

WAVELENGTH TO SHIP LENGTH

(50)

.9 Fn E x p e r i m e n t ( R e f . 1 3 ) P r e d i c t l o n .8 U.U 0.077 O O

.7 0.192 0.384 0 n • • .6 0.538 A A . 5 .4 .3 O ö O Li

O & O ri O

O O * • O •

• •

O

.2 • o » . 1 0 ( 9 O 1 1 1 1 1 . 1 0 0 1 2 3 4 5 6 7

WAVELENGTH TO SHIP LENGTH

WAVELENGTH TO SHIP LENGTH

(51)

F i g u r e 3 ( C o n t i n u e d ) ^3 0 ( O O

• •

O O l _ O O O O * O O O i)0 O f a 0.0 0.077 0.192 0.384 0.538 J E x p e r i m e n t ( R e f . 1 3 ) O O O 11 O P r e d l e t t o n 180 F «3 (DEGREES) 90 h 0\--90 -180 O Oo& t &

WAVELENGTH TO SHIP LENGTH

WAVELENGTH TO SHIP LENGTH

(52)

"5 .9 • • O o • O O O • o • O O O I O <> • „ t O "0 O Kn 0 . 0 0.077 0.192 0.384 0.538 E x p e r i m e n t ( R e f . 1 3 ) O O O n A O O P r e d i e t l o n O O O O

WAVELENGTH TO SHIP LENGTH

1 8 0

(DEGREES)

3 4 WAVELENGTH TO SHIP LENGTH

(53)

F i g u r e 3 ( C o n t i n u e d ) F- 2 O A A A -a A • A 0.0 0.077 0.192 0.384 0.538 E x p e r i m e n t ( R e f . 1 3 ) O t ) <> A P r e d i c t i o n ( ) O 3 4 WAVELENGTH TO SHIP LENGTH

(DEGREES)

3 4 5 WAVELENGTH TO SHIP LENGTH

(54)

.9 .7 .6 .2 A (^ 9 a A A o n AA A • I • A 1 O ft Fn E x p e r i m e n t ( R e f . 1 3 ) F r e d i c t i o n 0.0 O

0.077 O 0.192 O 0 0.384 n 0.538 A A A^ |A 4 5 WAVELENGTH TO SHIP LENGTH

CDI'GREES) "

-3 "4 WAVELENGTH TO SHIP LENGTH

(55)

F i g u r e 4 - Comparison between Experiment and P r e d i c t i o n o f Heave E x c i t i n g Force and P i t c h E x c i t i n g Moment f o r t h e

SSP KAIMALINO i n Head Waves

2 E x p e r Iment Fu ( R e f . 13) P r e d I c t l o n 0.0 O

- 0.095 0.222 0.317 O 0.491 O

(J

O O • O O O O O O _ O O O O f> O

O O 1 1 1 L • 0 1 2 3 4 5 6 7

WAVELENGTH TO SHIP LENGTH

03 (DEGREES) 180 90 0 90 180 -O 0 0 O O i 3 4 5 WAVELENGTH TO SHIP LENGTH

(56)

05 2 E x p e r i m e n t Fn ( R e f . 13) P r e d i c t i o n 0.0 0

0.095 0.222 L l 0.317 0

0.491 0

i. 0 „ • 0 0 0 0 0

• • • •

• • •

e 0 0 ° 0 0 0 0 n 0 1_ 1 1 1 u I 2 3 4 5 6 7

WAVELENGTH TO SHIP LENGTH

180

-0 ° 0 0 0 0 ° 90 0 o o o 0 0 0 0 0 {'•\

• • • • •

0 -90 = \J 180 Ü 1 1 1_ 1 1 1 2 3 4 5 6 7

WAVELENGTH TO SHIP LENGTH

(57)

F i g u r e 4 ( C o n t i n u e d ) • A A A • • A A A Fu 0.0 0.095 0.222 0.317 0.491 E x p e r i m e n t ( R e f . ' 1 3 ) O A <> O A P r e d i c t i o n <:> A

O

o

L 3 4 5 WAVELENGTH TO SHIP LENGTH

180 90 (DEGREES) 0 -90 -180 ° ^ °A

1

A 1 1 1 1 ' 1 3 4 5 WAVELENGTH TO SHIP LENGTH

(58)

F' I A A A A

^ 1

3 4 5 WAVELENGTH TO SHIP LENGTH

E x p e r i m e n t Fn ( R e f . 13) P r e d i c t i o n 0.0 O 0.095 A A 0.222 11 U 0.317 O <> 0.491 O O a A 180 h 90 h "5 (DEGREES) ^ -90 -180 A . A A A A A ^ '^Ag • • o D • A ! * * e A A 1? A A • a

1 1

3 4 5 WAVELENGTH TO SHIP LENGTH

(59)

F i g u r e 4 ( C o n t i n u e d ) O O O

• %

• O O O O O O O O F". 0.0 0.095 0.222 0.317 0.491 3 4 5 WAVELENGTH TO SHIP LENGTH

O E x p e r i m e n t ( R e f . 1 3 ) O O P r e d i c t i o n «3 (DEGREES) O

HAVELENGTll TO SHIP LENGTH

(60)

F- 1 E x p e r i m e n t O Fn ( R e f . 1 3 ) P r e d i c t i o n 0.0 0

( ) 0.095 A O U 0.222 • 1: i 0 * 0 0 0 0 • 0 ó ó 8 0 0.317 0.491 0 0 ó 0 \> (.;-• O * -L 3 4 5 WAVELENGTH TO SHIP LENGTH

<^5 (DEGREES)

3 4 5 WAVELENGTH TO SHIP LENGTH

(61)

F i g u r e 5 - Comparison between E x p e r i m e n t and P r e d i c t i o n o f Regular Wave T r a n s f e r F u n c t i o n s f o r t h e SWATH 6A

E x p e r i m e n t ( R e f . 1 4 ) O

P r e d i c t i o n #

HEAD SEAS 0 KNOTS P r e d i c t i o n ( L e e ) •

-I

1 1 1 1 i , 1 1 1 1 r o )l 1 1 U 1 L _ 400 800 1200 1600 2000 WAVELENGTH (FEET) I I I I I ' '

Cytaty

Powiązane dokumenty

This is because barriers continue to prevail in the EU, preventing the exploitation of the potential bene- fits of full market integration, Moreover, complementary

Following a ruling from the European Union’s court of justice regarding personal data and protection of individuals with regard to the processing of such data, it became necessary

Analizuje zagrożenia, które mogą się pojawić, jeśli jednolity mechanizm nadzorczy nie zostanie uzupełniony wspólnym mechanizmem restruk- turyzacji i uporządkowanej likwidacji

The Lisbon Treaty has opened many new opportunities in this respect, but first and foremost as part of measures aimed to combat debt crisis the governments of the Member

Its effects have undermined the economic and fiscal viability of some EMU member states and have frustrated political demands and expectations to an extent that may

The Commission’s Energy Roadmap 2050 provides for energy transformations at three levels: creation of an internal energy market, investments in energy infrastructure

While the package of proposals presented by the European Commission has opened a new debate regarding the possibility of reintroducing internal border checks, it has

This is the context wherein a renewed discussion on the leading role of Germany is now taking place; one may speak of the return of the so-called German question as Germany’s