• Nie Znaleziono Wyników

The X-functional for a Banach couple (AEq;K, ÀEvK)Abstract. We give estimations for the X-functional for a Banach couple

N/A
N/A
Protected

Academic year: 2021

Share "The X-functional for a Banach couple (AEq;K, ÀEvK)Abstract. We give estimations for the X-functional for a Banach couple"

Copied!
16
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXV (1985)

Miec z y sl a w Ma s t y l o (Poznan)

The X -functional for a Banach couple (AEq;K, ÀEvK)

Abstract. We give estimations for the X -functional for a Banach couple {ÂEq.k , ÂEi.k) under some assumptions on the spaces E0 and E x. We apply them in the proof of the reiteration theorem (Theorem 2). The proof of this theorem was given by Gustavsson in [1], but our proof is different.

1. Preliminaries. Let À = (A0, A t) be a Banach couple, i.e., A 0 and A t are two Banach spaces continuously embedded in some Hausdorff topologi­

cal vector space с/. We define the Banach space

Aq~i~Ai = \q,e s$ \ a — üq-\~£Ii, ü q eAq, üi£ y 4 j |

with the norm

I M U o + A i = i n f { | | a 0 | L 0 + | | u i l U 1 : a0EA0, a^EAu a0 + at = a).

For each ü eAq + A^ and for any 0 < t < oo we define the К-functional of Peetre

K(t , a; A) = K ( t , a; A 0, A t)

= inf J||a0L 0 + f HfljLj: a0EA0, qxeA x, a0 + a i = a ) . Let L° be the space of real-valued Lebesgue-measurable functions on R+ = (0, o o ) (with equality almost everywhere) and let a subspace E of L° be a Banach function space such that m in(l, t)e £ . Then the space

^E-.K ~ (Aq> AiIe-k = {ae Aq + A^ : К ( •, a, A )e E]

is a Banach space with the norm

I M U — II^IIeja: — a -> A ) \ \e- E : K

For any measurable function /: R+ -> R+ we define a submultiplicative function M: R + -►[(), o o ] by the formula

M ( s , f ) sup 0 <t < 00

fist) f i t ) '

(2)

94 M. M a s ty lo

If M is finite and measurable or non-decreasing, then (by Lemma of Hille- Philips in [2], p. 241, the additive version) it is possible to define the indices of function /:

P o ( f ) = sup

0 < s < 1

In M( s , f )

In s lim

s->0 +

In M ( s , f ) In s

P 00( f ) = inf

S > 1

In M ( s , f )

In s lim

S~-> GO

In M ( s , f ) In s

We say that a function /: R + -+R+ belongs to a function class âSK if it satisfies conditions given below

(i) / is continuous and non-decreasing, (ii) M ( s , f ) < oo for every s > 0, (iii) f m in(l, s l) M ( s , f ) — < o o .

о s

We note that a function f belongs to âSK if and only if it satisfies (i) and

о < Р о ( Л < P o o ( / ) < ! •

Let F be a convex Orlicz function on [0, oo), i.e., a finite, continuous, convex and increasing function satisfying conditions F(0) = 0 and F(f) -> oo as t -* oo and let f e & K. The weighted Orlicz space L*f consists of mea­

surable functions x on R + for which lx(f)l Xf{t)J t о

À = Я(х) > 0.

The Luxemburg norm in L*f is defined by

is finite for some

||*4 = i n f { A> 0 : j f ( H

If E = L*f , then we write (A 0, A j ) ^ = Âf<F.K. When F(u) = up, 1 < p < oo, we write Af<p.K, and when f ( t ) = te, 0 < в < 1, we write shortly А в р.к .

Let / be a quasi-concave function on R +. The weighted space Щ consists of measurable functions x on R + for which

M u p f = sup

J t > 0

1^(01 f i t )

< 00.

If E = Щ-, then we write (A 0, A = Af a0.K. When f (t) — te, 0 < в ^ 1, we write AetaoiK.

N o t a t i o n . f ( t ) ~ g { t ) if and only if cx f ( t ) ^ g(t) ^ c2f {t ) for every t > 0 and some c t , c2 > 0.

(3)

The letter c will denote a constant which need not be the same in different cases.

XA denotes the characteristic function of a set A c Æ + .

2. Main result. We give estimations for the К -functional for a Banach couple (AEq.k , Â Ei;K) under some assumptions on the space E 0 and E x.

Th e o r e m 1. Let  be a Banach couple, let (Eh || -\\E.), i = 0 , 1, be Banach function spaces on R+ and let functions f \ Я+ -> R+, i = 0, 1, be such that

(1) I I W O 'A I Ie,. - llz[s,oo)ll£i - 1 / m , i = 0, l,

(2) ll/i Z(o,<5(f))tl£0 ^ ct’

(3) H/oXt^fbaojIUj ^ CA

for some increasing function Ç: R+ -»Я+ such that Ç(R + ) — R+. Then (4) K(t, a; Â Eq.k , A Ei;K) ~ 1!^(*, a ‘, a ’ Â) Xmt),co)\\Ei for every a e ÂEq.k + Â Ev<K.

P ro o f. Let

F(t, a) = ||K ( , a; 4 )x (0>(S(f))||£o + t||K ( *, a;

for every a e  Eo;K +  Ei;K and t > 0.

First we will show that F(t, a) ^ cK(t, a; Â Eq;K, ÂEi;K) for some c > 0.

If a = a0 + a1 is any partition of a e ÂEq.k + ÂEl.K with и, е Л £.;К, i = 0, 1, then F(t, a ) ^ \ \ K { - , a0; Л)х(0.$(0)||£о + ||К ( S ; Â) x(o,m)\\E0 +

4-t||K (-, a0; +t\\K(-, a^ ; Л );^ (0>00)||£1

= 7i + / 2 + / 3 + / 4.

Let us denote J { = ||аг||£..£ = ||X (-, at\ A)||£., i = 0, 1.

From the inequality

(5) K( t, a ; Â) ^ m in(l, t/s)K(s, a; Â) and (1), we get

(6) K (s, af ; Â) cJi f (s), i = 0, 1, for every 0 < s < oo. From (2), (3) and (6) we obtain

I l — ll-K( cii '•> A)X(o,ç(t))\\e0 ^ c^ i ll/i Z(o)(*(t))ll£o ^ C^ 1 h — f a0> Â) oo)l If j ^ tcJo\\fo ^ cJ0.

For I x and / 4 we have the obvious estimates : ^ J 0 and / 4 ^ fJi- Thus F(t, a) ^ c(|ja0||£o;A: + f 11^11^.*). If we take infimum over all decompositions

(4)

96 M. M a s ty lo

а = üq + ü!, where а ,е Л £..£, i = 0, 1, we have (7) F(t, a ) ^ c K ( t , a; A Eq;K, AEi;K).

To show the converse inequality, let us note that from the definition of X-functional for the Banach couple A we get: for all t > 0 there exist a0( t ) e A 0, such that a = ao(0 + a i( 0 anc* llao(f)IL0 +

+*lk*i(0IL1 < 2 K (t>a ; Â).

We now define a'0 and a\ by a|(t) = a,-(£(£)), i — 0,1. Then a'0 + a[ = a and

(8) K( s , a'0(t); A) < | K ( 0 I L o = ||«o(«(0)|Uo 2К (4(f), a; A), (9) K (s, a\ (t); Â) s |K (OIL, = s | h (4(0)|L, Ы (0~ ‘ Щ (0, a; Â).

By the triangle inequality we get

(10) K(s, a'0(t); Â) ^ K(s, a; Â) + K(s, a[(t); Â), (11) K (s, a\ (t); À) ^ K (s, a ; Â) + K (s, a'0(t); Â),

(12) K( t, a; ÂEq:K, A Ei:K) < ||K (s, a'0(t); T)||£o + r||K (s, ai(t); Â)||£l

^ ||K (s, a'0(t); Â )/(0^(t))(s)||£o + ||K(s, a0(t)‘, ^4)X[^(t)>00)(s)||£o4- + £||K(s, a\{t)-, Л)х(0.«о)WlUi + r 11^ (s > ai ( f); ^ )fe ),ao )(s)|k

= Г1 + Г2 + Г, + Г4.

Let

T<o = 11^(s, ai >f)X(o>(*(t))(s)ll£0» L i = ll-K(s> From (1) and (5) we obtain estimates

(13) K(s, a; Â) ^ cL0f 0(s) if 0 < s < £(£), (14) K ( s , a ; A ) ^ c L l f 1(s) if s ^ £ ( r ) .

From (9), (10) and (1) we get (15) = ||Х ( 5,а Ь ( 0 ;Я ) х <s>lk

=S ||K (s, a; ^)X(0,i(,))L)il£0 + ||K (s. a\ (0 ; <4)x(0,{(„,M ||t0

< z . o+ ||2 s 4 ( t r , K ( ê ( 0 .e ;^ ) z ,o A(t)) M l k

= L 0 + 2<i;(t) 1 K (£(t), a; ^4)||sx(0^(t))(s)||£o

^ L 0 + 2cL0 £ (t) 1/o(<^(t))l|5/(o,^(f))(s)||£0 ^ c L 0.

From (8), (11), (14) and (1) we get (16) /4 = ai W; ^4)X[ç(t),00) (*^)|!

^ f||K (s, a ; 4 )x K(f), x)(s)||£ l + t||K (s , flo(0 ;

(5)

^ tLi + t\\2K(Ç{t), a; 4 )x K<l)>oo)(s)||£l

< t Li +2 t\ \K( s , a\ ^ ) t o ) >00)(s)||El ^ ctLi, (17) Г2 = | j. K ( s , a 'o (t)‘,-4)x^(f),<»)(s)||£o

^ | | 2 - K ( £ ( t ) » я ; • ' 4 ) X [ ^ ( t ) , o o ) ( ^ ) | |e q ^ c L o M W 1 I I X [ 4 ( t ) ,о о)11е0

^ cLq,

( 1 8 ) /3 = f j | X ( s , a \ (t) ; Л) Х( о,<j(o) ( ,s)||.e1

^ t\\2sÇ(tyl K(Ç{t), я; ^ )x (o.€(o)(s)|Ui

= 2t Ç i t y 1 K(Ç(t), я; Â )||s/(0^(f))(5)||El

^ 2t£ (t)~1 c L 1 f i (<* (0) l|sz(o,«»)) {s)\\El ^ ct Lx.

Finally, from (15), (16), (17) and (18), we have (19) K( t, я; ÂEq.k , Â Ei;K) ^ cF(t, я).

From (7) and (19) we obtain (4).

3. Examples. Now we give examples of weighted Orlicz spaces which satisfy conditions (l)-(3) from Theorem 1.

Example 1. Let F, be convex Orlicz functions on [0, 00) satisfying condition A2 for all u > 0 (in short F ; e d 2) [6] and let f g , / = 0, 1.

We assume that the function т = f i / f 0 is an increasing and

(20) р о( т) >0.

Then, the spaces i = 0, 1 fulfil conditions (l)-(3) from Theorem 1.

P ro o f. Let E( = L^j., i = 0, 1. From Proposition 3.2 in [2] and Theorem 3.2 in [6] we get

(21) 0 < p0{ Fo f ) ^ Poo(Fo/) < 00, (22) - o o < Po(Fo 1//) < p 00(F o 1//) < 0 for F e A 2 and / e !%K.

Since t / f { t ) e 0SK, 1 = 0, 1, we get (by (21), (22) and Corollary 3, in [4], P. 80)

(23)

(24)

S

5

~ Roczniki PTM — Prace Matematyczne XXV

(6)

98 M. M astyto

for every s > 0 and for each A > 0. This implies that pC(0,s) (0 ^ II X[s,oo)ll£t-

M s ) ’ i = 0, 1

From (20) we obtain that x{R + ) = R + and that the function т has the inverse t^ 1. Let £(r) = T - 1 ( f ) , then Ç(R+) = R + .

It is easily seen, that 0 < p0(x) < Poo(T) < 1, hence т е if* and (by (23) and (24)) we get

l l / l X (0 ,t - 1(,))IIe o ~ ll ^ ° ^ [t ~ 1(i),oo)ll£ l ~~ ^

respectively. Thus, we obtain conditions (l)-(3) from Theorem 1.

Ex a m p l e 2. Let /„ / = 0, 1, be quasi-concave functions on R +, i.e., 0 < f ( t ) < m ax(l, t/s) f (s ) , and let the function x —f j f 0 increases, x{R + )

= R+. Then, Щ . , i = 0, 1, satisfy conditions (1)—(3) from Theorem 1.

From Theorem 1 and Example 2, we have

Co r o l l a r y 1. Let f be quasi-concave functions on R + , i — 0 ,1 . I f the function t =fi!fo increases and x{R + ) = R+, then

(25) K( t, a; A f Qt, :K,

о

K{s, a; A)

sup — ——— + t sup

s J o \ S ) s ^ r ~ 1(t)

K ( s , a; A) fi(s) for every a e Âfo^ :K + Afvoc:K.

In particular case we have Corollary 2.

(26) К (f, a ; Л 0х;А:, л К ) ^ ^v(t, a', Â) for every a e A 0^ :K + A X^ , K.

From Theorem 1 and Example 1, we get

Corollary 3. Let Fi e A 2 be convex Orlicz functions on [0, oo) and f e 0 S K, i — 0, 1. I f an increasing function x = f j f 0 is such that p0{x) > 0, then

(27) K(t, a; ÂfoFo.K, À fltF l.K)

l|K(*, a; À)x( O . t - i f r ) ) 1| ^ д + 1 ||Щ ^ ; / Г ) х [т_ 1(() J u 1 Vi for every a e A fo<Fo;K + AfltFl.K.

Corollary 4. Let /q, / ^ 1 < Po, Pi < oo, t/ie function x —f j f 0 be an increasing and p0{x) > 0. Then

(28) K(t, a; Afo<P0.K, A f l Pi;K) r ~ht)

K(s, a ; Â)IP 0 M s ) for every a e A f0tPo;K + AfliPi;K.

ds \ Про

+ t K(s, a; A)

fl(s)

~*P1 ds s

I/Pl

(7)

R e m a rk 1. In a special case if f 0(t) = te°, fi{t) = t°l, where 0 < Q0

<Ol < 1 , we have Theorem of Holmstedt (Holmstedt [3], Theorem 2.1).

4. The К -functional for Lorentz spaces. Let a Banach function space X be a rearrangement invariant (r.i.) space on R + , as defined in [4]. A fundamental function Фх of the r.i. space X is given by Ф*(0 = H^o.oIIa'- It was shown in [4], [7] that X can be equivalently renormed in such a way that Фх is concave. Therefore we can assume that Фх is concave. Let us put Pi(X) = р,(Фх), i = 0, oo.

The r.i. Lorentz spaces associated with r.i. space X are defined as follows Л{Х) = {a<=L°: ||а||л(Х) = | а*{8)с1Фх {8) < oo},

M ( X ) = |a e L ° : ||a||MW = ^sup y ^ J a*{s)dsJ< °° j>.

о Let 0 < P o ( * K P . W < 1, 1 ^ q < oo ; then

00

Ц Ф Х, q) = j aeL° : \\а\\ЦФхл) = Q [a*(s)Фх (s)]« y j < oo|, 0

oo

£ *(ФХ, q) = j ae L° : \\а\\^Фх,9) = ( J [ a * * ( s ^ x (s)]« y j < oo|, where

a**(s) = s ~ 1 j a*(t)dt.

Here, as usual, a* denotes the non-negative, non-increasing rearrangement of a which is equimeasurable with a, i.e.,

m {t e R + : \a(t)\ > y] = m [teR+ : a*(t) > y}

for all у > 0 (where m is the Lebesgue measure).

The space Ь*(ФХ, q) is r.i. space for each X and 1 ^ q < oo.

Lemma 1. I f f and p0(X) > 0, then ае(Л(Х), Т°°)/><г;К if and only if

Ç ds

C ( X , f ) : = [a*(s)<M s)((/o<PJf)(s))-1] , y < oo.

0

P ro o f. We assume that a e Л(Х) + L® and C(X, f ) < oo. Since фх 1(0

K{t, а; Л( Х) , L“ ) = J a* (s) <№,(*) 0

(29)

(8)

100 M . M a s t y l o

(see [7]), we get

фх 1(0

I f V dt

a*(s)d<Px (s)J — (0

о oo фХ 1(,)

<

(0

* 1 ( \

ds\q

dt

a*{s)<Px (s) — \ — s J t

00 1

= | ( j ^ j j a* (0x 1( t)u)0x ( 0 x 1( t ) u ) ^ j J .

0 0

From the Minkowski’s inequality, we obtain 1 00

1 f i t )

(30) ^

о о

Putting s = ФхЧОи» we get from (30) 1 00

a*(s)

а*(Фх 1(^и)Фх {Фх 1^)и) q d t \ du t ) и

(31)

IMI/,9;K ^

(/o # * )(s/u ) фх (*) 4 ds \ du

s J и

о о

From the inequality ( ( / оФ х)(х/м)) 1 ^ M ( u , f o 0 x) (( f o 0 x)(s)) 1 for s, и > 0 and (31), we get

I\a\\%;K^ C ( X , f ) M ( u , f оФх)4 du

It is easy to show that

M ( u , f оФху — < oo,du

hence, \\a\\ftq.K < oo or ae(A{X),

Conversely, assume that ае(Л{Х), L®)/>e;JC, then from (29) we obtain K ( t , a ; A { X ) , L») ^ 1а*(Фх 1 (0)-

If we put s = Фх 1 (0, then from Theorem 2.4 in [7] we get

\\a \ \ } , q ; K

ta* (Фх 1 (г)) f i t )

q dt

^ m C ( X J ) ,

о

(9)

where m > 0. Hence, we have C ( X , f ) < со.

In the case, when X = L1, we have

Corollary 5 (Gustavsson [1], Lemma 3.1). I f f e then a e(L*, L®)yt<J;K if and only if

(32)

00/*

J0

ds I y < « -

Co r o l l a r y 6. L e r 0 < Po(Xi) ^ / ? * № ) < 1 , 1 ^ qt < oo, i = 0 , 1. I f an increasing function т = Фх0/Фх1 ls suc/z that р0(т) > 0, then

(33) K (t, а; Т(Ф*0, q0), (Ф ^ , q j ) ~ K (f, a; Т*(Ф*0, q0), Ь*(ФХ1, qt))

T _ 1(t)

0

[a * (s)0 ï o (S)], c -

° s

1/90

I + t ' f d s \ l/qi

[a* (s) **,(»)]“ y ]

t “ *(1)

for each а е Ц Ф Хо, <?0) + L(4>Xl, q j . P ro o f. First we can notice that

K(s, a; L1, L°°) = J a*(u)du о

for a e Û + L™ (see [7]).

By Corollaries 4 and 5 for а еЬ ( Фх , q o) + L ( 0 x , q j , we have (34) K( t , а; Ц Ф Хо, q0), № Xi, ?1)) ~ K(t, а; q0), L * ( 4 y , „,))

~ K(t, a; (L1, L CD)s/0Xo(s),qo;K, UA

r _ 1 0 ) s

Ф*о(*) s

\«i

T_ !(t)

— I0 + tI 1.

The function a* is non-increasing, J a* (u) du ^ sa* (s), so о

[a*(s) Фх0(«)]«о ds s J

\ 1/90

From the generalized Hardy’s inequality (see [5]), we get

л><

T - 1 (t)

\ / r d s \ l/9°

M ( s - ' ^ Xo) d s ) M [a*(s)#*0(s)], 0 y j

0 0

(10)

102 M . M a s t y l o

By inequalities 0 < р0( Х :) < p ^ i X J < 1, we get Фх. е ^ к , i = 0, 1, hence

1 CO

j M ( s ~ \ <PXQ)ds =

^

M(s,

< P Xq)

^ < GO.

о 1

The remaining term of (34) is treated in the same way.

In the particular case, when L(<PXj, q{) = L(rilPl, </,), г = 0, 1, 1 < p0

< pt < oo and 1/oc = l/po—l/Pi, we have the theorem of Holmstedt [3], Theorem 4.2 (by Corollary 6).

Corollary 7. Let be r.i. spaces with the fundamental functions Фх., i = 0, 1. I f the function x = ФХо/ФХ1 increases and x(R + ) = R+, then (35) K ( t , a ; M ( X 0), M (X,))

~ sup (a**(s)$Xo(s))+t sup (a**(s)4>XlU))

0 <s<t s? t— h * )

for every a e M ( X 0) + M ( Xf ) .

P ro o f. Let  = (L1, L°°), /( s ) = s /0 x.(s), i = 0, 1. Since

5

K(s, a; Л) = J a*(u)du о

for all s > 0 and a e L 1+ L (X), we have

INI/,.,®* = sup (а**(5)Фх,(«)) = И1м(х{). * =0,1-

0 < s < oo

Taking r(s) = / 1(s)//0(s) = 0 Xo(s)/0Xl(s), we get (35) by Corollary 1.

Counterexample. We note that for E0 = L® n and E x = L^jt, con­

ditions (2) and (3) from Theorem 1 do not hold.

5. The reiteration theorem. To show the reiteration theorem we will use Corollary 4.

Let a function class consist of all continuously differentiable func­

tions / : R+ -+R+ such that inf ,

t>о f ( t ) = af > 0,

7 w " = b / " 1

Theorem 2 (the reiteration theorem). Let  be a Banach couple, f e M * , 1 ^ P, < oo, Bi = (A0, A x)fbP .'K, i = 0, 1. I f there is a constant m such that a function x = f j f 0 fulfils the condition

tr'jt)

X (t) ^ m > 0, (36)

(11)

then

(37) (B0, = (A0, A 1 )g<P'K

with equivalent norms for (ре.Аф, where g(t) = f 0(t)(p(z{t)), 1 ^ p ^ c o . P ro o f. Let 1 ^ p < oo, 1 ^ Pi < oo, i = 0, 1. The inequality

tg'(t)

implies, that деШф- Since Bt is of class CK( f , A), i = 0, 1 (see [1]), we get K(f, a ; Â) ^ K { t , a0; A) + K(t, A) ^ c(/o(OI|aoll/o>pjc+/i(O I|aill/1,p;K) for a e ( B 0, B ^ p . K, a — ao + ay with а,еБ,-, i — 0, 1. Taking infimum over all decompositions a0 + ax = а, а{е В ь i = 0, 1, we get

(38) K(t, a; A) < cf0(t) K(x(t), a; B).

The function т has the inverse t' 1 and x(R+) = R+. If we put r = r _1(s), then from (38), we get

(39) IM|gi, * ^ c K(x(t), a; B)~f J0

(p(x(t)) - 00

K (s, a; В p sx

tpis) x'

^

C

INI(B0.Bi)V(

p.j

The last inequality is a consequence of the following one

< J_

t ~ 1 ( s ) m From (39) we obtain that

(40) (Bo, ^l)<p,p:K <= (Aq, A^g p-x

with continuous embedding.

Conversely, let a e ( A 0, A f ^ p . K. From Theorem 3.2 in [6] we have [PoW, Роо(т)] <= [aT, b j .

From this inclusion and (36) we get p0(x) ^ ar ^ m > 0. Moreover, (ре,Аф

(12)

104 M. M a s ty lo

and t( R +) = R+, so by Corollary 4 we have

00 T-1 (f)

(41) IMUo.,,! W ~ ( j

* K{s, a; Â)

J fois)

P0 d s \ l'P0 у d t V 1"

- )

T J +

+ (p(t)

0 t -1(0

K{s, a; A)

Â(s) J

"тПтГ—'-

We will change the variables in 70 and in the following way: first we put s = x ~ 1(t)v and next t = t(m). Then

<р(т(и))

<p(t (m))

K(uv, a; A / o M

K(uv, а; Л) _ /о)"»)

P0 d » Y " ° y UT>) А Л 1"

t; / / t(u) mJ p° d v \ >IP0J d u y

have

1° If 1 < Po < p < oo, then according to Minkowski’s inequality we 1 00

0 о

1 00

0 0 1 00

K(uv, a; A) f 0(uv)q>(x{u))_

K(s, a; Â) J 0 (s)<p(t{s/v))

" d u \ Polp d v \ llP0

U J V J

” d j \ Polp d v J P0

K(s, a; A) 0 о

1

/o(s)(<P°t)(s)

d v \ llP0

M(v, (pот) ' d s Y 0"’ d v J P0

( f d v \ llPo

= у [M (p , <г>от)]Р0 — J M (Ao,AlttfP:K- 0

It is easy to see that (po i e ^ , hence,

C = ( [ l M { v , ( p o r ) Y ° — ) ° < o o ,

v /

о

(13)

and

<42>

If 1 < Pi ^ p < oo, then

h

1 о

ao ao

t(u) К iuv, a; Л )!p difv'’1"’ dv jp(xiu)) f i (uv)

- U УI V

ris/v) К is, a; Л у \ P' IP dv

_(p(zis/v)) A(s) s ) V

1 0 00 00

<

1 b)0

A/fl - 1 T \ K{s, a; A) M l v \ 1

q> от J f 0{s) (p(x{s))

p d f j llp d v J Pl

— С ||я||(ло,Л1)0.р;К’

Let us note that for a function F(s) = t(s) / (ç>о т) (s) , we have

(43) ^ =

(>0,

F (t) t(t) \ <p(s)/

where s = r(f). From (36) and (43) we obtain tF'{t)

(44) F{t) > m ( l - b v) > 0.

From (44), we get p0(F) ^ aF ^ m(l -b ,,) > 0, hence, l

С = [M (u, т/<рот)]pi dv v

i/p i

< 00

Consequently, we get

<45> / . « C | M | (, 0. , l W . From (41), (42) and (45) we obtain

( 4 6 ) i ^ o , A l ) g , p ; K ^ ( ^ 0 > B l) < p ,p ;K

with continuous embedding.

2° If 1 < p ^ ’p0 < oo, then 0 < p0(/o) < Poo(/o) < 1, since / о ^ ^ .

(14)

106 M . M a s t y l o

Hence, for 0 < s ^ 1, we get

К {uv, a; A) "d v r K{uv, a; A) uv

fo( w) » uv f 0 {uv)

p dv v

(К (us, a ; A ) \ p f / uv \ p dv ^ 1 fK{us, a; A)

^ 1 / J Vo(^)y U /о(

ms

)

0 ns

that is (47)

which implies

К {us, a; A) ^ C J j/p/ 0(ns),

K{uv, a, A) / o W

PO dvj p 0

1 ^

= ( J fo(»v) P0(K (uv, а ; Л))"0 p(K(uv, a ; A j f ~ )

« ( |/ o M " ' ,0(K («i>,a;i)y’(CJj"’/ 0(«t>)f0' ,' * j ° = C /0.

From the inequality 00 , 1

, «

K{uv, a; A)

u

f 0{uv)(p(z{u))

P0 dv \ plp° duY'*

v j 7 '

0 0 we obtain

00 1

(4 8 ) I o ^ C \

= C

= c

Г / Г K{uv, a; A)

и

fo {uv) (p (t (u))_

0 о 1 00

К {uv, a; A) _/o (uv) <p (t (n))_

0 0 1 QO

ivr

" K { s , a ; A ) ]

JU

_fo{s)(p(r{s/v))_

p d v \ d u \ l/p v J и J

p d u \ d v \ l/p

и J v J

p ds \ dv\ 1/p s J v J

о о

(15)

1 00

^ c

M (v, (pox) K(s, a; A) g(s)

p ds^j d v ^ p 0 о

1

d v \ l^p

= C( I [M(v, (pox)Y — \

о о

= C M \ {Ao,Al)(l'P:K.

If 1 ^ p ^ Pi < oo, then

K (s, a; A) g(s)

d s ^ j ,p

Ji = K(uv, a ; A) ]p dv f i (м у)

l

>( K( us, a ; Л)У

K(uv, a; A) / i (му)

p dt;

и

1 Y dv 1 / K (us, a; Л)^р

1 (м у) 7 У

с V

/ i (m s)

for s ^ 1, hence,

К (us, a M ) ^ C J } /p/i(Ms) for s ^ 1, w > 0, and

00

1

JK(ut;, a; A) Pl dv f i (м у)

J

у

pIp i

I < C J t .

By the inequality 00

0

00

1

K ( u v , a ; A ) T 1 Л Л Р/Р1 d u V lp f i (uv) v ) и )

we get the next one (in the same way)

(49) ' . < c

From (48), (49), (46) and (40) we obtain (37).

If Pl = p = oo, then the proof is similar.

I wish to thank Dr. L. Maligranda for his suggestions and very helpful comments that made possible the preparation of this paper.

(16)

108 M. M a s ty lo

References

[1] J. G u s t a v s s o n , A function parameter in connection with interpolation o f Banach spaces, Math. Scand. 42 (1978), 289-305.

[2] F. H i lie, R. S. P h il li p s , Functional Analysis and Semi-Groups, Amer. Math. Soc.

Providence (1957).

[3] T. H o lm s t e d t , Interpolation o f quasi-normed spaces, Math. Scand. 26 (1970), 177-199.

[4] S. G. K r e in , Ju. I. P e tu n in , E. M. S e m e n o v , Interpolation o f linear operators, Nauka, Moskwa 1978 (in Russian).

[5] L. M a lig r a n d a , Generalized Hardy inequalities in rearrangement invariant spaces, J. Math.

Pures Appl. 59 (1980), 405-415.

[6] —, Indices and interpolation, preprint.

[7] R. S h a r p le y , Spaces Ax(X) and interpolation, J. Functional Analysis 11 (1972), 475-513.

INSTITUTE OF MATHEMATICS

ADAM MICKIEWICZ UNIVERSITY, POZNAN

Cytaty

Powiązane dokumenty

Th e rate of change of displacement with respect to time is called velocity, and it is normally given the symbol v. KEY POINT 20.1 KEY

Find the derivative of arcsec x with respect to x, justifyingx. carefully the sign of

In the case when X is an open interval and Y is a Banach space, it is well known under what conditions these extensions are continuous (cf.. Sablik brings theorems which answer

by Gerd Herzog and Roland Lemmert

We also consider spaces with plurisubharmonic norms and introduce the class of analytic Sidon sets.. Of course the sequence (ε n ) is a model for the Rademacher functions on

Moreover, in Musielak–Orlicz sequence spaces, criteria for the Banach–Saks property, the near uniform convexity, the uniform Kadec–Klee property and property (H) are given... 1. Let

With the aid of the method o f successive approximations applied to an appropriate system o f Volt err a’s integral equations there was proved the existence o f

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE