• Nie Znaleziono Wyników

O qisle predstavleni$ i natural~nyh qisel summami devti kvadratov

N/A
N/A
Protected

Academic year: 2021

Share "O qisle predstavleni$ i natural~nyh qisel summami devti kvadratov"

Copied!
9
0
0

Pełen tekst

(1)

LXVIII.3 (1994)

O qisle predstavleni$ i natural~nyh qisel summami devti kvadratov

G. A. L OMADZE (Tbilisi)

1. Vpervye Mordell [6], primeniv modulrnye funkcii, razvil metod nahodeni toqnyh (neasimptotiqeskih) formul dl qisla predstavleni$ i natural~nyh qisel summami neqetnogo qisla kvad- ratov celyh qisel. Prodelav sootvetstvuwie vyqisleni, vper- vye on poluqil formuly dl qisla predstavleni$ i natural~nyh qisel summami 11, 13 i 15 kvadratov celyh qisel. Dopolnitel~nye qleny tih formul okazalis~ nekotorymi summami, rasprostra- nennymi na vse predstavleni dannogo qisla summo$ i 3, 5 i 7 kvad- ratov celyh qisel sootvetstvenno. Mordell take zameqaet, qto esli primenit~ izvestnoe todestvo kobi ϑ 0 1 = ϑ 2 ϑ 3 ϑ 0 , to dopol- nitel~ny$ i qlen v formule dl qisla predstavleni$ i summo$ i 9 kvad- ratov mono vyrazit~ pri pomowi qisla predstavleni$ i summo$ i 7 kvadratov. Soglasno tomu zameqani, v [3] pokazano, qto qislo predstavleni$ i natural~nogo qisla n summo$ i 9 kvadratov ravno

r 9 = % 9 (n) + 2 17

X

x

21

+...+x

27

=4n 2|x

2

,2|x

3

,2|x

4

2-x

1

,2-x

5

,2-x

6

,2-x

7

(−1) (x

1

+x

2

+x

3

+x

4

−1)/2 x 1 .

ta formula malointeresna. Vvidu togo v [4], vmesto upomnuto$ i vyxe formuly kobi, primeneno todestvo Smita

ϑ 00 0 ϑ 0 ϑ 00 3

ϑ 3 = ϑ 4 2 i pokazano, qto

r 9 (n) = % 9 (n) + 8 17

X

x

21

+...+x

25

=n

(−1) x

1

+x

2

+x

3

+x

4

(x 2 5 − x 2 4 ).

V nastowe$ i e stat~e, pri pomowi rezul~tatov raboty [5],

[245]

(2)

budet dokazano, qto

(1.1) r 9 (n) = % 9 (n) + 32 17

X

x

21

+x

22

+x

23

=3n 3-x

1

,3-x

2

,3-x

3

x

1

>0,x

2

>0,x

3

>0

 x 1 x 2 x 3 3



x 1 x 2 x 3 .

Esli poloit~ n = 2 k u (k ∈ Z, k ≥ 0), u = Q

p|u p l (l ∈ Z, l ≥ 1), ν = p −l n, n = r 2 ω (ω – beskvadratnoe), to vo vseh privedennyh vyxe treh formulah

(1.2) % 9 (n) = 24576

17π 4 n 7/2 χ 2 (n)T 4 (n)L(4, ω), gde

χ 2 (n) =

 

 

 

 

 

 

 

 

 

 

 

 135

127 + 119

127 · 128 2 −7k/2 pri 2 | k, u ≡ 1 (mod 8), 135

127 135

127 · 128 2 −7k/2 pri 2 | k, ω ≡ 5 (mod 8), 135

127 255

127 · 16 2 −7k/2 pri 2 | k, ω ≡ 3 (mod 4), 135

127 255

127 · 16 2 −7(k−1)/2 pri 2 - k;

T 4 (n) = Y

p|r,p>2

 1 −

 ω p



p −4  Y

p|u

(1 − p −7 ) −1 Y

p|u,2-l

(1 − p −7(l+1)/2 )

× Y

p|u,2|l

 1 +

ν p

 − p −3 1 − ν p 

p −4 p −7k/2−4



;

L(4, 1) = π 4

96 , L(4, 2) = 11π 4 768

2 , L(4, ω) = − 2π 4 ω −1/2 X

0≤h≤ω/2

 h ω

 h 2 2 h 3

3



pri ω ≡ 1 (mod 4), ω > 1, L(4, ω) = 2π 4 ω −1/2

 X

0<h≤ω/4

 h ω

 h

16ω h 3 3



X

ω/4<h≤ω/2

 h ω

 1

96 3h 16ω + h 2

2 h 3 3



pri ω ≡ 3 (mod 4),

(3)

L(4, ω) = 2π 4 ω −1/2

 X

0<h≤ω/16

 h ω/2

 11 768 h 2

ω 2



+ X

ω/16<h≤3ω/16

 h ω/2

 5 384 + h

16ω 2h 2

ω 2 + 16h 3 3



+ X

3ω/16<h≤ω/4

 h ω/2

 37 768 h

+ h 2 ω 2



pri ω ≡ 2 (mod 8), ω > 2 , L(4, ω) = 2π 4 ω −1/2

 X

0<h≤ω/16

 h ω/2

 3h

16ω 16h 3 3



X

ω/16<h≤3ω/16

 h ω/2

 1 768 h

+ h 3 ω 3



X

3ω/16<h≤ω/4

 h ω/2

 7

192 13h 16ω + 4h 2

ω 2 16h 3 3



pri ω ≡ 6 (mod 8).

2. V nastowe$ i stat~e budut priment~s sleduwie oboznaqe- ni: N, a, n, q, r – natural~nye qisla; ω – beskvadratnoe qislo;

s ≥ 5, u – neqetnye natural~nye qisla; p – prostoe qislo; c, g, h, j, k, l, m, x, α, β, γ, δ – celye qisla; A, B, λ – kompleksnye qisla; z, τ – kompleksnye peremennye (Im τ > 0); dl z 6= 0 poloim: z s/2 = (z 1/2 ) s , −π/2 < arg z 1/2 ≤ π/2. Dalee, h u 

oboznaqaet obobwenny$ i simbol kobi; e(z) = exp(2πiz); η(γ) = 1 pri γ ≥ 0 i η(γ) = −1 pri γ < 0; S(h, q) – summa Gaussa; r(n; f s ) – qislo predstavleni$ i qisla n primitivno$ i poloitel~no$ i kvadratiqno$ i formo$ i f s = a 1 x 2 1 + . . . + a s x 2 s opredelitel ∆, a – obwee naimen~xee kratnoe ko fficientov a k (k = 1, 2, . . . , s); %(n; f s ) – summa singulrnogo rda, sootvetstvuwego kvadratiqno$ i forme f s .

Dalee, pust~

(2.1) ϑ gh (z | τ ; c, N )

= X

m≡c (mod N )

(−1) h(m−c)/N e((2m + g) 2 τ /(8N ))e((2m + g)z/2).

Poloim (2.2)

ϑ gh (τ ; c, N ) = ϑ gh (0 | τ ; c, N ), ϑ 0 gh (τ ; c, N ) =

∂z ϑ gh (z | τ ; c, N )

z=0

.

(4)

Izvestno ([2], s. 318, form. (1.2), (1.4)), qto ϑ g+2j,h (z | τ ; c, N ) = ϑ gh (z | τ ; c + j, N ), ϑ gh (z | τ ; c + N j, N ) = (−1) hj ϑ gh (z | τ ; c, N ).

Sledovatel~no, soglasno (2.2),

ϑ 0 g+2j,h (τ ; c, N ) = ϑ 0 gh (τ ; c + j, N ), (2.3)

ϑ 0 gh (τ ; c + N j, N ) = (−1) hj ϑ 0 gh (τ ; c, N ).

(2.4)

Iz (2.1), soglasno (2.2), v qastnosti poluqim ϑ gh (τ ; 0, N ) =

X m=−∞

(−1) hm e((2N m + g) 2 τ /(8N )), (2.5)

ϑ 0 gh (τ ; 0, N ) = πi X m=−∞

(−1) hm (2N m + g)e((2N m + g) 2 τ /(8N )).

(2.6)

Iz (2.6) sleduet, qto

(2.7) ϑ 0 −gh (τ ; 0, N ) = −ϑ 0 gh (τ ; 0, N ).

Iz (2.5) sleduet (2.8)

Y s k=1

ϑ 00 (τ ; 0, 2a k ) = 1 + X n=1

r(n; f s )e(nτ ).

Dalee, poloim

(2.9) θ(τ ; f s ) = 1 + X n=1

%(n; f s )e(nτ ), gde

(2.10) %(n; f s ) = π s/2

Γ (s/2)∆ 1/2 n s/2−1 X q=1

q −s X

h mod q (h,q)=1

e



nh q

 Y s k=1

S(a k h, q).

Nakonec, pust~

Γ

 ατ + β γτ + δ

αδ − βγ = 1



, Γ 0 (4N ) =

 ατ + β γτ + δ ∈ Γ

γ ≡ 0 (mod 4N )

 . O PREDELENIE. Funkci F , opredelennu na H = {τ ∈ C | Im τ > 0}, budem nazyvat~ celo$i modulrno$i formo$i vesa s/2 i sistemy mul~tiplikatorov v(M ) otnositel~no podgruppy Γ 0 (4N ) (M – matrica proizvol~no$ i podstanovki iz Γ 0 (4N )), esli

(1) F regulrna na H,

(5)

(2) dl vseh matric M = α β γ δ 

podstanovok iz Γ 0 (4N ) i vseh τ ∈ H,

F

 ατ + β γτ + δ



= v(M )(γτ + δ) s/2 F (τ ), (3) v okrestnosti toqki τ = i∞,

(2.11) F (τ ) =

X m=0

A m e(mτ ),

(4) dl lbo$ i podstanovki iz Γ , v okrestnosti kado$ i racio- nal~no$ i toqki τ = −δ/γ (γ 6= 0, (γ, δ) = 1),

(γτ + δ) s/2 F (τ ) = X m=0

B m e

 m 4N

ατ + β γτ + δ

 .

Pust~ {Γ 0 (4N ), s/2, v(M )} oboznaqaet mnoestvo vseh takih ce- lyh modulrnyh form F .

L EMMA 1 ([1], s. 811, 953). Funkci F iz mnoestva {Γ 0 (4N ), s/2, v(M )} todestvenno ravna nul, esli v ee razloenii (2.11),

A m = 0 dl vseh m ≤ s

24 4N Y

p|4N

 1 + 1

p

 .

L EMMA 2 ([5], teorema). Pust~ N ≥ a. Funkci

ψ(τ ; f 9 ) = Y 9 k=1

ϑ 00 (τ ; 0, 2a k ) − θ(τ ; f 9 ) − λ Y 3 k=1

ϑ 0 g

k

h

k

(τ ; 0, 2N k ), gde λ – proizvol~na postonna , prinadleit mnoestvu {Γ 0 (4N ), 9/2, v(M )} (M = α β γ δ 

– matrica podstanovki iz Γ 0 (4N ), v(M ) = i η(γ)(sgn δ−1)/2 · i (|δ|−1)

2

/4 (β∆ sgn δ/|δ|)), esli vypolnts sleduwie uslovi :

(1) 2 | g k , N k | N (k = 1, 2, 3), a | N , (2) 4

N

X 3 k=1

h 2 k N k , 4

X 3 k=1

g k 2 4N k ,

(3) dl vseh α i δ, dl kotoryh αδ ≡ 1 (mod 4N ), sgn δ

 N 1 N 2 N 3

|δ|

 Y 3

k=1

ϑ 0 αg

k

,h

k

(τ ; 0, 2N k ) =

 −∆

|δ|

 Y 3

k=1

ϑ 0 g

k

h

k

(τ ; 0, 2N k ).

3. V tom paragrafe budet vyvedena formula (1.1) dl qisla

predstavleni$ i natural~nogo qisla n kvadratiqno$ i formo$ i f 9 =

(6)

x 2 1 + . . . + x 2 9 opredelitel ∆ = a = 1. Kak pokazano v [3], s. 297–299, v tom sluqae formula (2.10) budet imet~ vid (1.2).

L EMMA 3. Funkci

(3.1) ψ(τ ) = ϑ 9 00 (τ ; 0, 2) − θ 9 (τ ) − i

34π 3 ϑ 03 40 (τ ; 0, 6) prinadleit mnoestvu {Γ 0 (12), 9/2, v(M )}, gde

v(M ) = i η(γ)(sgn δ−1)/2 · i (|δ|−1)

2

/4

 β sgn δ

|δ|

 ,

M = α β γ δ 

– matrica podstanovki ∈ Γ 0 (12).

D o k a z a t e l ~ s t v o. 1. V lemme 2 poloim: ψ(τ ; f 9 ) = ψ(τ ); f 9 = x 2 1 + . . . + x 2 9 , t.e. a 1 = . . . = a 9 = a = ∆ = 1; θ(τ ; f 9 ) = θ 9 (τ ) = 1 + P

n=1 % 9 (n)e(nτ ); λ = i/(34π 3 ); g 1 = g 2 = g 3 = 4, h 1 = h 2 = h 3 = 0, N 1 = N 2 = N 3 = N = 3. Netrudno proverit~, qto funkci ψ(τ ) udovletvoret uslovim (1) i (2) lemmy 2.

2. Iz αδ ≡ 1 (mod 12) sleduet, qto

(3.2) α ≡ δ ≡ ±1, ±5 (mod 12);

sledovatel~no, α ≡ ±1 (mod 3) i, soglasno (2.3), (2.4) i (2.7), polu- qim

(3.3) ϑ 03 4α,0 (τ ; 0, 6) = ϑ 03 ±4+4(α∓1),0 (τ ; 0, 6)

= ϑ 03 ±4,0 (τ ; 2(α ∓ 1), 6) = ϑ 03 ±4,0 (τ ; 0, 6)

=

 ϑ 03 40 (τ ; 0, 6) pri α ≡ 1 (mod 3), t.e. pri α ≡ 1, −5 (mod 12),

−ϑ 03 40 (τ ; 0, 6) pri α ≡ −1 (mod 3), t.e. pri α ≡ −1, 5 (mod 12).

Dalee, pri δ > 0 imeem sgn δ

 3 · 3 · 3

|δ|



=

 3 δ



=

 1, esli δ ≡ ±1 (mod 12),

−1, esli δ ≡ ±5 (mod 12),

 −1

|δ|



=

 −1 δ



=

 1, esli δ ≡ 1, 5 (mod 12),

−1, esli δ ≡ −1, −5 (mod 12);

pri δ < 0 imeem sgn δ

 3 · 3 · 3

|δ|



= −

 3

−δ



=

 −1, esli δ ≡ ±1 (mod 12), 1, esli δ ≡ ±5 (mod 12),

 −1

|δ|



=

 −1

−δ



=

 1, esli δ ≡ −1, −5 (mod 12),

−1, esli δ ≡ 1, 5 (mod 12).

(7)

Sledovatel~no,

(3.4) sgn δ

 3

|δ|

 3

=

 

 

 

 −1

|δ|



pri δ ≡ 1, −5 (mod 12),

 −1

|δ|



pri δ ≡ −1, 5 (mod 12).

Iz (3.2)–(3.4) sleduet, qto sgn δ

 3

|δ|

 3

ϑ 03 4α,0 (τ ; 0, 6) =

 −1

|δ|



ϑ 03 40 (τ ; 0, 6), t.e. vypolnets i uslovie (3) lemmy 2.

T EOREMA. Imeet mesto todestvo (3.5) ϑ 9 00 (τ ; 0, 2) = θ 9 (τ ) + i

34π 3 ϑ 03 40 (τ ; 0, 6).

D o k a z a t e l ~ s t v o. Pokaem, qto v razloenii funkcii ψ(τ ) po stepenm Q = e(τ ) ko fficienty pri Q n ravny nul dl vseh n ≤ 9.

Iz (2.5) sleduet, qto ϑ 00 (τ ; 0, 2) =

X m=−∞

Q m

2

= 1 + 2Q + 2Q 4 + 2Q 9 + . . . , otkuda

ϑ 9 00 (τ ; 0, 2) = 1 + 18Q + 144Q 2 + 672Q 3 + 2034Q 4 + 4320Q 5 (3.6)

+ 7392Q 6 + 12672Q 7 + 22608Q 8 + 34802Q 9 + . . . Netrudno proverit~, qto vyqisliv znaqeni % 9 (n) po formule (1.2) dl vseh n ≤ 9, poluqim

θ 9 (τ ) = 1 + 274

17 Q + 2640

17 Q 2 + 11040

17 Q 3 + 34834

17 Q 4 + 4320Q 5 (3.7)

+ 125280

17 Q 6 + 216960

17 Q 7 + 382800

17 Q 8 + 592114

17 Q 9 + . . . Iz (2.6) sleduet

ϑ 0 40 (τ ; 0, 6) = 4πi X m=−∞

(3m + 1)Q (3m+1)

2

/3 (3.8)

= 4πi(Q 1/3 − 2Q 4/3 + 4Q 16/3 − 5Q 25/3 + . . .), (3.9)

otkuda

ϑ 03 40 (τ ; 0, 6) = 64π 3 i 3 Q(1 − 2Q + 4Q 5 − 5Q 8 + . . .) 3

= 64π 3 i 3 Q(1 − 6Q + 12Q 2 − 8Q 3 + 12Q 5 − 48Q 6 + 48Q 7 − 15Q 8 + . . .);

(8)

sledovatel~no, (3.10) i

34π 3 ϑ 03 40 (τ ; 0, 6)

= 32

17 (Q − 6Q 2 + 12Q 3 − 8Q 4 + 12Q 6 − 48Q 7 + 48Q 8 − 15Q 9 + . . .).

Prinv vo vnimanie (3.1), (3.6), (3.7) i (3.10), netrudno prove- rit~, qto ko fficienty pri Q n v razloenii funkcii ψ(τ ) po stepenm Q ravny nul dl vseh n ≤ 9. Sledovatel~no, soglasno lemme 1, funkci ψ(τ ) todestvenno ravna nul, t.e. todestvo (3.5) dokazano.

D o k a z a t e l ~ s t v o f o r m u l y (1.1). Iz (3.8) sleduet (3.11) i

64π 3 ϑ 03 40 (τ ; 0, 6)

=

X m

1

,m

2

,m

3

=−∞

(3m 1 + 1)(3m 2 + 1)(3m 3 + 1)

× Q {(3m

1

+1)

2

+(3m

2

+1)

2

+(3m

3

+1)

2

}/3

= X n=1

 X

(3m

1

+1)

2

+(3m

2

+1)

2

+(3m

3

+1)

2

=3n

(3m 1 + 1)(3m 2 + 1)(3m 3 + 1)

 Q n .

Priravnv ko fficienty pri Q n v obeih qasth todestva (3.5) i prinv vo vnimanie (2.8), (2.9) i (3.11), poluqim

(3.12) r 9 (n) = % 9 (n) + 32 17 w(n),

gde w(n) oboznaqaet ko fficient pri Q n v razloenii funkcii

i

64π

3

ϑ 03 40 (τ ; 0, 6) po stepenm Q, t.e.

w(n) = X

x

21

+x

22

+x

23

=3n x

1

≡x

2

≡x

3

≡1 (mod 3)

x 1 x 2 x 3

(3.13)

= X

x

21

+x

22

+x

23

=3n 3-x

1

,3-x

2

,3-x

3

x

1

>0,x

2

>0,x

3

>0

 x 1 x 2 x 3 3



x 1 x 2 x 3 .

Iz (3.12) i (3.13) sleduet formula (1.1).

Literatura

[1] E. H e c k e, Mathematische Werke, zweite Auflage, Vandenhoeck u. Ruprecht, G¨ottin-

gen, 1970.

(9)

[2] H. D. K l o o s t e r m a n, The behaviour of general theta-functions under the modular group and the characters of binary modular congruence groups. I , Ann. of Math. 47 (1946), 317–375.

[3] G. A. L o m a d z e, O predstavlenii qisel summami neq¨etnogo qisla kvadra- tov, Trudy Tbilis. matem. in-ta 17 (1949), 281–314.

[4] —, O predstavlenii qisel summo$i 8t + 1 kvadratov, Trudy Tbilis. gos.

un-ta 179 (1976), 63–66.

[5] —, On some entire modular forms of half integral weight for the group Γ 0 (4N ), in:

New Trends in Probability and Statistics, Vol. 2 (Palanga, 1991), VSP, Utrecht, 1992, 57–67.

[6] L. G. M o r d e l l, On the representations of a number as a sum of an odd number of squares, Trans. Cambridge Philos. Soc. 22 (1919), 361–372.

MEHANIKO-MATEMATIQESKI $ I FAKUL^TET TBILISSKI $ I GOSUDARSTVENNY $ I UNIVERSITET PROSP. I. QAVQAVADZE 1

TBILISI 380028 RESPUBLIKA GRUZI

Postupilo 14.4.1993 (2413)

Cytaty

Powiązane dokumenty

Within both preparations the latency has a statistically significant (P ≤ 0.05) effect on the percentage of living embryos after 24, 36, and 48 h incubation of eggs obtained

The main milt parameters of the chub Leuciscus cephalus (L.) obtained from the control group (control) and after hormonal stimulation with Ovopel [(D-Ala6,

Few publications have discussed the impact of hydration conditions on the content and profile of phospholipids in oils and oil gums and the composition of fatty acids.. It was

Bentonite and calcium oxide produced a much positive effect on the analyzed soil properties than compost, generally causing an increase in pH, total exchangeable bases, cation

The experiment evaluated the effect of cropping systems (sole cropping and strip cropping) and weed control (mechanical and chemical) on the yield and yield components of maize,

Therefore, the main objective of this research is to evaluate and compare land suitability for surface, sprinkler and drip irrigation methods based on the parametric evaluation

(2004), chickens fed 250 mg propolis per kg feed were characterized by significantly higher body weights and lower feed intake per kg body weight gain, compared with birds that

Polish dark-colored honey (buckwheat honey and honeydew honey) has a much higher total phenolic and flavonoid content than honey of other botanical varieties and mixed honey.