• Nie Znaleziono Wyników

Calcareous nannoplankton of the Globigerina Marls (Leluchów Marls Member), Magura Nappe, West Carpathians

N/A
N/A
Protected

Academic year: 2022

Share "Calcareous nannoplankton of the Globigerina Marls (Leluchów Marls Member), Magura Nappe, West Carpathians"

Copied!
16
0
0

Pełen tekst

(1)

Annales Societatis Geologorum Polonicie (1996), vol. 66: 1 - 15.

CALCAREOUS NANNOPLANKTON OF THE GLOBIGERINA MARLS (LELUCHÓW MARLS MEMBER), MAGURA NAPPE,

WEST CARPATHIANS

Marta OSZCZYPKO

Institute o f G eological Sciences, Jagiellonian U niversity, O leandry St. 2a, 30-063 K raków , P o la n d

Oszczypko, M., 1996. Calcareous nannoplankton o f the Globigerina Marls (Leluchów Marls Member), Magura Nappe, West Carpathians. Ann. Soc. Geol. Polon., 66: 1-15.

Abstract: The Magura Nappe, the largest and innermost unit of the outer Carpathians consists o f very thick turbidite sequences. In the Leluchów section the upper portion of these sequences includes a regional correlative horizon of pelagic deposits, known as the Globigerina Marls (Sheshor Horizon in the Ukrainian Carpathians).

Leluchów section is not typical for the Magura Nappe because it includes green shales, Globigerina Marls and the Menilite Beds. Such sequences are typical for other, more external units of the Polish Carpathians. The Globigerina Marls o f Leluchów are represented by a 4 m thick complex of alternating green, olive and red marls or marly shales (Leluchów Marl Member o f the Malcov Formation). The Globigerina Marls contain a fairly abundant, diversified and moderately well preserved calcareous nannoflora. The assemblage is dominated by Late Eocene species, although reworked Cretaceous, Paleocene and Early Eocene taxa were also found. The association o f Isthmolithus recurvus, Discoaster barbadiensis and Discoaster saipanensis is believed to be indicative for the combined interval o f zones NP 19-20. On the basis of the pelagic foraminifers the Eocene-Oligocene boundary has been earlier determined in the upper part of the Globigerina Marls. The Globigerina Marls are covered by a few meters thick complex of black shales with intercalations of hornstones and tuffites (Smereczek Shale Member of the Malcov Formation). The deposition of the Globigerina Marls corresponded to a drop in the global sea-level.

This event was associated with the beginning isolation of the Carpathian Basin from the Tethyan domain.

Abstrakt: Pfaszczowina magurska jest największą i najbardziej wewnętrzną jednostką Karpat Zewnętrznych zbudowaną z bardzo grubych serii fliszowych. W Leluchowie, w stropowej części tej serii, występuje regionalny poziom korelacyjny związany z pelagicznymi marglatni globigerinowymi, nazywany również poziomem szeszorskim. W płaszczowinie magurskiej poziom ten występuje w stropie formacji magurskiej (fm) i jest repre­

zentowany przez czterometrowy pakiet zielonych, oliwkowych i czerwonych margli i łupków marglistych (ogniwo margli leluchowskich (og) formacji malcowskięj (fm)). Margie globigerinowe zawierają bogatą, zróżnicowaną i na ogól dobrze zachowaną nannoflorę wapienną. Zespól ten zdominowany jest przez późno- eoceńskie gatunki. Znaleziono ponadto redeponowane formy kredowe, paleoceńskie i wczesnoeoceńskie. Zespół z Istmolithus recurvus, Discoaster barbadiensis i Discoaster saipanensis reprezentuje łączną zonę NP 19 i NP 20.

Na podstawie badań otwornic pelagicznych w najwyższej części margli globigerinowych w Leluchowie wyzna­

czona została granica eocen-oligocen. Ponad marglami występuje kilkumetrowy pakiet czarnych łupków typu menilitowego z wkładkami rogowców i tufitów. Sedymentacja margli globigerinowych związana była z obni­

żeniem poziomu oceanu światowego. Wydarzenie to zapoczątkowało izolację basenu karpackiego od Tetydy.

Key words: Globigerina Marls, pelagic deposits, calcareous nannoplankton, Eocene-Oligocene boundary, Magura Nappe, West Carpathians.

Manuscript received 3 November 1995, accepted 7 December 1995

INTRODUCTION

The O uter C arpathians are built up o f a very thick com plex o f U p p er Ju rassic-L o w e r M iocene folded flysch deposits. T hese turbidite sequences include tw o regional correlative horizons o f pelagic deposits. The low er horizon is one o f th e C enom anian radiolarian shales, and the upper - o f the G lobigerina M arls at the E ocene-O ligocene bound­

ary. The age o f th e G lobigerina M arls in th e P olish O uter C arpathians w as determ ined on the basis o f foram inifers (B laicher, 1961, 1970; O lszew ska 1983, 1984; M alata in:

O szczypko e t al., 1990). The calcareous nannoplankton o f the G lobigerina M arls w as studied in the D ukla U n it (Sm a- gow icz in: O lszew ska & Sm agow icz, 1977) and in the Sile-

(2)

Ç j . Kraczoń Zbojnicky v

LclucKow

898.6

Fig. 1. Geological map o f the Leluchów area (after Oszczypko, 1980; Nemćok, 1985; and the present author). Magura F.: I - Piwniczna Sandstone Member, 2 - Mniszek Shale Member, 3 - Poprad Sandstone Member, 4 - Malcov Formation : a) Leluchów Marls Member, b) hornstones, 5 - dip and strike of beds, 6 - thrusts, 7 - faults, 8 - studied sections

sian U nit (A ubry in: V an C ouvering et al., 1981). The aim o f this w ork (w hich w as prepared as a part o f a M. Sc. thesis at th e Jagiellonian U niversity) w as to recognize and deter­

m ine th e nannoplankton assem blages o f G lobigerina M arls at L eluchów (L eluchów M arls M em ber) in the M agura N appe (K rynica Sub-unit). The Leluchów section through the O ligocene-E ocene boundary is the best exposed in the P olish part o f the M agura N appe.

In the O uter C arpathians, except the M agura N appe, the U pper E ocene deposits are represented by green shales.

T hese shales pass upw ard to the G lobigerina M arls w hich m ake up an im portant chronostratigraphic horizon (B ieda et al., 1963; K oszarski, ed., 1985) in the O uter Carpathians. In the M agura N appe, the G lobigerina M arls w ere reported in the G orlice area (B laich er & Sikora, 1961) and assigned as subm enilite G lobigerina M arls o f Late Eocene age. A t the sam e tim e the G lobigerina M arls w ere also recognized in the E ast Slovakian segm ent o f the M agura N appe (K siążkie- w icz & Lesko, 1959; N em ćok, 1961).

A detailed lithological and m icropaleontological study o f the L eluchów section w as done by B laicher and Sikora (1967). This study revealed the follow ing sequence :

- thin-bedded turbidites w ith intercalation o f red and greenish shales (H ieroglyphic Beds, U pper Eocene),

- G lobigerina M arls, O ligocene,

- bitum inous shales w ith intercalations o f horstones and

tuffites ( M enilite Beds, O ligocene),

- th in - b e d d e d turbidites (M alcov B eds, O ligocene).

The tuffite from the L eluchów section w as correlated w ith the G ąsiory tuffite horizon (B laicher & Sikora, 1967).

The fission-track age determ inations on zircons from the G ąsiory tuffites are: 28.9 ± 1.2 m y for the upper layer and 34.6 ± 1.4 m y for the low er one (V an C ouvering e t al.,

1981). T hese data indicate an E arly O ligocene (R upelian) age o f the M enilite Beds.

GEOLOGICAL SETTING OF THE LELUCHÓW AREA

The village o f L eluchów is located in the P oprad V alley (Fig. 1) in the southernm ost part o f the M agura N appe, close to the P ieniny K lippen B elt (PK B ). This part o f the nappe is represented by a broad (up to 10 km ) syncline w hich is filled w ith Eocene thick-bedded sandstones (fig. 2) o f th e M agura F orm ation (see B irkenm ajer & O szczypko, 1989; O szczyp­

ko et a i , 1990; C hrząstow ski e t a i , 1995). T he syncline is separateded from the PK B by a strike-slip fault. In the Leluchów area, the U pper E ocene-O ligocene M alcov For­

m ation overlaps the PKB. The U pper E ocene-O ligocene deposits are exposed in tw o p laces (sections A and B in Fig.

3) and w ere previously described by B irkenm ajer and Osz-

(3)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

3

OLIGOCENE

U3u

o

u ä u Ł

Oh

D

w

I J

0 s

oI-I

PALEOCENE SENONIAN

T U R O N IA N

1800

1600

1400

1200 -

1000 -

800

Si' m O w W-'Ü W U

600 -

400

200

wir-

Malcov Formation Poprad Sandstone Member

Mniszek Shale Member

Piwniczna Sandstone Member

Krynica Member

Zyczanów Member

Hałuszowa Formation Malinowa Shale Formation

Z O

o

O

w o

z

N C u a

< o N fa

5 M g

Fig. 2. Lithostratigraphic division of the Magura Nappe in the Muszyna area (after N. Oszczypko, 1995; unpublished). 1 - red shales, 2 - thin-bedded turbidites, 3 - turbidite limestone, 4 - conglomerates, 5 - thick-bedded turbidites, 6 - pebbly mudstone, 7 - Glo- bigerina Marls, 8 - homstones, 9 - Menilite (bitumineous) Shales

(4)

Fiig. 3. Location o f the Globigrina Marls exposures at Leluchów. 1 - thin-bedded turbidites, 2 - menilite (bitumineous) shales, 3 — Globigerina marls, 4 - green marly shales, 5 - thick-bedded turbidites, 6 - deep and strike of beds, 7 - faults

czypko (1989), O szczypko e t al., (1990). Section A is lo­

cated along a path, close to the orthodox church and section B is along a sm all right tributary o f the Sm ereczek stream (Fig. 3).

D uring the field study o f the top part o f the M agura F orm ation (Figs. 2, 4), th e author recognized th e follow ing lithostratigraphic units, belonging to the M alcov Form ation:

G lobigerina M arls (L eluchów M arls M em ber), black, bitu­

m inous shales w ith hom stones and tuffites (Sm ereczek S hale M em ber) and thin-bedded turbidites o f the M alcov F orm ation. C ertain investigated sequences w ere identical w ith those already d escribed by B irkenm ejer and O szczyp­

ko (1989). A com parison w ith the sequence described by B laicher and Sikora (1967) revealed im portant differences:

a lack o f th e H ieroglyphic B eds w ith an intercalation o f red shales at th e base o f G lobigerina M arls, a higher thickness o f G lobigerina M arls and a significantly low er thickness o f M enilite Beds. A ssum ing th at the data o f B laicher and Siko­

ra are correct, the lack o f H ieroglyphic Beds can be ex­

plained in a w ay th at B laicher and Sikora's colum n was synthetic, and the exposures or excavation o f the H iero­

g lyphic B eds w ere located betw een sections A and B, som e­

w here on the slope south o f the church (Figs. 1, 3, 4). It m eans th a t the H ieroglyphic B eds (M niszek Shale M em ber, see B irkenkm ajer & O szczypko, 1989; O szczypko et al.,

1990) could occur ju s t below the G lobigerina M arls and the P oprad Sandstone M em ber is m issing in this section. A c­

cording to C hrząstow ski e t al. (1995) the contact betw een the M agura and the M alcov form ations is tectonic.

LITHOSTRATIGRAPHY

The bases o f both L eluchów sections (A and B) consist o f thick-bedded sandstones and conglom erates (Figs. 3, 4).

The m uscovite sandstones are grey-bluish and coarse to fine grained, w ith interaclations o f granule conglom erates. The sandstones display T abc B o u m a sequences. T he thicknesses o f individual beds range from 40 cm to 2,5 m . T he infre­

quent shale-m udstone intercalations are very thin (1-5 cm).

Rare 2-5 m thick packets o f thin-bedded turbidites are also observed. T hese deposits belong to the P iw niczna Sand­

stone M em ber o f the M agura F orm ation. In both sections (A and B), the contact betw een the P iw niczna Sandstone M em ­ ber and th e overlying m arly shales is not exposed (1-2 m o f break in exposure). The m arly shales are soft and green w ith num erous calcite vains. T he thicknesses vary from 0.5 m (profile A) to 2.5 m (profile B) an d are overlain by a 4 m thick m arly unit o f the L eluchów M arls M em ber. T he se­

quence o f m arls is as follow s:

(5)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

5

(m) A

1 - Z - £ * 2

— I I -

4

Fig. 4. Sections of the Globigerina Marls at Leluchów. / - thick-bedded turbidites, 2 - green marly shales, a - Mn concretions; 3 - red marls, 4 - greyish-green marls, 5 - greenish marls, 6 - olive marls, 7 - grey calcareous shales, 8 - Menilite (bitumineous) shales, 9 - thin-bedded turbidites, 10 - homstones

(6)

AGE BUKRY (1973) MARTINI (1971)

ZONE SUBZONE ZONE

CP 16c NP 22 Helicosphaera reticulata

OLIGOCENE E CP 16 Helicosphaera reticulata CP 16b

NP 21 Ericsonia subdisticha CP 16a

L CP 15 Discoaster barbadiensis CP 15b NP 19-20 Isthmolithus recurvus CP 15a NP 18 Chiasmolithus oamaruensis

CP 14 Reticulofenestra umbilica CP 14b NP 17 Discoaster saipanensis EOCENE

CP 14a Discoaster tani nodifer

M CP 13c NP 16

&

CP 13 Nannotetrina quedrata CP 13b NP 15 Nannotetrina fulgens

CP 13a

CP 12 Discoaster sublodoensis

CP 12b

NP 14 Discoaster sublodoensis

E CP 12a

Fig. 5. Nannoplankton biostratigraphy of the Late Eocene and Early Oligocene (after Martini, 1971; Bukry, 1973; Okada & Bukry, 1980)

- 1 m o f red m arls,

- 0.5 m o f greyish-green marls, - 0.5 m o f red m arls,

- 1 m o f greenish m arls, - 0.25 m o f olive m arls, - 1 m o f grey calcareous shales.

Ju st above the calcareous shales, the Sm ereczek Shale M em ber is reported (B irkenm ajer & O szczypko, 1989).

This m em ber consists o f dark bitum inous shales w ith thin (2-5 cm ) beds o f h o m sto n es (Fig. 4). A very thin tuffite bed ("G ąsiory" ? horizon) w as also found in the low er part o f the S m ereczek Shale M em ber. The upperm ost part o f the L eluchów section are thin-bedded turbidites o f the M alcov F orm ation exposed in the road-cut beneath the church.

T hese flat-laying, south dipping strata consist o f K rosno- like, dark-grey m arly shales w ith intercalations o f thin bed­

ded (10-12 cm), cross-lam inated, fine to very fine grained, bluish calcareous sandstones.

NANNOPLANKTON BIOSTRATIGRAPHY OF THE LATE EOCENE

The m ost popular P aleogene coccolith zonations are the standard zonation o f M artini (1971) and the zonation by B ukry (1973), O k ad a and B ukry (1980). The com parison o f these tw o zonations (M iddle E ocene through L ow er O ligo­

cene) is presented in Fig. 5.

T he first occurrence (FO ) o f Isthm olithus recurvus De- flandre has traditionally been used as the base o f the u pper­

m ost Eocene. H ow ever, this taxon is not a reliable m arker in the low er latitudes. T he FO o f Sphenolithus pseudoradians B ram lette et W ilcoxon has been also used as a zonal m arker

for the U pper Eocene. The FO o f these species seem s to be controversial as the taxon has also been reported in the M iddle Eocene. The U pper E ocene is therefore no longer considered as tw o separate zones N P 19 and N P 20, but as a com bined zone NP 19-20 (A ubry 1983 ), w hich is equiva­

lent to subzone CP 15b (O kada & B ukry, 1980). For a long tim e the last occurrence (LO ) o f D iscoaster barbadiensis Tan Sin H ok or D iscoaster saipanensis B ram lette et R iedel has been used as the coccolith event m arking the Eocene- O ligocene boundary w hich coincides w ith the base o fN P 21 (M artini & Ritzkow ski, 1968). H ow ever, C avelier (1979) show ed that the extinctions o f D iscoaster saipanensis and D iscoaster barbadiensis had been diachronous and had oc­

curred earlier in high latitudes than in the low ones. It proved that the low er lim it o f zone N P 21 ranges in age from Late Eocene to Early O ligocene.

NANNOPLANKTON OF THE , GLOBIGERINA MARLS IN LELUCHOW

SECTION

Studied m aterial and m ethods

The studied sam ples w ere collected by M . Sc. E. M alata and Prof. N . O szczypko during their field w o rk in 1982. All sam ples w ere prepared by u sin g the standard sm ear slide technique for light m icroscope (LM ) observations. T he in­

vestigation w as carried out under LM at m agnifications o f 1024x and 1600x using phase contrast and crossed nicols.

Several specim ens photographed in LM and scanning elec­

tron m icroscope (SEM ) are illustrated in Figures 8-10.

The G lobigerina M arls exposed at L eluchów contain a

(7)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

sntBßnfiq sni/a/qBL/jßAz fa fa 0 fa CJ fa

f a

pd

s e p jo js y o /n d sßuodosje/\UBjj_ P

4

UOjJBUJUJBß snjGAAO± fa

B iB /n o ja d o B jaB qdsooBjoq± fa fa fa U fa

ja ß ju jd s snL/}//ou0L/ds fa

p4

fa fa fa s/UJJoj/

jolu

snm uousLjds fa fa CJ u fa O

f a

la p u t e e s o B j 3 BL/dsopqBL/M CJ O U u CJ

cj u

CJ

Boi/iquin B Jisaua/o/n oßatj CJ

f a cj f a f a 0 f a

B jB /no/jaj 'u -J.O B jjs a u a jo /n o ß a y

f a f a f a f a fa f a f a f a

BtB/noitaj B jjseuejo/noijB tJ

f a f a f a f a f a f a

3 B///L/ Bjjseuajo/no.rjatJ fa

P4

fa P

4

epo A /o /p B jjs a u a jo /n o ß a tj CJ CJ O U CJ u u . CJ lja>/oo/ /

b

}

bj

}

b

/

o

BJisauaj.oinoßay fa

f a

CJ u u

dS BJBBqdSOlUOçJ P

4

sn o /n s /q '<=/ 'J£> snsuud

P4

sn jn u iu j snL/t!UJa)UB~i

f a f a

U

s n /u n o a j snyti/oujL/js/

cj

CJ

f a

CJ

f a

0 <

f a

sß B jq d n e B ja s q d s o o u a H

P4 p4

u u a z a a q /n u a s u tp BjaBC/dsoona/-/

0 4

BiOBdujoo BjaBLjdsooi/a/-/ P

4

siujjop uB du j i snLßunoiosB^j

f a f a

BSOUJJOJ BIUOSOU 3

f a f a f a f a f a cj f a

BABO BjUOSOfJ 3

f a f a f a f a

d s BIUOSO/J3

fa fa f a f a fa f a f a

je j/p o u jUBi jajs B o o s jcj

fa

jUBi jetsBoos/o

f a f a f a

s/suauBd/BS ja js B o o s /(j

f a f a f a f a f a p4

ja jp u B ß a p js)sboos\c 3

fa fa f a f a f a f a

sis u e ip B q jB q jajsB oos/ct

f a f a f a

■ds jajs B o o s /cj

f a f a f a 0 f a

upuB/ssaq saj/oooooAfojcj < < < < < < 0 <

snp/i/Bo satjoooooAiajci oi

■snjoas/q s a jiaao o o A fo io < < < < 0 CJ < u

■ds sai/o o o o o A jo /a CJ CJ

<

CJ

cj

0 CJ

sn u B p u o /j

sdl

/

h

/

o

B

jboj

/

o

A

o < <

CJ

< < <

CJ

<

s n jo a s /q s

o

U 13 snyy/oBjBoi/oAo

U 0

CJ CJ CJ CJ

Bf/B BJSBL/dSOßB/ClAC)

o4

u in jn u a o o u jru iu a o o jq u o

o4

s u e o s e j/u

■£> y o

sn /o A o o u o jo o

p4 f a

fa fa

s u a o s a iju sn /o A o o u o jo o

04

fa fa

f a

sn o iB e /e d s n q ij/o o o o o

< < < < < 0 < <

s/suenjBUJBO snm uo ujsB m o

Oh

s n /p a u j snmi/ouJSBjLio

o4

■ds Sncßi/OLUSB/L/O fa

ji/v\o/aß/q B jaB L/dsopnjBB jg

P4

-1 >0 m

10 c s

10 V"1 <=>

v 1 0~N

^ r 00

-'S-

\ \ \

Fig. 6.Distributionofcalcareous nannofosils in section A. V - veryabundant, A - abundant, C - common, F - few, R - rare

(8)

snjBßnf/q snmi/qeijjBAz

P h H h P h P h u o P h P h

Pi sep/ojaL/o/nd syuodosja/\uBjj_

P h

uoßBuiujBß sntesAo±

P h

ejB/ncuado bjsbl/ósoobjol/j.

O

V

PL,

o

U u P h P h P h O

jaBiuids snc/ii/ousyds

Pi U P h P h P h P h P h P h b P h

siLujojuoLu snqmousqds

P h U U

Pi

U u U P h U P h u

iap uj aB0OBJ9BL/dsopqBL/y

U

< < <

U c

<

U O U u

Boj/iquin BJisauajo/noßay <

u P h P h P h O PL, P h u

BjB/noijej -y

yo

ejjseuajo/noßay

U o P h P h U P h P h P h P h

BfB/nopaj Bjfseusjo/noitay

u

Pi

P h

Pi Pi

P h P h P h P h

SB///1/

Bjjseuejo/noßey

u pH

Pi Pi

U

Pi

P h u

spoAjoip Bjjsauajo/noßay

u Ü U P h P h u P h U u Ü u

uayoo/ /bjbj]b/c> Bjfsauafo/noifay

u u P h u u u P h o P h

■ds BjaBqdsojuOcj

sninujuu snLßiuja)UB~i

P h P h

U-t

snAjnoajsnqjuoLuqisi

u

sifBjL/dna BjeBtfdsootjaj-t Pi Pi

nuBzaacj /iiuesujp BjaBL/dsooue/-/ Pi

BjoBdujoo Bjaeqdsoo/ia/-/

O h

sjuujo^juedtuAi snqmnojosBy

P h P h

BSOLUJOJ BIUOSOU3

o P h u P h b u 0

i

U u U u

BABO BjUOSOUB

P h P h

ds B/UOSOU3 U-t

P h

Pi Pi

U P h P h PL| P h

Pi

u

/ust jejseoos/o Pi

P h P h P h PL h b P h

s/sueuBd/BS o jo jbjsboos/cj

P h

Pi

PL, P h P h p-l

s/suauedjBS jajSBOos/cj pi Pi

U<

Pi

P h P h

jajipou jus) jajSBOosiij

pH PL,

lajpuB/jep jeiSBOOSjQ

U P h H h

Pi

U U u u U

s/sueipBqjBq ja}SB00Si(j pi

P h P h

Pi Pi

P h P h

ds jaiSBOosja

PH P h u P h u u

V

U P h

npuB/ssai/ saijoooooAiojCi

u

< <

'<

< <

u

<

c c

<

snpn/BO saiioooooAioio Pi

■smoasiq sai/oooooAioio < < <

u

<

u

< <

c

< <

■ds saijoooooAiojCi

u u u

<

u

< < u <

u u

snuspuo/j snqmoßjBOijOÄQ

<

< < < < <

u

< <

u

<

snjoasiqe -q -jjb sn mi/06jB0//0A0

o u u u u u

ujnjnueoo ujnjjueoojquQ Pi sueosajiu o jo snjoAoouojoQ Pi

suaosaiju Sn/OÄOOUOJOQ u

P h

Pi Pi

sno/ßB/ad snL/n/ooooc, < < <

u

< < < < < < <

3/suenjBUJBo q jo snqmouusBmo

s/suanjBujBO snqji/OLusBmc

P h

Pi sn/paui snmi/ouiSBiL/c

P h

•ds shl/ji/olusbil/c

O P h

<

HMoiaBiq BjaBL/dsopnjBBjg Pi

\o

m r— m oo cn CT m n o> -'i- cs m ^1- >o VO ■«3-

OO ON

t I ł I i I ł l i

'«tw-»

\

VO

'I1!1!1!1!1!1!'?

IiViViV I M 1!1! 1 1 " E

iViViViilj'l'lVlVl t Fig. 7.Distributionofcalcareousnannofosilsin section B. (forexplanationsee Fig.6)

(9)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

9

» ; * s

,

Fig. 8. SEM micrographs, (a) rock surface Leluchów, section A, sample 55; (b) Isthmolithus recurvus, Leluchów, section A, sample 55; (c) Reticulofenestrci hillae, Leluchów, section A, sample 55; (d) Reticulofenestra umbilica, Leluchów, section A, sample 55; (e) Reticulofenestra reticulata, Leluchów, section A, sample 55; ( f l ) Cyclicargolithus aff. C. abisectus, Leluchów, section A, sample 55; (f2) Sphenolithus moriformis, Leluchów, section A, sample 55

(10)

Fig. 9. SEM micrographs, (a) Thorcicosphaera operculata, Leluchów, section A, sample 55; (b) Coccosphere o f Prinsiaceae, Leluchów, section A, sample 55; (c) Coccosphere of Dictyococcites bisectus, Leluchów, section A, sample 55; (d) Pontosphaera enormis, Leluchów, section A, sample 55; (e) Coccolithus pelagicus, Leluchów, section A, sample 55; (f) Dictyococcites callidus, Leluchów, section A, sample 55

(11)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

11

Fig. 10. LM microphotogaphs. (a) Discoaster barbadiensis, Leluchów, section A, sample 51: (b) Isthmolithus recurvus, Leluchów, section A, sample 53; (c) Isthmolithus recurvus, Leluchów, section B, sample 36; (cl) Discoaster tani, Leluchów, section B, sample 36;

(e)C 7hiasmolithus oamaruensis, Leluchów, section A, sample 55; (0 Chiasmolithus oamaruensis, Leluchów, section A, sample 55; (g) Reticulofenestra hillae. Leluchów. section B, sample 36; (h) Reticulofenestra umbilica, Leluchów, section B. sample 36; (il) Ericsonia formosa, Leluchów, section B, sample 36; (i2) Reticulofenestra clatrata/lockerii. Leluchów, section B, sample 36; (j) Ericsonia formosa, Leluchów, section B, sample 36; (k) Reticulofenestra cf. R. reticulata, Leluchów. section A, sample 36; (I) Sphenolithus moriformis, Leluchów, section B. sample 43; (I) Dictyococcites bisectus. Leluchów, section A, sample 53; (m) Dictyococcites bisectus, Leluchów, section B, sample 36; (n) Dictyococcites sp., Leluchów, section A. sample 53; (o) Dictyococcites sp.. Leluchów, section A, sample 53; (p) Dictyococcites sp., Leluchów, section A, sample 55; (q) Lanternithus minutus, Leluchów, section A, sample 53; (r) Dictyococcites sp., Leluchów, section B, sample 36; (s) Zygrhablithus bijugatus, Leluchów, section A, sample 53; (t) Zygrhablithus bijugatus, Leluchów, section A, sample 53; (u) Toweius crassus. Leluchów, section A. sample 51; (v) Toweius gammation, Leluchów, section A, sample 51;

(w) Dictyococcites hesslandii. Leluchów, section B, sample 43; (y) Cyclicargolithus aff. C. abisectus, Leluchów. section A, sample 55;

(z) Cyclicargolithus aff. C. abisectus, Leluchów. section A, sample 53; (ź) Cyclicargolithus aff. C. abisectus. Leluchów, section A, sample 53; (Ż) Cyclicargolithus aff. C. abisectus, Leluchów, section B, sample 36

(12)

fairly abundant but m oderately diversified (m ore than fifty species w ere recognized) calcareous nannoflora. R ew orked U pper C retaceous, P aleocene and L ow er to M iddle Eocene taxons w ere also found.

F or the purpose o f this w ork a 5-grade scale describing the frequency o f specim ens w as used:

V - very abundant (m ore than 10 specim ens per field o f view)

A - abundant ( 1 - 1 0 specim ens p er field o f view ) C - com m on (1 specim en per 2-10 fields o f view ) F - few (1 specim en per 11 -50 fields o f view ) R - rare (1 specim en per m ore than 50 fields o f view ) T he distribution o f calcareous nannofosil species is p re­

sented in Figs. 6 and 7.

T axon om ic notes

In th e studied m aterial, several m orphological transi­

tions betw een D ictyococcites bisectus and D ictyococcites scrippsae B ukry et Percival w ere observed. T hese m orpho- types have been described as D ictyococcites sp. V iew ed through the crossed nicols the entire coccolith is bright and the central plug is w ell developed, filling the w hole central area. D ictyococcites sp. is easily distinguished from D ictyo ­ coccites bisectus by its sm aller size, m ore elliptical outline and sharply bent extinction line. A nother characteristic o f D ictyococcites sp. is that th e central area covers ca. 90% o f the w hole placolith.

A nother m orthotype, designed in this paper as a C ycli­

cargolithus aff. C. abisectu s, is a transitional species b e­

tw een C yclicargolithus flo rid a n u s (R oth et H ay) and C ycli­

cargolithus abisectus M üller. T he extinction lines o f C ycli­

cargolithus aff. C. abisectus, betw een the w all and shield, are typically disjunct and th e central opening is sm aller. The taxon described here as C yclicargolithus aff. C. abisectus differs from C yclicargolithus abisectus by its sm aller size and oval rather than elliptical outline.

B iostratigrap h ical conclusion

T he nannoplnakton assem blage o f th e L eluchów M arls is characterized by the occurrence o f Isthm olithus recurvus, D iscoaster barbadiensis, D iscoaster saipanensis. Such an association is believed to be indicative o f the com bined interval z o n e N P 19-20 (M artini, 1971).

T herefore, for th e purpose o f this w ork, zones N P 19 and N P 20 are also com bined and defined as the interval betw een FO o f Isthm olithus recurvus an the LO o f D isco a s­

ter saipanensis or D isco a ster barbadiensis (A ubry, 1983).

D iscussion

T he exam ined sam ples o f the Leluchów M arls are as­

signed to zone N P 19- 20 on the ground o f the occurrence o f D iscoaster saipanensis, D iscoaster barbadiensis, R eticu­

lofenestra reticulata, E ricsonia fo rm o sa and Isthm olithus recurvus. The G lobigerina M arls at Znam irow ice and K rosno sections (S ilesian N appe) w ere assigned by A ubry (in: V an C ouvering e t al., 1981) to zone N P 19-20 and N P 21. T he assignm ent to zo n e N P 21 w as based on a continu­

ing range o f E ricsonia fo rm o sa , follow ing th e disappearance o f D iscoaster saipanensis and D isco a ster barbadiensis.

H ow ever, in the case o f the L eluchów M arls, all sam ples contain the U pper Eocene index species and there is no evidence that these form s are rew orked. A dditionally m ost sam ples contain R eticulofenestra reticulata w hich is be­

lieved to becom e extinct in th e latest E ocene, slightly prior to D iscoaster barbadiensis and D iscoaster saipanensis.

T he O ligocene nannoplankton zones are b ased on the LO and FO o f various species o f genus S phenolithus. H ow ­ ever, this typical w arm -w ater genus is rare or even absent in higher latitudes. Thus, in those areas, the boundary betw een N P 23 and N P 24 is defined by the FO o f C yclicargolithus abisectus or H elicosphaera recta (M artini & M üller, 1986).

The FO o f C yclicargolithus aff. C. abisectus has been observed in sam ples 51 and 41, w hich could change the zone assignm ent from N P 19-20 to N P 24. H ow ever, in this paper C yclicargolithus aff. C. abisectus has been described as a transitional taxon betw een C yclicargolithus flo rid a n u s and C yclicargolithus abisectus. It can therefore be assum ed that in the L eluchów M arls M em ber, C yclicargolithus aff.

C. abisectus occurred in N P 19-20 w hich is earlier than norm al for C. abisectus.

The Late Eocene nannoplankton assem blage o f Leluchów M arls is m oderately diversified. H aq (1971, 1973) and B ukry (1978) pro v id ed evidence o f a strong re la ­ tionship betw een calcareous n annoflora diversity and the tem perature o f the ocean w ate r throughout the Paleogene.

A ccording to those authors the low diversity is associated with a colder tem perature and vice versa. T ypical cold- w ater tax a Isthm olithus recurvus, Z ygrhablithus bijugatus, Lanternithus m inutus, C hiasm olithus oam aruensis, Coc- colithus pelagicus, C yclicargolithus flo r id a n u s are dom i­

nant form s in m ost sam ples. A t the sam e tim e the am ount o f w arm -w ater tax a such as R eticulofenestra um bilica, D is­

coaster saipanensis and D isc o a ster barbadiensis is dis­

tinctly decreasing tow ards th e top o f both profiles.

A quantitative study o f the autochtonous nannoplankton assem blage indicates the dom ination o f species belonging to the P rinsiaceae fam ily. M ost species in this fam ily are typically pelagic, preferring th e en vironm ent o f the open sea. T he nearly absence o f g enera H elicosphaera and S p h e­

nolithus proves an open sea en vironm ent {cf. Perch-N ielsen, 1985, 1986).

GEOLOGICAL EVENTS AT THE EOCENE-OLIGOCENE BOUNDARY

In 1987 H aq et al. have p resented a revised set o f the V ail sea level curves (V ail e t al., 1977), w id ely know n as the V ail-H aq curve. This eustatic sea-level curve has tw o com ponents

- a long-term eustatic curve reflecting changes in m id­

ocean ridge volum es;

- a short-term eustatic curve reflecting relative changes o f sea level indicated b y coastal onlap.

T he Late E ocene long-term eustatic curve, w hen com ­ pared to th e M iddle E ocene an d the E arly O ligocene ones,

(13)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

13

indicates a distinct sea-level drop. In this interval on a short-term eustatic curve, one can recognize two m inim a w hich correspond to N P 17 and N P 21 respectively. During this tim e o f rapid sea level fall, a low stand system tract w as deposited. Z ones N P 18 and N P 19-20 correspond to short oscillations o f the sea-level, w hen transgressive system tracts and highstand system tracts w ere deposited.

O cean tem perature fell in the Late Eocene to around 4-5°C (S hackleton & K ennett, 1975, 1976; Pom erol & Pre- m oli-S ilva, 1986) or even to 3°C (K eigw in, 1980). This cooling can be associated w ith the form ation o f sea ice around th e A ntarctic and, as a result o f this, the beginning o f a deep cold w ater circulation (Shackleton & K ennett, 1975).

T he developm ent o f a cold-w ater current caused m igration o f w arm w ater nannoflora tow ards the Equator.

O ne o f the consequences o f the Pyrenean orogeny in the A lps w as m odification o f the basin floor in M agura Basin after the deposition o f the M niszek Shale M em ber (O sz­

czypko, 1992). As a resu lt o f this m ovem ent and global drop o f sea level, the depression w as filled w ith thick-bedded turbidites (P oprad S andstone M em ber), w hereas the subm a­

rine highs an d their slopes have been occupied by pelagic sedim ents (Leluchów M arls M em ber). D uring the Rupelian low stand, sedim entation in the M agura Basin w as dom i­

nated by black clays (S m ereczek Shales M em ber). A t that tim e the C arpathian basins becam e partly separated from the Tethys (N agym arosy, 1990).

CONCLUSIONS

1. In th e Leluchów section the Poprad Sandstone M em ­ ber is probably replaced by green shales and G lobigerina M arls (L eluchów M arls M em ber). This m ay indicate that after the deposition o f the M niszek Shales M em ber, the floor o f th e M agura Basin w as m odified by tectonic m ove­

m ents. A s a result o f this m ovem ent and global drop o f sea level, th e depression has been filled w ith the thick-bedded turbidites (P oprad Sandstone M em ber), w hereas the subm a­

rine highs and their slopes have been occupied by pelagic sedim ents (L eluchów M arls M em ber). D uring the R upelian low stand, sedim ents in th e M agura Basin w ere m ostly black clays (S m ereczek Shales M em ber).

2. F or th e first tim e green shales have been found in the M agura N appe. The pelagic shales probably belong to the u pperm ost p art o f the M niszek Shale M em ber.

3. T he L eluchów M arls M em ber differ from typical G lobigerina M arls. B esides grey m arls, the Leluchów M arls contain red and green intercalations. They are typically p e­

lagic and enrich ed in calcareous nannoplankton assem blage w hich in turn is dom inated by taxons from the Prinsiaceae fam ily.

4. A ll sam ples from the investigated sections contain a fairly abundant calcareous nannoplankton, w hich is assig­

ned to com bined interval zone N P 19-20 o f the standard M artini zonation.

5. T he nannoplankton assem blage is dom inated by cool-w ater taxons, w hich confirm the clim atic changes o f the L ate Eocene.

6. In the investigated section, the unquestionable O ligo­

cene age was determ ined in M enilite B eds on zircons from tuffite horizon "G ąsiory" (see B laich er & Sikora, 1967; V an C ouvering e t al., 1981).

7. T aking into account the fact that the G lobigerina M arls o f units other than M agura are assigned to zone NP 21, one can assum e that sedim entation o f the G lobigerina M arls could have been finished earlier in the M agura Basin.

A ck now led gem en ts

The author is greatly indebted to dr J. Ślęzak for the fruitful discussion and help offered during my study. Many thanks are due to M.Sc. Ing. E. Malata for her suggestions concerning the topic and the area of investigation. Special thanks are offered to my father N. Oszczypko for his help during the field work and for discussion on the manuscript. The author is also grateful to the anonymous reviewer for her critical remarks on the manuscript.

R E F E R E N C E S

Aubry, M. P., 1983. Biostratigraphie du Paleogene epicontinental de l'Europe du Nord-Ouest. Etude fondee sur les nannofosiles calcaires. Docum. Lab. Ceol. Lyon. 89, 317p.

Bieda, F., Geroch, S., Koszarski, L., Książkiewicz, M. & Żytko, K., 1963. Stratigraphie des Carpathes Externes Polonaises.

Biul. Inst. Geol., 181: 5-174.

Birkenmajer, K. & Oszczypko, N., 1989. Cretaceous and Paleogene lithostratigraphic units o f the MaguraNappe, Krynica Subunit, Carpathians. Ann. Soc. Geol. Polon., 59: 145-181.

Blaicher, J., 1970. "Globigerinae" o f the Sub- Menilite Globigerina Marls. Biul. Inst. Geol., 221: 137-179.

Blaicher, J., 1961. Mikrofauna margli globigerinowych z rejonu fałdu Podzamcza. Kwart. Geol., 5, 3: 602-612.

Blaicher, J. & Sikora, W., 1961. Próba korelacji wiekowej dolnej granicy warstw magurskich w północnej facji wschodniej części płaszczowiny magurskiej z utworami grupy zewnętrz­

nej. Kwart. Geol., 5, 4: 998-999.

Blaicher, J. & Sikora, W., 1967. Stratygrafia jednostki ry­

chwałdzkiej w Leluchowie. Kwart. Geol., 11,4: 453-454.

Bukry, D., 1973. Low-latitude coccolith biostratigraphic zonation.

Init. Repts. DSDP, 15: 685-703, figs 1, 2.

Bukry, D., 1978. Biostratigraphy o f Cenozoic marine sediment by calcareous nannofossils. Micropaleontology, 24: 44-60.

Cavelier, C., 1979. La limite Eocene-Oligocene en Europe occiden­

tale. Sei. Géol, Mém., 54: 280 pp.

Chrząstowski, J., Neścieruk, P. & Wójcik, A., 1995. Szczegółowa Mapa Geologiczna Polski I: 50 000. Arkusz Leluchów. PIG.

Warszawa.

Haq, B. U., 1971. Paleogene calcareous nannoflora. Part IV: Paleo­

gene nannoplankton biostratigraphy and evolutionary rates in Cenozoic calcareous nannoplankton. Stockholm Contr. Geol., 24: 129-158.

Haq, B. U., 1973. Transgressions, climatic change and diversity of calcareous nannoplankton. Mar. Geol., 15: M25-M30.

Haq, B. U., Hardenbol, J. & Vail, P. R„ 1987. Chronology of fluctuating sea levels since the Triassic (250 Myr ago to present). Science, 235: 1156-1167.

Keigwin, Jr., L. D., 1980. Palaeoceanographic change in the Pacific at the Eocene-Oligocene boundary. Nature, 260: 513-515.

Kennet, J. P. & Schackleton, N. J., 1976. Oxygene isotopic evi­

dence for the development o f the psychrosphere 38 my ago.

Nature, 260: 513.

Koszarski, L. & Koszarski, A., 1985. Marginal zone o f the Magura

(14)

Nappe and its relation to lower units. W: Koszarski L. (ed):

Geology o f the Middle Carpathians and Carpathian Foredeep.

Guide to Excurs. 3, Carpatho-Balkan Geol. Ass., 13 Congr.

(Cracow, Poland 1985) : 216-233. Kraków.

Książkiewicz, M. & Leśko, B., 1959. On relation between the Krosno and Magura Flysch. Bull. Acad. Pol. Sei., Serie Sei.

Chim., Geol et Geogr., 1, 10: 773-780.

Martini, E., & Ritzkowski. S., 1968. Was ist das "Unter- Oligocän"?

Eine Analyse der Beyrisch'schen und V. Koenen'schen fas- sung der Stufe mit Hilfe des fossilen Nannoplanktons. Akad.

Wiss. Göttingen, Nachr., II. Math- Phys. K l.,1968, 13: 231- 250.

Martini, E., 1970. Standard Paleogene calcareous nannoplankton zonation. Nature, 226: 560-561, 1 flg.

Martini, E., 1971. Standard Tertiary and Quaternary calcareous nannoplnakton zonation, 2: 729-785, pis. 1-4. In: A. Farinacci (ed), Proc II Planktonie Conf. Roma 1970, Edizioni Tecnos- cienza, Rome.

Martini, E. & Müller, C., 1986. Current Tertiary and Quartenary calcareous nannoplankton stratigraphy and correlation. News!.

Stratigr., 16 (2) : 99-112.

Nagymarosy, A., 1990. From Tethys to Paratethys, a way of survival. Acta Geol. Geoph. Mont. Hung., 25 (3-4) : 373-385.

Nemöok, J., 1961. Vznik a vÿpln depresii v magurskom flygi na vychodnom Slovensku. Geol. Sb. Slov. Akad. Vied, 12:

NemCok, J., 1985. Geologiclca Mapa Pienin, Cergova, Lubovnian- skej a Ondavskej Vrchoviny, 1:50 000. Geologicky Ustav Dionyza Stura, Bratislava.

Okada, H. & Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation. Mar. Micropaleontol., 5 (3), 321-5.

Olszewska, B., 1983. Przyczynek do znajomości otwornic plank- tonicznych podmenilitowych margli globigerinowych w pol­

skich Karpatach zewnętrznych. Kwart. Geol., 27: 546-570.

Olszewska, B., 1984. Otwornice bentoniczne podmenilitowych margli globigerinowych polskich Karpat zewnętrznych. Pr.

Inst. Geol., 110: 1-37.

Olszewska, B. & Smagowicz, M., 1977. Porównanie podziałów biostratygraficznych górnej kredy i paleogenu jednostki dukielskiej na podstawie otwornic planktonicznych i nan- noplanktonu wapiennego. Przegl. Geol., 25, 7: 359-364.

Oszczypko, N., 1992. Late Cretaceous through Paleogene evolu­

tion of Magura Basin. Geologica Carpathica, 43, 6: 333-338.

Oszczypko, N., Dudziak, J. & Malata, E., 1990. Stratygrafia osadów płaszczowiny magurskiej (kreda-paleogen) w Beski­

dzie Sądeckim, Karpaty Zewnętrzne. Stud. Geol. Polon., 97:

109-181.

Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils, 11:

427-554. In: Bolli H., Saunders J. S. and Perch-Nielsen K., (eds)., Plankton Stratigraphy. Cambridge University Press.

Perch-Nielsen, K., 1986. Calcareous nannofossil events at the Eocene-Oligocene boundary. In: Pomerol Ch. & Premoli- Silva I. (eds.), Terminal Eocene Events. Elsevier: 275-287.

Pomerol, Ch. & Premoli-Silva, I., 1986. The Eocene-Oligocene transition: Events and boundary. In: Pomerol Ch. & Premoli- Silva I. (eds.), Terminal Eocene Events. Elsevier: 1-40.

Schackleton, N. J. & Kennet, J. P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarcic glaciation:

oxygene and carbon isotope analyses in D.S.D.P. sites 272, 279 and 281. Init. Reps. DSDP, 29: 743-755.

Vail, P. K., Mitchum, Jr., R. M. & Thoompson, III, S., 1977.

Seismic sratigraphy and global changes of sea level, Pait 4:

global cycles of relative changes of sea level. In: C. E. Pyton (ed), Seismic Stratigraphy - Application to Hydrocarbon Ex­

ploration. AAPG, Spec. Pap., No. 26: 83-97.

Van Couvering, J. A., Aubry, M. P., Berggren, W. A., Bujak, J. P., Naeser, C. W. & Wieser, T., 1981. The Terminal Eocene event and the Polish connection. Palaeogeograph., Palaeoclimat., Palaeoecol, 36: 321-362.

Żytko, K., Gucik, S., Ryłko, W., Oszczypko, N., Zając, R., Gar­

licka, I., Nemćok, J., Elias, M., Menćik, E., Dvorak, J., Stranik, Z., Rakus, M. & Matejovska, O., 1989. Geological map o f the Western Outer Carpathians and their Foreland without Qua­

ternary formations. In: Geological Atlas o f the Western Outer Carpathians. PIG, Warszawa.

S tre s z c z e n ie

N A N N O P L A N K T O N W A P IE N N Y M A R G L I G L O B IG E R IN O W Y C H (O G N IW O M A R G L I Z L E L U C H O W A ), P łA SZ C Z O W IN A M A G U R S K A ,

K A R PA T Y Z A C H O D N IE

M arta O szczypko

Miejscowść Leluchów położona jest w południowej części płaszczowiny magurskiej (strefa krynicka) w bezpośrednim sąsie­

dztwie pienińskiego pasa skałkowego (Fig. 1). W odległości około 3 km na SW od Leluchowa szerokość pienińskiego pasa skałko­

wego gwałtownie zwęża się do kilkuset metrów a miejscami do zera. W następstwie tego flisz podhalański bezpośrednio kontak­

tuje z eoceńskimi i oligoceńskimi utworami strefy krynickiej pła­

szczowiny magurskiej (por. Żytko et a l, 1989).

Najniższą część profilu w Leluchowie stanowią grubolawi- cowe muskowitowe piaskowce (Fig. 2) należące do ogniwa pias­

kowców z Piwnicznej (og) formacji magurskiej (fm). W profilu tym brak jest ogniwa piaskowców popradzkich (og), które praw­

dopodobnie zastąpione zostało przez łupki zielone oraz margle globigerinowe. Zarówno w profilu A jak i B (Fig. 3, 4) kontakt piaskowców z wyżej leżącymi łupkami nie jest widoczny. Miąż­

szość łupków zielonych jest nie mniejsza od 2,5 m w profilu B oraz 0,3 m w profilu A. Powyżej zalega czterometrowy kompleks czerwonych, zielonych oraz szarych margli globigerinowych, tworzących ogniwo margli leluchowskich (og) formacji mal- cowskiej (fm) (por. Birkenmajer & Oszczypko, 1989; Oszczypko et a l, 1990). Bezpośrednio ponad marglami (Fig. 2) zalegają brunatne, krzemionkowe łupki menilitowe (ogniwo łupków ze Smereczka (og), por. Birkenmajer & Oszczypko, 1989). Wyksz­

tałcenie margli w Leluchowie odbiega od typowego rozwoju mar­

gli globigerinowych w innych jednostkach tektonicznych Karpat Zewnętrznych. Oprócz margli szarych występują tutaj margle czerwone i pstre. Są to osady pelagiczne o czym świadczy zespól nannoplanktonu wapiennego zdominowanego przez gatunki z rodziny Prinsiaceae. Przyjmuje się, że do rodziny tej należą gatunki typowo pelagiczne preferujące warunki otwartego morza.

Odsłaniające się w Leluchowie margle globigerinowe zawierają obfitą, lecz słabo gatunkowo zróżnicowaną nannoflorę wapienną.

Autorka oznaczyła 51 gatunków, z czego 15 zostało uznane za taksony redeponowane wieku kredowego, paleoceńskiego oraz wczesnoeoceńskiego. Częstość występowania poszczególnych taksonów w próbkach została przedstawiona na Figurach 6 i 7.

Przebadane próbki zawierają bogaty osobniczo zespół nanno- flory z Discoaster saipanensis, Discoaster barbadiensis, Reticu­

lofenestra reticulata, Ericsonia formosa oraz Isthmolithus recurvus. Współwystępowanie wyżej wymienionych form pozwo­

liło na zaliczenie całości ogniwa do łącznej zony NP 19-20 i oznaczenie wieku na najpóźniejszy eocen (Fig. 5). Natomiast Aubry (in: Van Couvering et al., 1981) w obrębie margli globigeri-

(15)

NANNOPLANKTON OF THE GLOBIGERINA MARLS

15

nowych jednostki śląskiej wyróżnia zony NP 19-20 oraz w naj­

wyższej części - NP 21, tę ostatnią na podstawie braku Discoaster saipanensis i Discoaster barbadiensis, przy równoczesnej obec­

ności Ericsonia formosci. Jednakże w przypadku margli z Leluchowa, we wszystkich próbkach wystę-pują taksony in­

deksowe najwyższego eocenu i brak jest prze-słanek, iż są to formy redeponowane. Na podstawie badań otwomic stwierdzono (Malata in: Oszczypko et al., 1990), że granica eocen-oligocen przebiega w najwyższej części margli globigerinowych. Ponad tymi marglami w lupkach menilitowych występują tufity korelow­

ane z dolnooligoceńskim poziomem Gąsiory (por. Blaicher &

Sikora, 1967; Van Couvering et al., 1981). Stwierdzony zespól nannoplaktonu wapiennego charakteryzuje się dużym udziałem form zimnolubnych takich jak Isthmolithus recurvus, Zy- grhablithus bijugatus, ,Lanternithus minutus, Chiasmolithus oamaruensis, Coccolithus pelagicus, Cyclicargolithus floridanus.

Obecność tych form w profilu potwierdza obniżenie temperatury

wód oceanicznych w najpóźniejszym eocenie - wczesnym oligo- cenie. Przyczyny obniżenia temperatury wód oceanicznych wiąże się z początkiem formowania się lodu morskiego wokół Antark­

tyki co z kolei spowodowało powstanie przydennych zimnych prądów oceanicznych.

Po osadzeniu się łupków z Mniszka w basenie magurskim miały miejsce ruchy tektoniczne prowadzące do zróżnicowania morfologii dna oceanicznego. W następstwie tego oraz zapocząt­

kowanego w najwyższym eocenie globalnego obniżenia poziomu morza, w strefach obniżonych osadzały się piaskowce popradzkie, natomiast na wyniesieniach podmorskich oraz ich skłonie margle globigerinowe. W okresie najniższego poziomu morza, który miał miejsce w rupelu, w basenie magurskim podobnie jak w całym basenie Karpat zewnętrznych osadziły się ciemne łupki bitu­

miczne warstw menilitowych. Wydarzenie to uważa się za począ­

tek izolacji basenów karpackich od otwarego zbiornika Tetydy (Nagymarosy, 1990; Oszczypko, 1992).

(16)

NEW BOOK TITLES FROM THE GRZYBOWSKI

FOUNDATION

Nowe Publikacje Fundacji im. J. Grzybowskiego

The Origins of Applied Micropalaeontology: Proceedings of the Fourth International The School of Józef Grzybowski Workshop on Agglutinated Foraminifera

Kraków Poland, September 12-19,1993

Grzybow ski Foundation S pecial Publ. 1_____________ G rzybowski Foundation Special P u b i 3_____________

M.A. Kaminski, S. Geroch, & D.G. Kaminski (Eds.) M.A. Kaminski, S. Geroch, & M.A. Gasinski (Eds.)

Libraries: £29.95 Individuals : £25.00

A complete collection in modern English translation of the six classic micropalaeontological monographs written by Józef Grzybowski and his co-workers W. Friedberg and M.

Dyląźanka. The translations are annotated with numerous footnotes. An introduction by S. Czarniecki sets the scene of Grzybowski's pioneering studies in the 1890's and early

1900's. Andrzej Ślączka gives a geological overview of the type localities. A chapter by M. Kaminski & S. Geroch presents a revision o f type specimens of foraminifera preserved in the Grzybowski Collection, with 17 plates of illustrations. This authoritative text is designed to be a handy reference volume for the taxonomy of foraminifera first described from the Polish Carpathians. The hardcover book is cross-indexed and richly illustrated (336 + xi pp.

with 56 illustrations). ISBN: 83 - 901164 - 0 - 5.

Proceedings

of

the Fourth International Workshop

on Agglutinated Foraminifera

Edited by:

M.A. Kaminski S. Geroch &

M.A. Gasiński

Libraries: £39.95 Individuals : £30.00

This Atlas-format hard-cover book presents the scientific results of the IWAF-4, held at the Jagiellonian University in September, 1993. The 18 contributions by leading international specialists provide an up-to-date synthesis of current research topics dealing with the taxonomy, biostratigraphy, and (paleo)environmental significance of agglutinated foraminifera. The volume features several richly-illustrated articles on the topic of

agglutinated foraminifera from the Carpathians (301 + x pp. with 65 illustrations). ISBN: 83 - 901164 - 2 - 1.

Send orders to: M.A. Kaminski, Department of Geological Sciences, University College London, Gower St., London WC1E 6BT, U.K. Tel: (44) 171-387-7050 x 2432 (Email: m.kaminski@ucl.ac.uk). Pre-payment required for individuals

(Sterling cheque or Eurocheque in GBP). Make cheque payable to “M. Kam inski".

Członkowie indywidualni PTG mogą nabyć w/w tytuły ze znaczną obniżką ceny! Dalszych informacji udziela Sekretarz Fundacji im. J. Grzybowskiego, mgr Urszula Mazurkiewicz, Muzeum Geologiczne U.J., ul. Oleandry 2a, 30-063 Kraków.

Cytaty

Powiązane dokumenty

A — endichnial relief in upper part of marlstone layer; note two clusters of tiny Chondrites intricatus (c); lower part of Huwniki section (UJ 177P20); black bar represents 1 cm; B

In bore hole Nowy S¹cz 4 these Var ie gated Shales of Mid-Eocene age were pen e trated at the top of the Early Mio cene Zawada For ma tion, and in ter preted as the thrust sole of

Bioturbation structures are recorded m ainly on soles and tops o f arenite and siltite beds, on tops o f marlstone beds in the rhythms where marlstones are overlain

In the Raca and K rynica zones the youngest - U pper O ligocene deposits from the studied sections belong to the Malcov Fm., w hereas in the Siary Zone they belong

The assemblage investigated can be correlated with the upper Campanian to Maastrichtian Am- phipyndcvc tylotus radiolarian Zone of Foreman (1977) based on the presence

Deep-water agglutinated foraminiferal assemblages from Late Cretaceous red shales of the Magura Nappe, Polish West Carpathians.. In: Paleoecol-

“Shallow water” trace fossils in Paleogene flysch o f the southern part o f the Magura Nappe, Polish Outer Carpathians.. They are represented by Rhizocorallium ichnosp.,

Location o f type exposures o f Upper Cretaceous and Palaeogene lithostratigraphic units dealt with in the present paper, within the Pieniny Klippen Belt and