• Nie Znaleziono Wyników

A vestige of an Early Devonian active continental margin in the East Sudetes (SW Poland) -- evidence from geochemistry of the Jegłowa Beds, Strzelin Massif

N/A
N/A
Protected

Academic year: 2022

Share "A vestige of an Early Devonian active continental margin in the East Sudetes (SW Poland) -- evidence from geochemistry of the Jegłowa Beds, Strzelin Massif"

Copied!
14
0
0

Pełen tekst

(1)

A ves tige of an Early De vo nian ac tive con ti nen tal mar gin in the East Sudetes (SW Po land) — ev i dence from geo chem is try of the Jeg³owa Beds, Strzelin Mas sif

Jacek SZCZEPAÑSKI

Szczepañski J. (2007) — A ves tige of an Early De vo nian ac tive con ti nen tal mar gin in the East Sudetes (SW Po land) — ev i dence from geo chem is try of the Jeg³owa Beds, Strzelin Mas sif. Geol. Quart., 51 (3): 271–284. Warszawa.

The Early De vo nian metasandstones of the Jeg³owa Beds (Strzelin Mas sif, NE Bo he mian Mas sif) are low- to me dium-grade meta mor - phosed siliciclastic de pos its show ing dif fer ences in modal com po si tion, es pe cially in the amount of micas and feld spars. De spite the sim - i lar ity in rel a tive con cen tra tions of trace el e ments, three chem i cal groups can be dis tin guished among the metasandstones that dif fer in the to tal amounts of ma jor and trace el e ments. The neg a tive Ta and Nb anom a lies vis i ble on a spi der plot nor mal ised to the av er age up per con ti nen tal crust and spe cific ra tios of e.g. Th, Zr, Hf, La/Th and Ti/Sc char ac ter ize the ma jor ity of the metasandstones, in di cat ing the prov e nance of their sed i men tary pre cur sors from a subduction-re lated tec tonic set ting. How ever, few of the sam ples ana lysed show strongly dif fer en ti ated geo chem i cal char ac ter is tics with high Zr and Hf con tents. This sug gests in put of rel a tively strongly re worked ma - te rial. Thus, it seems that a back-arc set ting can ac count for the mixed na ture of the in ferred source ar eas with old base ment and arc-re - lated de tri tus re spec tively as the end-mem bers of the mix tures. The com po si tion of the metasandstones in di cates de po si tion of the siliciclastic ma te rial near an Early to Mid dle De vo nian vol ca nic arc that was su per im posed on rocks orig i nally form ing a part of the pre-De vo nian con ti nen tal mar gin of the Brunovistulicum microplate. A plau si ble tec tonic sce nario in volves for ma tion of the De vo nian arc due to east-di rected subduction of an oce anic do main be tween the Brunovistulian microcontinent in the east and the Cen tral Sudetic ter rain lo cated fur ther west.

Jacek Szczepañski, In sti tute of Geo log i cal Sci ences, Uni ver sity of Wroc³aw, Pl. M. Borna 9, PL-50-204 Wroc³aw, e-mail:

js@ing.uni.wroc.pl (re ceived: Jan u ary 22, 2007; ac cepted: June 24, 2007).

Key words: East Sudetes, Moravo-Silesian Zone, Bo he mian Mas sif, Variscides, prov e nance stud ies, geo chem is try of metasandstones.

INTRODUCTION

A sig nif i cant re la tion ship be tween the frame work min er al - ogy of terrigenous clastic sed i ments and the tec tonic set ting of their de po si tion has been doc u mented (Schwab, 1975;

Dickinson and Suczek, 1979; Dickinson and Valloni, 1980;

Maynard et al., 1982). De spite the sig nif i cant in flu ence of weath er ing, sed i men tary trans port and diagenesis on the com - po si tion of terrigenous clastic rocks, the prov e nance of de tri tus has a pri mary con trol on the min er al ogy and geo chem is try of the deposits. Fur ther more, the chem i cal com po si tion of clastic de pos its can be in dic a tive of the tec tonic set ting of the source area and thus also of the sed i men tary ba sin it self (e.g. Bhatia, 1983, 1985; McLennan and Tay lor, 1991). Thus, the com po si - tion of clastic sed i men tary se quences is use ful for rec og niz ing both the na ture of old sed i men tary bas ins and the his tory of an - cient foldbelts (Tay lor and McLennan, 1985; Bhatia and Crook, 1986; McLennan and Tay lor, 1991).

This study pro vides new con straints on the tec tonic set ting of a ba sin in which was de pos ited the Early to Mid-De vo nian clastic suc ces sion of the Brunovistulian microplate. The data pre sented in the pa per come from the Early De vo nian metasandstones of the Jeg³owa Beds ex posed within the Strzelin Mas sif (NE Bo he mian Mas sif) and be long ing to the East Sudetic nappe pile (Fig. 1). The data on the modal and chem i cal com po si tions of the metasandstones al low eval u a tion of the prov e nance of their protolith. More over, they shed new light on the geodynamic sce nario of the con ver gence be tween the Brunovistulian microplate and ter ranes in cluded in the Variscan belt.

GEOLOGICAL SETTING

The east ern most mar gin of the Bo he mian Mas sif, termed the

Moravo-Silesian Zone (Svoboda et al., 1966; Cháb, 1986), is

com posed of de formed and meta mor phosed rocks of the

(2)

Brunovistulicum microcontinent (Dudek, 1980). The Silesian part of the zone (also called the East ern Sudetes) is oc cu pied by the Jeseníky Mts. and its north ern con tin u a tion rep re sented by the Strzelin Mas sif (Fig. 1). Early to Mid-De vo nian quartzose con glom er ates and sand stones are wide spread across the Brunovistulian microplate, uncomformably over ly ing the Lower Palaeozoic de pos its or di rectly rest ing on the meta mor phosed Pro tero zoic base ment (Svoboda et al., 1966). Vari ably meta - mor phosed equiv a lents of these rocks are in cluded in the Moravo-Silesian nappe com plex strad dling the east ern mar gin of the Bo he mian Mas sif (Fig. 1). Therein, they form in di vid ual metasedimentary thrust sheets or are linked through pri mary sed i men tary con tacts to slices of the Pro tero zoic base ment de - rived from the Brunovistulian plate (Cháb, 1986; Cháb et al., 1994). In the moun tain ous part of the East Sudetes (Jeseníky

Mts.), the Early to Mid-De vo nian quartzites mostly be long to the allochthonous suc ces - sion of the Vrbno Group (Cháb et al., 1994).

This suc ces sion is formed by quartz-rich de - pos its palaeontologically dated as Pragian (Hladil, 1986; Chlupaè, 1989) over lain by a vol cano-sed i men tary se quence rich in mafic to fel sic meta vol can ic rocks. The meta vol - can ic rocks bear a geo chem i cal sig na ture char ac ter is tic of an arc-re lated en vi ron ment and/or back-arc spread ing (Patoèka, 1987;

Patoèka and Valenta, 1996; Janoušek et al., 2006a). Fur ther to the north, petro graphi cally and geochemically sim i lar metasedimentary siliciclastic rocks (Patoèka and Szczepañski, 1997), termed the Jeg³owa Beds (Oberc, 1966), crop out in the Strzelin Mas sif (Fig. 2) emerg ing from be neath the Ce no zoic de pos - its of the Fore-Sudetic plain. The mas sif is gen er ally be lieved to have a domal struc ture with higher-grade rocks in its core and lower-grade rocks on the limbs. De spite the lack of palaeontological ev i dence, the Jeg³owa Beds, com pris ing quartzites, metaconglomerates and quartz-sillimanite- bi o tite schists de rived from shal low-ma rine protholiths (e.g. Oberc, 1966;

Oberc-Dziedzic, 1995; Szczepañski, 2001), are com monly con sid ered as equiv a lent to the quartzites of the Vrbno Group (Meister and Fischer, 1935; Oberc, 1966; Oberc-Dzie dzic, 1995; Patoèka and Szczepañski, 1997;

Szczepañski, 2001).

In the Strzelin Mas sif, the Jeg³owa Beds reach a to tal thick ness of 600 m (Dziemiañczuk and Wojnar, 1984) and are tec toni cally in ter leaved with wide spread orthogneisses and mi nor schists (Fig. 2). The orthogneisses have both Pro tero zoic and Lower Palaeozoic protoliths dated at 600–568 Ma and 504 ± 3 Ma, re spec tively (Ol i ver et al., 1993; Oberc-Dziedzic et al., 2003). The schists in clude mica schists, paragneisses and am phi bo lites of un known, prob a bly Neoproterozoic age (Oberc, 1966).

The protolith of the am phi bo lites was com pared to tholeiitic within-plate bas alts emplaced on an at ten u ated Early Palaeozoic con ti nen tal mar gin (Szczepañski and Oberc- Dziedzic, 1998). Meta mor phic rocks of the Strzelin Mas sif were in truded by Variscan granitoids con tro ver sially dated to ca. 330–347 Ma by the Rb-Sr whole-rock method (Oberc-Dziedzic et al., 1996) or to ca. 300 Ma by the Rb-Sr min eral (plagioclase + bi o tite; Pietranik and Waight, 2006) and Pb-Pb zir con evap o ra tion meth ods (Turniak, pers. com.).

The Strzelin Mas sif was sub jected to three Variscan tectonometamorphic events (Szczepañski, 2001; Szczepañski and Mazur, 2004). The first (D

1

) in volved E to NE-di rected thrust ing of nappe units un der prograde greenschist fa cies con di tions and was soon fol lowed by re gional fold ing due to E–W com pres sion

Fig. 1. Sketch map of the north east ern part of the Bo he mian Mas sif (af ter Puziewicz et al., 1999) show ing re gional set ting of the study areathe in set shows lo ca tion of the East

Sudetes on the map of the Bo he mian Mas sif

EFZ — Elbe Fault Zone; ISF — Intra Sudetic Fault; ST — Saxo-Thuringian Zone; MGCH — Mid-Ger man Crys tal line High; MO — Moldanubian Zone; MSZ — Moravo-Silesian Zone; NP — North ern Phyllite Zone; OFZ — Odra Fault Zone; RH — Rheno-Hercynian Zone; RT — Ramzová Thrust; SBF — Sudetic Bound ary Fault; SM — Strzelin Mas sif; VVN — Velké Vrbno

(3)

(D

2

). The fi nal (D

3

) event was re lated to late-orogenic grav i ta - tional col lapse and the de vel op ment of a meta mor phic core com - plex. Dur ing this event MT/LP am phi bo lite fa cies con di tions were at tained in the south ern part of the Strzelin Mas sif.

SAMPLING AND ANALYTICAL METHODS A to tal of 19 metasandstone and 3 gneiss sam ples were col - lected, mostly from the quar ries or large ex po sures on the

Strzelin Mas sif (see Ap pen dix). How ever, two spec i mens GE2 (3.6) and GE2 (183.6) came from a bore hole core (Fig. 2).

Modal anal y ses of the metasandstones stud ied were per - formed us ing the Gazzi and Dickinson point-count ing method (Ingersoll et al., 1984). A to tal of 1 000 or 500 points were counted for each of the thin sec tions de pend ing on its size. Se lected modal anal y ses of the metasandstones are shown in Ta ble 1.

Sam ples were ana lysed at Ac ti va tion Lab o ra to ries Ltd.

(Ancaster, On tario, Can ada). Ma jor-el e ment con cen tra tions were de ter mined us ing ICP-ES fol low ing a lith ium

Fig. 2. Geo log i cal sketch map of the Strzelin Mas sif (af ter Oberc et al., 1988);

the in set shows lo ca tion of Strzelin on the map of Po land

(4)

metaborate fu sion and ni tric acid di ges tion of a 0.2 g sam ple.

Loss on ig ni tion (LOI) was es tab lished by weight dif fer ence af ter ig ni tion at 1000°C. For Nb and Rb abun dances a sep a - rate 6 g split was di gested in poly vi nyl al co hol and ana lysed by the XRF method. Con cen tra tions of high field strength el e - ments (HFS) in clud ing rare earth el e ments (REE) were de ter - mined us ing the INAA method. Ac cu racy is within 5% for ma jor and mi nor el e ments; the ex cep tions are abun dances of MnO and P

2

O

5

for which it de creases to 15%. For trace el e - ments the ac cu racy is 5–10%. The ma jor- and trace-el e ment com po si tions of the rep re sen ta tive metasandstone and gneiss sam ples are given in Ta ble 2. All the di a grams were made us - ing the sys tem GCDkit (Janoušek et al., 2006b).

PETROGRAPHY

Nu mer ous rel ics of pri mary psam mit ic grains in the metasandstones of the Jeg³owa Beds in di cate sand stones as their sed i men tary pre cur sor (Fig. 3). More over, the protolith of the metasandstones ex pe ri enced re gional meta mor phism and duc tile de for ma tion of vari able in ten sity re sult ing in over all quartz recrystallization, growth of sec ond ary micas and changes in feld spar com po si tion. The con se quent al ter ation ob scured the pri mary frame work min er al ogy, ma trix com po si tion and rel a tive pro por tions be tween ma trix and frame work grains. There fore, the dis crim i na tion be tween lithic quartzitic frag ments and monocrystalline quartz is pres ently un fea si ble. Fur ther more, the or i gin of micas re mains enig matic since they may rep re sent pri - mary lithic grains or, less prob a bly, recrystallized clay min er als.

On the other hand, feld spars (both plagioclase and K-feld spar) prob a bly rep re sent pri mary frame work grains since their con tent var ies sig nif i cantly be tween in di vid ual metasandstone lay ers.

Tak ing into ac count these lim i ta tions, only a rough in di ca tion of the prov e nance of the metasandstones protolith may be ob tained from the frame work com po si tion.

The metasandstones in clude mica-rich and mica-poor va ri - et ies (Ta ble 1). Both were meta mor phosed un der greenschist- and am phi bo lite-fa cies con di tions in the ar eas of

Kuropatnik–Jeg³owa and Nowolesie–Skalice, re spec tively (Fig. 2). The lat ter con tain sillimanite as a char ac ter is tic com - po nent. A few an da lu site-bear ing sam ples of metasandstones (R3 and R10) show ev i dence for con tact meta mor phism, the ef -

Sample N6 KJ10 N1B N12 K2A GE2(3.6) R10 J1A

quartz 88.3% 81.8% 77.2% 74.5% 63.9% 48.1% 47.3% 43.5%

plagioclase 0.6% 0.0% 4.2% 0.7% 2.3% 1.1% 0.0% 4.7%

K-feld spar 2.6% 6.0% 1.5% 6.9% 2.7% 0.2% 0.0% 7.5%

mus co vite 5.2% 7.9% 1.9% 0.5% 20.6% 33.3% 12.7% 4.5%

bi o tite 2.0% 1.7% 0.4% 3.1% 9.9% 10.1% 19.8% 6.9%

zir con 0.1% 0.0% 0.1% 0.1% 0.1% 0.2% 0.2% 0.1%

tour ma line 0.0% 0.0% 0.0% 0.0% 0.5% 0.2% 0.0% 0.0%

rutile 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.1% 0.0%

ap a tite 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

an da lu site 0.0% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

syllimanite 1.0% 1.8% 13.9% 13.5% 0.0% 0.0% 19.1% 29.7%

opaque min er als 0.2% 0.5% 0.9% 0.7% 0.1% 6.7% 0.9% 3.0%

To tal 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

T a b l e 1 Modal anal y ses of se lected Jeg³owa Beds metasandstones

Fig. 3. Thin sec tion mi cro pho to graphs of the Jeg³owa Beds metasandstones

A — recrystallised frame work quartz grains within a ma trix com posed mainly of quartz (Qtz), mica-poor metasandstones (Ms); B — recrystallised frame work quartz grains within ma trix com posed mainly

of micas and quartz, mica-rich metasandstones

(5)

fects of which over print the older am phi bo lite-fa cies fab ric (Romanów area; Fig. 2).

The mica-rich metasandstones con sist of quartz + mus co - vite (seri cite) + bi o tite ± K-feld spar ± plagioclase + zir con + tour ma line + opaque min er als. The main rock-form ing min er - als are quartz and white mica to gether with vari able amounts of K-feld spar and plagioclase. Two metasandstone sam ples, R10 and R3, com posed of quartz + bi o tite + mus co vite + sillimanite + an da lu site + K-feld spar + zir con + opaque min er als + tour - ma line are also in cluded into the mica-rich va ri ety. They rep re - sent strongly recrystallized me dium- to coarse-grained rocks sub jected to con tact meta mor phism within an au re ole of a gran ite in tru sion near Romanów. Their main com po nents are quartz and bi o tite, whereas sillimanite forms both in di vid ual nee dles and larger ag gre gates. Large iso lated crystals of andalusite and K-feldspar are subordinate.

The mica-poor va ri ety is rep re sented by metasandstones con tain ing vari able amounts of feld spars (plagioclase and K-feld spar). In two cases also sillimanite is one of the main min eral phases. Well-rounded zir con, rutile grains and opaque min er als are ac ces sory phases. In some of the mica-poor sam - ples, de for ma tion ef fects are weak enough to al low rec og ni tion of the pri mary re la tion ship be tween ma trix and frame work grains. Ma trix forms less than 5% of the rocks whereas quartz grains be long ex clu sively to the frame work and form up to 85% of the total rock volume.

GEOCHEMISTRY

The metasandstones stud ied are char ac ter ized by vari able SiO

2

and Al

2

O

3

con cen tra tions (Ta ble 2, Fig. 4) al low ing rough chem i cal dis crim i na tion of the rocks ex am ined. The mica-rich metasandstones show the low est sil ica and the high est alu mina abun dances rang ing from 69 to 79 wt.% and 9 to 14 wt.%, re - spec tively. The mica-poor metasandstones are char ac ter ized by SiO

2

abun dances rang ing from 83 to 98 wt.% and the low est Al

2

O

3

con tents of 0 to 9 wt.%. Fur ther more, the mica-poor group may be chem i cally sub di vided into two sub groups (namely the me dium- and high-sil ica con tent) show ing dif fer - ent con cen tra tions of SiO

2

and Al

2

O

3

(Fig. 4).

Rare-earth pat terns nor mal ized to chondrite (Nakamura, 1974) gen er ally are sim i lar (Fig. 5) show ing: (1) strong light REE en rich ment (La

N

/Yb

N

= 6.7–18.2 with a mean value of 11.3); (2) a lack or pres ence of very small neg a tive Eu anom a - lies and (3) flat, uni form heavy REE pat terns. Sam ple KJ2 de - parts from this pic ture due to the very small value of La

N

/Yb

N

= 3.1. Sam ples from the mica-rich group are char ac - ter ized by gen er ally higher con cen tra tions of REEs com pared to the mica-poor group.

The multielement di a gram (Fig. 6A) nor mal ised to an av er - age up per con ti nen tal crust com po si tion (Tay lor and McLennan, 1985) shows sev eral in ter est ing fea tures. The low-Q group in cludes: (1) a con cen tra tion of el e ments from K to Th and Zr to Sc typ i cal of the up per con ti nen tal crust, the same ap ply ing to the abun dance of Ce; (2) rel a tively strong neg a tive Nb and Ta anom a lies; (3) P trough and (4); low Sr con cen tra tions. Sam ples with me dium quartz con tents (be long -

ing to the mica-poor group) show sim i lar fea tures as de scribed for the low-Q group but they are char ac ter ized by con cen tra - tions of el e ments from Th to Sc slightly lower than 1 com pared to the com po si tion of up per con ti nen tal crust (Tay lor and McLennan, 1985). The high-quartz con tent group (be long ing to the mica-poor va ri ety) is chem i cally more var ied, show ing con cen tra tions of trace el e ments con sid er ably lower than 1 com pared to an up per con ti nen tal crust (Fig. 6C). Sam ples N3 and N6 are char ac ter ized by trace-el e ment pat terns sim i lar to those re vealed by the mica-rich group. Sam ples KJ7A, KJ2 and K3 show a pat tern dom i nated by ro bust pos i tive Zr and Hf anom a lies (Fig. 6C). Fi nally, sam ple J1A has a fairly flat pat - tern with slight neg a tive P, Zr and Hf anom a lies and mi nor Ti and Rb peaks (Fig. 6C).

Fig. 4. Metasandstones of the Jeg³owa Beds in the SiO2 vs. Al2O3 di a gram

Open cir cles — mica-rich metasandstones, di a monds and rect an gles — mica-poor metasandstones dif fer en ti ated ac cord ing to sil ica con cen tra tion;

fur ther ex pla na tions see in the text

Fig. 5. Chondrite-nor mal ised REE plot for se lected sam ples from the Jeg³owa Beds, nor mali sa tion fac tors from Nakamura (1974)

(6)

Sam ple J8A KJ10 N12 N1B N6 N8 N17 KJ7A K16 KJ2 K3

Type MS MS MS MS MS MS MS MS MS MS MS

CIA 0.73 0.70 0.73 0.72 0.69 0.68 0.71 0.70 0.57 0.81 0.72

SiO2 83.21 88.00 86.53 88.94 94.06 89.60 95.78 98.87 86.43 97.31 92.05

TiO2 0.37 0.18 0.12 0.14 0.11 0.11 0.02 0.02 0.09 0.04 0.51

Al2O3 8.94 6.57 6.92 7.07 3.31 5.74 1.38 0.19 7.46 0.16 2.93

Fe2O3 1.57 2.08 1.47 2.04 1.72 1.75 2.76 3.05 1.76 1.92 1.82

MnO 0.00 0.00 0.01 0.02 0.00 0.00 0.02 0.02 0.01 0.01 0.01

MgO 0.39 0.12 0.13 0.12 0.10 0.10 0.01 0.00 0.14 0.00 0.16

CaO 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.04 0.00 0.00

Na2O 0.06 0.07 0.32 0.19 0.06 0.11 0.05 0.01 1.51 0.01 0.03

K2O 2.89 2.47 1.89 2.18 1.25 2.28 0.44 0.06 2.74 0.02 0.98

P2O5 0.03 0.06 0.04 0.06 0.03 0.03 0.02 0.02 0.02 0.01 0.00

LOI 1.07 0.55 0.32 0.14 0.19 0.40 0.00 0.00 0.41 0.00 0.09

To tal 98.53 100.10 97.77 100.93 100.83 100.12 100.48 102.24 100.61 99.48 98.58

Ba 355 501 383 2719 187 424 212 24 700 10 182 Rb 101 79 70 55 29 59 20 4 75 2 25 Sr 31 29 31 29 55 38 5 1 82 1 3 Y 15 6 7 10 5 7 2 1 8 0 4 Zr 105 118 56 60 112 86 33 35 41 27 277 Nb 6 2 1 2 1 1 0 0 3 0 5

Th 4.4 2.7 2.6 2.3 2.0 2.4 2.1 0.4 3.5 0.2 3.3

Pb 6 8 11 17 0 11 10 10 16 0 0 Ga 11 5 6 6 2 5 0 0 5 0 4 Zn 16 12 12 10 7 5 22 4 13 7 7 Cu 7 0 8 16 13 11 31 39 15 25 21 Ni 4 7 4 4 5 6 5 7 5 5 5 V 44 11 8 16 11 9 0 0 9 0 21

Cr 39.5 15.6 5.0 15.8 9.5 8.0 7.3 7.2 10.4 3.4 16.2

Hf 3.1 3.0 1.6 1.6 2.4 2.2 1.6 1.1 1.7 1.1 6.6

Cs 2.1 2.8 2.6 2.1 1.0 1.3 1.4 0.0 0.8 0.0 0.0

Sc 7.2 2.2 1.7 2.0 1.4 1.6 0.4 0.2 2.3 0.2 1.9

Ta 0.5 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.3 0.0 0.0

Co 1.3 3.2 2.5 2.9 3.4 2.4 5.0 6.0 2.9 3.3 3.0

La 14.4 15.9 14.0 16.3 8.8 11.3 8.7 1.9 16.3 0.6 10.1

Ce 29.0 26.0 23.0 33.0 14.0 19.0 16.0 4.0 32.0 1.0 17.0

Nd 12.0 10.0 10.0 12.0 6.0 8.0 6.0 2.0 12.0 0.0 8.0

Sm 2.20 1.76 1.76 2.36 1.08 1.42 0.98 0.24 2.24 0.08 1.49

Eu 0.52 0.58 0.50 0.45 0.32 0.44 0.10 0.06 0.56 0.05 0.37

Tb 0.3 0.2 0.3 0.3 0.1 0.2 0.1 0.0 0.3 0.0 0.2

Yb 1.31 0.74 0.75 0.79 0.50 0.55 0.32 0.19 0.78 0.13 0.56

Lu 0.19 0.11 0.11 0.11 0.07 0.08 0.04 0.02 0.12 0.02 0.08

U 1.0 1.1 0.6 0.8 0.6 0.7 0.4 0.2 0.6 0.1 0.4

Ma jor ox ides in [wt%]; trace el e ments in [ppm]; LOI — loss on ig ni tion; MS — metasandstones of the Jeg³owa Beds; G — gneiss; 0.0 — el e ment con- Rep re sen ta tive chem i cal anal y ses of Jeg³owa Beds

(7)

J1A N3 K2A R10 R3 GE2

(3.6) J3 J4 GE2

(183.6) K13 N20

MS MS MS MS MS MS MS MS G G G

0.73 0.84 0.63 0.81 0.77 0.60 0.72 0.55 0.73 0.70 0.73

94.33 96.42 75.15 78.43 79.03 69.01 95.23 78.85 72.00 74.62 72.25

0.11 0.10 0.49 0.60 0.47 0.52 0.24 0.31 0.11 0.09 0.18

2.86 1.99 12.32 12.31 10.38 13.94 1.83 9.28 13.61 13.92 15.40

2.63 1.94 5.06 5.21 6.02 6.67 2.80 4.24 3.90 2.42 2.25

0.02 0.01 0.03 0.02 0.02 0.05 0.02 0.13 0.05 0.02 0.03

0.07 0.00 1.00 0.78 0.30 0.92 0.07 1.07 0.31 0.24 0.54

0.08 0.00 0.07 0.08 0.00 0.23 0.06 0.80 1.18 0.41 1.65

0.09 0.02 1.79 0.12 0.14 3.22 0.08 2.41 4.11 4.70 5.37

0.71 0.32 3.82 2.26 2.57 3.19 0.42 1.91 3.44 3.23 2.26

0.01 0.01 0.05 0.06 0.07 0.06 0.06 0.06 0.03 0.16 0.10

0.06 0.07 1.08 0.94 0.66 0.00 0.00 0.69 0.00 0.42 0.23

100.97 100.88 100.86 100.81 99.66 97.81 100.81 99.75 98.74 100.23 100.26

74 25 711 375 382 688 44 286 1088 628 482

30 14 160 111 102 120 14 56 79 94 116

6 3 61 29 61 104 17 98 422 154 399

3 4 20 28 16 36 10 19 8 10 11

12 45 135 258 245 192 227 88 62 42 93

0 0 11 9 9 13 3 4 6 8 14

1.2 1.8 7.0 10.1 8.3 6.8 2.9 3.0 3.8 3.7 5.2 0 0 7 0 13 9 0 7 15 16 15

4 3 15 16 14 19 0 8 20 17 22

7 6 53 27 25 45 5 49 37 86 32

33 24 16 20 19 58 35 20 31 21 11

10 4 17 34 30 18 5 15 6 4 2

26 23 50 66 49 32 11 28 0 0 20

33.8 15.9 36.8 62.2 56.6 30.7 52.1 16.3 0.0 2.2 2.4

0.4 1.2 3.5 6.1 7.0 5.0 6.1 2.6 2.1 1.4 2.8

1.0 0.6 8.1 4.1 17.3 4.5 0.4 1.1 0.8 0.5 2.9

3.9 1.8 8.0 10.1 9.3 7.9 2.1 5.6 1.5 2.1 4.2

0.0 0.0 0.9 0.6 0.6 0.8 0.5 0.4 0.0 1.1 1.0

5.4 2.9 10.8 10.7 9.6 10.8 4.0 10.2 4.5 3.8 2.8

5.0 9.3 30.5 49.6 40.9 46.5 11.4 20.6 18.0 9.9 20.3

9.0 14.0 82.0 97.0 79.0 87.0 24.0 33.0 29.0 21.0 35.0

4.0 5.0 32.0 40.0 32.0 34.0 12.0 14.0 10.0 8.0 14.0

0.71 0.97 4.81 7.55 5.57 6.96 2.33 3.01 1.87 1.26 1.97

0.21 0.12 1.26 1.30 1.18 1.52 0.54 0.85 0.35 0.33 0.54

0.1 0.1 0.7 0.8 0.6 0.9 0.3 0.6 0.2 0.3 0.2

0.45 0.45 1.83 2.96 1.91 2.21 0.95 1.67 0.55 0.89 0.85

0.06 0.06 0.24 0.39 0.28 0.30 0.14 0.24 0.08 0.13 0.12

0.2 0.4 1.3 1.7 1.1 1.9 0.7 0.6 0.4 0.4 1.2

centration be low de tec tion limit; CIA — chem i cal in dex of al ter ation

T a b l e 2 metasandstones and gneiss es of the Strzelin Mas sif

(8)

DISCUSSION

SEDIMENTARY CYCLE

Chem i cal re ac tions dur ing a sed i men tary cy cle usu ally re - sult in changes in ma jor-el e ment abun dances (e.g. Bhatia and Crook, 1986). Large ion lithophile el e ment (LIL) con cen tra - tions can be also sub jected to sig nif i cant changes dur ing weath - er ing, trans port and sed i men ta tion (e.g. Wedepohl, 1991). In con trast, the lanthanides and HFS elements ex hibit only mi nor changes dur ing sed i men tary pro cesses (e.g. Bhatia, 1985;

Bhatia and Crook, 1986).

The chem i cal in dex of al ter ation (CIA; Nesbitt and Young, 1982) al lows the as sess ment of the weath er ing de gree of source rocks sup ply ing ma te rial to the protolith of the metasandstones stud ied. The Jeg³owa Beds show CIA val ues be tween 0.55 and 0.84 (Ta ble 2), with an av er age of 0.71, sug gest ing a mod er - ately weath ered source.

Syn- and post-depositional al ter ation caused by ex change re ac tions dur ing de po si tion and diagenesis seem to be in sig nif i - cant with re gards to the abun dance of HFS elemants and REE in the metasandstones stud ied. The pe trog ra phy of the metasandstones sug gests very low con tents of clay in the pri - mary sed i ments; thus a se lec tive ab sorp tion of LREE on clay min er als (Fleet, 1984) should not have sub stan tially in flu enced the REE dis tri bu tions in the metasandstone pre cur sors.

The miss ing or in sig nif i cant neg a tive Eu anom a lies, char - ac ter is tic of most of the chondrite-nor mal ized REE pat terns (Fig. 5), point to quite ox i diz ing con di tions both dur ing sed i - men ta tion and even diagenesis. Highly re duc ing con di tions nec es sary for the de vel op ment of a neg a tive Eu anom aly (MacRae et al., 1992) can not be ex pected dur ing the sed i men - ta tion of the pri mary siliciclastics de pos its, since black shale-type metapelites are ab sent from the metasandstone-bear - ing se quences (cf. Oberc, 1966; Chmura, 1967;

Oberc-Dziedzic, 1995; Szczepañski and Mazur, 2004).

Hy drau lic sort ing of zir con, lead ing to Zr, Hf and HREE en rich ment in sands (Cullers et al., 1987), was most prob a bly not an im por tant pro cess as in di cated by the trace-el e ment dis - tri bu tions (Fig. 6). Only a few of the in ves ti gated sam ples are Zr- and Hf-rich (J3, KJ7A, KJ2, K3).

METAMORPHISM

Sig nif i cant mo bil ity of al ka lis and al ka line earth el e ments has to be ex pected un der low-grade meta mor phic con di tions (e.g. Wedepohl, 1991). The HFS el e ments re main al most im mo - bile dur ing re gional meta mor phism of sed i men tary rocks (e.g.

McLennan et al., 1983), and should be the HREEs (Elderfield and Sholkovitz, 1987; Camiré et al., 1993). How ever, con cen tra - tions of LREE and P, widely ac cepted as im mo bile el e ments, can be al tered by sec ond ary crys tal li za tion of some min er als (e.g.

epidote, sphene and ap a tite) chang ing some trace-el e ment abun - dances (e.g. Hellmann et al., 1979; Altenberger, 1996).

The metasandstones dis play rel a tively uni form ma jor-el e - ment com po si tions ex clud ing the quartz-rich va ri ety (Ta - ble 2). Con se quently, the ma jor-el e ment abun dances in the rocks stud ied can be con sid ered as largely un changed by re -

Fig. 6. Multiel e ment plots nor mal ised to the av er age up per con ti nen - tal crust com po si tion (Tay lor and McLennan, 1985) A — di a gram com par ing the Jeg³owa Beds metasandstones with is land-arc gran ites; shaded area — is land-arc gran ites from south-west Ja pan (Kutsukake, 2002); B — di a gram show ing the Jeg³owa Beds metasandstones on a back ground of gneiss es from the Strzelin Mas sif (dark shaded) and synorogenic sand stones (light shaded area) from the Giessen Nappe in the south east ern Rhenish Mas sif (Floyd et al., 1990);

metasandstone sam ples shown on di a grams 6A and B are the same as those in Fig ure 4; C — low-quartz group of metasandstones

(9)

gional meta mor phism. The spi der di a gram (Fig. 6A) shows al most iden ti cal shapes of the trace-el e ments pat terns for sam - ples rep re sent ing greenschist- and am phi bo lite-grade metasandstones. Thus, it is sug gested that not only REE but also trace- and ma jor-el e ment con cen tra tions (per haps with the ex cep tion of K

2

O, Na

2

O, Ba, Rb and Sr) were not sig nif i - cantly al tered dur ing the Variscan re gional meta mor phism and in the ma jor ity of sam ples may cor re spond to the pre-meta mor phic geo chem i cal sig na ture.

SOURCE ROCKS AND TECTONIC SETTING OF DEPOSITION

The metasandstones mostly dis play K/Rb val ues close to 230 and in the di a gram of Rb vs. K

2

O they fol low the “main trend” of dif fer en ti ated mag matic suites (Fig. 7; Shaw, 1968).

This re la tion ship seems to be ev i dence for der i va tion of pri - mary sed i ments from a largely ig ne ous source. The lo ca tion of the mica-poor metasandstones in the field of source rocks show ing a ba sic com po si tion (Fig. 7) is at least partly caused by the di lu tion ef fect of the sur plus quartz on the con cen tra tions of K and Rb in these rocks.

The tec tonic af fin ity of a mag matic source sup ply ing ma - te rial to the Jeg³owa Beds may be dis cussed on the ba sis of the Th/Sc vs. La/Sc di a gram (Fig. 8; Floyd et al., 1991). Data points are mostly dis trib uted close to the line join ing av er ages of in ter me di ate and acid vol ca nic arc ig ne ous rocks (Fig. 8).

This is even clearer when the chem is try of the ana lysed metasandstones is com pared with is land-arc gran ites from south west ern Ja pan (Kutsukake, 2002). Lines rep re sent ing the mica-rich metasandstones show an iden ti cal shape to the area of is land arc gran ites (Fig. 6A). The mica-poor metasandstones, due to their high-quartz con tent, are shifted be neath the lines rep re sent ing mica-rich sam ples and the field of is land-arc gran ites.

In ter est ingly, the com par i son of chem i cal com po si tion of the Jeg³owa Beds and gneiss es from the Strzelin Mas sif shows es sen tial dif fer ences be tween these rocks (Fig. 6B), most vis i - ble for the mica-rich metasandstones. The LIL and some HFS el e ments (rep re sented by Th, Ta and Nb) show sim i lar con tents both in the Strzelin gneiss es and in the metasandstones ana - lysed. How ever, there are con sid er ably lower amounts of other HFS el e ments (namely Zr, Hf, Ti, Y and Sc) and some REE (Ce, Sm and Yb) in the gneiss es com pared to the mica-rich metasandstones of the Jeg³owa Beds. Con se quently, the gneiss es from the Strzelin Mas sif could have made only a mi - nor con trib uted to the Jeg³owa Beds. Ob vi ously, there must have been an other source sup ply ing de tri tus to the protolith of the metasandstones. Within the Brunovistulian do main, De vo - nian acid and in ter me di ate vol ca nic rocks with vol ca nic arc and back-arc af fin ity, which may have con trib uted to the Jeg³owa Beds, are known from the Jeseníky Mts. (Jakeš and Patoèka, 1982; Patoèka and Valenta, 1996; Janoušek et al., 2006a).

The av er age of the ma jor ity of the trace el e ment con cen tra - tions and their pro por tions in the low-quartz con tent metasandstones are typ i cal of sed i ments de pos ited on a con ti - nen tal is land arc or ac tive con ti nen tal mar gin set ting (Ta ble 3;

cf. Bhatia and Crook, 1986). The trace-el e ment com po si tion of the me dium-quartz con tent group seems to be typ i cal of an oce - anic is land arc (Th, Zr, Hf, Nb, La, Ce, Nd, La/Th and Th/Sc)

or a pas sive mar gin (La/Y, Ti, Co, Zn and Sc/Cr). On the other hand, the high-quartz con tent group is chem i cally strongly var - ied as man i fested e.g. by the wide range of Zr and Hf con tents as well as by very low con cen tra tions of some other el e ments such as Ti and Sc. Thus, the val ues shown in Ta ble 3 for this group of metasandstones might be mean ing less, al though many of them are in dic a tive of an oce anic is land arc ac cord ing to Bhatia and Crook (1986). Most prob a bly the chem is try of these rocks was not con trolled by the tec tonic set ting of the sed i men - tary ba sin but by sed i men tary pro cesses such as re work ing of older de pos its and sort ing. Con se quently, this group of sam ples might have formed by ero sion and sub se quent re work ing of

Fig. 7. Dis tri bu tion of K and Rb in the Jeg³owa Beds The line equals the ra tio of K/Rb = 230 and rep re sents “main trend” of

Shaw (1968); sym bols as in Fig ure 4

Fig. 8. The metasandstones of the Strzelin Mas sif (Jeg³owa Beds) in Th/Sc vs. La/Sc di a gram (Floyd et al., 1991)

Sym bols as in Fig ure 4

(10)

older crust. How ever, most of the sig nif i cant el e ment ra tios in the low- and me dium-quartz groups are rep re sen ta tive of a subduction-re lated en vi ron ment. In ter est ingly, the af fin ity re - vealed by the metasandstones stud ied to an oce anic is land arc set ting, spe cif i cally rep re sented by back-arc and forearc bas ins (cf. Bhatia and Crook, 1986), is con sis tent with the prov e nance pos tu lated for the De vo nian mafic rocks from the nearby Jeseniký Mts. (Patoèka, 1987; Patoèka and Valenta, 1996;

Janoušek et al., 2006a). The com plex ity of the trace el e ment char ac ter is tics of the metasandstones in ves ti gated may well be ex plained by ero sion of two crustal do mains: pas sive mar gin and partly dis sected mag matic arc formed on an at ten u ated con ti nen tal crust. The ac tive con ti nen tal mar gin or con ti nen tal is land arc af fin ity of the Jeg³owa Beds is sup ported by the com - par i son of their chem i cal com po si tion to the sand stones from the Giessen Nappe in the SE Rhenish Mas sif. The lat ter rocks were de scribed as synorogenic Late De vo nian greywackes de - pos ited in an arc-re lated en vi ron ment (Floyd et al., 1990). The chem is try of these greywackes (light shaded area on Fig. 6B) is al most iden ti cal to the com po si tion of the mica-rich metasandstones from the Jeg³owa Beds (Fig. 6B).

The dis tri bu tion pat terns of the trace-el e ment con cen tra tions in the low- and me dium-quartz con tent Jeg³owa Beds, i.e. the de - ple tion in Ta and Nb and in spe cific Th, Zr, Hf, Nb, Th/U, Zr/Hf,

Zr/Th, La, Ce, La/Th, Th/Sc and Ti/Zr ra tios re sem ble those in siliciclastic rocks de pos ited in a subduction-re lated tec tonic set - ting (Ta ble 3; cf. Bhatia and Crook, 1986). The metasandstone pre cur sors prob a bly in her ited low Ta and Nb con tents from acid and in ter me di ate rocks gen er ated as vol cano-plutonic arc mag - mas (cf. Floyd et al., 1990; Foley and Wheller, 1990). In fact, the ma jor ity of the metasandstones dis play Hf con cen tra tions mostly lower than the av er age sand stone value (3.9 ppm af ter Bowen, 1979). Fur ther more, ob served val ues of Hf and La/Th (Fig. 9) are in ter me di ate be tween an andesitic and rhyolitic arc source (Floyd and Leveridge, 1987).

The metasandstones stud ied dis play the same lanthanide dis tri bu tion pat terns as in sed i ments de rived largely from in ter - me di ate to acid calc-al ka line ig ne ous rocks, namely the sig nif i - cant LREE-en rich ment and neg a tive Eu anom aly (cf. Bhatia, 1985; Tay lor and McLennan, 1985; Bhatia and Crook, 1986).

How ever, the mica-poor metasandstones usu ally have low to tal REE con cen tra tions (Fig. 5). In the Sc-Th-Zr and Co-Th-Zr ter - nary di a grams (Fig. 10) the rocks ana lysed fall within the con ti - nen tal is land arc field de scribed by Bhatia and Crook (1986).

Only mica-poor sam ples char ac ter ised by the high est SiO

2

con - tent de part from this trend, be ing al most ran domly scat tered in the lower part of the di a grams.

Group LQC MQC HQC

El e - ment/

Ra tio

Min. Max. Aver. Me -

dian Tec tonic

set ting Min. Max. Aver. Me -

dian Tec tonic

set ting Min. Max. Aver. Me -

dian Tec tonic set ting

Pb 0.0 13.0 7.2 7.0 OIA 6.0 17.0 11.5 11.0 PM/CIA 0.0 10.0 2.5 0.0 OIA?

Th 3.0 10.1 7.0 7.0 CIA? 2.3 4.4 3.0 2.7 OIA 0.2 3.3 1.7 1.9 OIA

Zr 88.0 258.0 183.6 192.0 ACM 41.0 118.0 77.7 73.0 OIA 12.0 277.0 96.0 40.0 OIA

Hf 2.6 7.0 4.8 5.0 CIA 1.6 3.1 2.2 2.0 OIA 0.4 6.6 2.6 1.4 OIA

Nb 4.0 13.0 9.2 9.0 CIA/ACM 1.0 6.0 2.5 2.0 OIA 0.0 5.0 1.1 0.0 OIA?

Th/U 3.6 7.5 5.5 5.4 PM/ACM 2.5 5.8 3.9 3.9 CIA? 2.0 8.3 4.4 4.3 CIA/ACM

Zr/Hf 33.8 42.3 37.6 38.4 CIA 24.1 39.3 34.8 36.3 CIA? 20.6 46.7 33.8 34.5 CIA?

Zr/Th 19.3 29.5 26.4 28.2 CIA/PM 11.7 43.7 27.1 25.0 CIA/PM? 10.0 135.0 61.4 67.1 OIA

La 20.6 49.6 37.6 40.9 ACM/PM 11.3 16.3 14.7 15.2 OIA? 0.6 11.4 7.0 8.8 OIA

Ce 33.0 97.0 75.6 82.0 ACM/PM 19.0 33.0 27.0 27.5 OIA 1.0 24.0 12.4 14.0 OIA?

Nd 14.0 40.0 30.4 32.0 PM 8.0 12.0 10.7 11.0 OIA 0.0 12.0 5.4 5.5

La/Y 1.1 2.6 1.6 1.5 PM 1.0 2.7 1.8 1.8 PM? 1.1 4.4 2.2 1.9 PM?

La/Th 4.4 6.9 5.6 4.9 OIA 3.3 7.1 5.2 5.0 OIA 3.0 5.2 4.1 4.2 OIA

La/Sc 3.7 5.9 4.5 4.4 ACM 2.0 8.2 6.6 7.2 PM 1.3 21.8 7.2 5.4 PM

Th/Sc 0.5 1.0 0.8 0.9 CIA 0.6 1.5 1.3 1.4 CIA? 0.3 5.3 1.8 1.4 ACM?

Ti/Zr 11.5 21.8 16.9 16.2 ACM 7.7 21.1 13.0 13.0 ACM 3.4 55.0 13.4 7.6 ACM

Ti 0.2 0.4 0.3 0.3 CIA/ACM 0.05 0.22 0.10 0.08 PM? 0.01 0.31 0.09 0.06

Sc 5.6 10.1 8.2 8.0 ACM 1.6 7.2 2.8 2.1 0.2 3.9 1.5 1.6

V 28.0 66.0 45.0 49.0 ACM 8.0 44.0 16.2 10.0 0.0 26.0 11.5 11.0

Co 9.6 10.8 10.4 10.7 CIA/ACM 1.3 3.2 2.5 2.7 PM 2.9 6.0 4.1 3.7 PM

Zn 25.0 53.0 39.8 45.0 PM 5.0 16.0 11.3 12.0 PM 4.0 22.0 8.1 7.0

Sc/Cr 0.2 0.4 0.3 0.3 CIA/ACM 0.1 0.3 0.2 0.2 PM 0.0 0.1 0.1 0.1 PM?

T a b l e 3 Con tents (in ppm) and ra tios of se lected trace el e ments of the Jeg³owa Beds metasandstones

Tec tonic set tings ac cord ing to the clas si fi ca tion of Bhatia and Crook (1986); ACM — ac tive con ti nen tal mar gin; CIA — con ti nen tal is land arc; PM — pas - sive mar gin; OIA — ocean is land arc; LQC — low-quartz con tent group; MQC — mid-quartz con tent group; HQC — high-quartz con tent group

(11)

PALAEOTECTONIC MODEL

The De vo nian vol cano-sed i men tary se quence of the Vrbno Group (Svoboda et al., 1966), ap prox i mately 1 600 m thick, is com posed of a va ri ety of metasedimentary rocks (pelitic schists, quartzites and mi nor mar bles) and mafic to fel sic meta - vol can ic rocks. The south ern part of the Vrbno Group rep re - sents the ma jor cen tre of De vo nian vol ca nism in the

Moravo-Silesian Zone (Barth, 1966). The Early De vo nian (mid dle Pragian) fauna, a typ i cal nearshore ben thic as sem blage (brachi o pods, bi valves and ichnofossils), was found in abun - dance in the basal quartzites al low ing dat ing of the on set of sed - i men ta tion (Chlupáè, 1989, 1993). The over ly ing De vo nian tholeiitic to calc-al ka line vol ca nic-arc re lated vol ca nic rocks (Jakeš and Patoèka, 1982; Patoèka, 1987; Patoèka and Valenta, 1996; Patoèka and Hladil, 1997) as so ci ated with the ex ten sive suc ces sion of si li ceous deep-wa ter sed i men tary rocks pro vide ev i dence for the sub se quent for ma tion of a back-arc ba sin.

Some of the ba sic meta vol can ic rocks cor re spond ing to tholeiitic to al ka line WPB-type rocks (Souèek, 1981; Patoèka, 1987) in di cate con tem po ra ne ous crustal break-up re lated to the ini ti a tion of this ba sin.

The back-arc ex ten sion re spon si ble for the de po si tion of the Vrbno Group and the Jeg³owa Beds must have been in duced by the on go ing Early to Mid-De vo nian subduction be neath the Brunovistulian ac tive mar gin. The east ward po lar ity of such subduction was re cently pos tu lated by Mazur et al. (2006) for the oce anic do main sep a rat ing the Brunovistulian microplate from the Cen tral Sudetic terrane(s) (Fig. 11). The oce anic crust of this do main must have been ul ti mately con sumed in the Late De vo nian when the col li sion be tween the Cen tral Sudetes and the Brunovistulian microplate took place. The time of this col li - sion, dated by the age of UHP granulite fa cies meta mor phism in the Orlica–Œnie¿nik unit at 386±2.6 Ma by Sm-Nd on gar net (Anczkiewicz et al., 2007), is con tem po ra ne ous with the ces sa - tion of sed i men ta tion and vol ca nism within the Vrbno Group (Hladil, 1986). De spite the grow ing amount of new data (Oberc-Dziedzic et al., 2003, 2005), the ex act pres ent-day po - si tion of the Brunovistulian ac tive mar gin re mains largely un - known since it has been ob scured by Late De vo nian collisional tec ton ics. Fur ther com pli ca tion of tec tonic struc ture is caused by the sub se quent Early Car bon if er ous clo sure of the back-arc

Fig. 9. Source and compositional dis crim i na tion of sand stones in terms of La/Th ra tio and Hf abun dance

(af ter Floyd and Leveridge, 1987) Sym bols as in Fig ure 4

Fig. 10. Ter nary di a gram af ter Bhatia and Crook (1986)

Most of the data points are lo cated in the field typ i cal of con ti nen tal arc sed i ments on dis crim i na tion di a grams Sc-Th-Zr/10 (A) and Co-Th-Zr/10 (B) of Bhatia and Crook (1986); only sam ples con tain ing the high est amounts of quartz are al most ran domly dis trib uted over dif fer ent fields marked in the di a - gram; other ex pla na tions as in Fig ure 4 and Ta ble 3

(12)

ba sin pa ren tal to the Vrbno Group (Schulmann and Gayer, 2000) with the vol cano-sed i men tary se quence be ing mostly in - cluded in the allochthonous thrust unit (Cháb et al., 1994).

CONCLUSIONS

1. The De vo nian metasandstones of the Jeg³owa Beds from the Strzelin Mas sif com prise mica-rich and mica-poor va ri et ies.

2. The sources to the protolith of the metasandstones were:

— De vo nian vol ca nic arc-type ig ne ous rocks al most con - tem po ra ne ous with the siliciclastic pre cur sors of the metasandstones;

— gneiss es of the Strzelin Mas sif.

3. The metasandstones ex pe ri enced low- to me dium-grade Variscan re gional meta mor phism and duc tile de for ma tion re - sult ing in over all recrystallization of their protolith. The frame - work min er al ogy, ma trix com po si tion and rel a tive pro por tions be tween ma trix and frame work grains are mostly obscured.

4. The metasandstones ana lysed may be di vided into three chem i cally dif fer ent groups. The mica-rich metasandstones show the low est sil ica abun dances. The mica-poor

metasandstones may be chem i cally sub di vided into two sub - groups (namely with me dium- and high-sil ica con tents) show - ing dif fer ent sil ica con cen tra tions. Al though the rel a tive el e - ment abun dances are sim i lar in both the metasandstone va ri et - ies, the mica-poor rocks are gen er ally de pleted in all ma jor and trace el e ments in terms of ab so lute con cen tra tions ex cept for sil ica. This is prob a bly re lated to the di lu tion ef fect of quartz.

5. The sed i men tary pre cur sors to the ma jor ity of the Jeg³owa metasandstones pos sessed shared gochemical char ac - ter is tics in dic a tive of a subduction-re lated tec tonic set ting.

Only a few of the sam ples an a lyzed re sem ble strongly re - worked sed i ments. Thus, a back-arc ba sin seems to be the most re al is tic site of de po si tion for the Jeg³owa Beds.

Ac knowl edge ments. The au thor is deeply in debted to T. Oberc-Dziedzic for her in spi ra tion to un der take study of the Jeg³owa Beds and to S. Mazur for valu able dis cus sion and sug - ges tions, which greatly im proved the manu script. The manu - script bene fited greatly from the con struc tive com ments of L.

Krzemiñski and V. Janoušek. Fi nan cial sup port from the Uni - ver sity of Wroc³aw (grant no. 2022/W/ING) is ac knowl edged.

REFERENCES

ALTENBERGER U. (1996) — Ma te rial trans port in channelized flu ids — ex am ples from high-tem per a ture shear zones in the Cen tral-Eu ro pean Variscan Belt. Miner. Petrol., 57: 51–72.

ANCZKIEWICZ R., MAZUR S., SZCZEPAÑSKI J., STOREY C., CROWLEY Q., VILLA I. M. and THIRLWALL M. F. (2007) — Lu-Hf geo chron ol ogy and trace el e ment dis tri bu tion in gar net as ev i dence for

the multiphase up lift and ex hu ma tion of ul tra-high tem per a ture and ul - tra-high pres sure granu lites in the Sudetes, SW Po land, Cen tral Eu ro - pean Variscides. Lithos, 95: 363–380.

BARTH V. (1966) — The ini tial vol ca nism in the De vo nian of Moravia. In:

Palaeovolcanites of the Bo he mian Mas sif. Geol. Surv. Prague.

Fig. 11. Hy po thet i cal geodynamic sce nario ex plain ing the tec tonic set ting for de po si tion of the Jeg³owa Beds and Vrbno Group in the Late Palaeozoic

(13)

BHATIA M. R. (1983) — Plate tec ton ics and geo chem i cal com po si tion of sand stones. J. Geol., 91: 611–627.

BHATIA M. R. (1985) — Rare earth el e ment geo chem is try of Aus tra lian Palaeozoic graywackes and mudrocks: prov e nance and tec tonic con - trol. Sed i ment. Geol., 45: 97–113.

BHATIA M. R. and CROOK K. A. W. (1986) — Trace el e ment char ac ter is - tics of graywackes and tec tonic set ting dis crim i na tion of sed i men tary bas ins. Contrib. Miner. Petrol., 92: 181–193.

BOWEN H. J. M. (1979) — En vi ron men tal chem is try of the el e ments. Ac - a demic Press. Lon don.

CAMIRÉ G. E., LAFLÉCHE M. R. and LUDDEN N. J. (1993) — Archaean metasedimentary rocks from the north west ern Pon tiac Subprovince of the Ca na dian Shield: chem i cal char ac ter iza tion, weath er ing and mod el - ling of the source ar eas. Pre cam brian Res., 62: 285–305.

CHÁB J. (1986) — Struc ture of the Moravian-Silesian branch of the Eu ro - pean Up per Pa leo zoic orogen (a work ing hy poth e sis)(in Czech with Eng lish sum mary). Vìstník Èesk. Geol. Ústav., 61: 113–120.

CHÁB J., MIXA P., VANÌÈEK M. and ŽÁÈEK V. (1994) — Ge ol ogy of the NW part of the Hrubý Jeseník Mts. (the Bo he mian Mas sif, Cen tral Eu rope). Vìstník Èesk. Geol. Ústav., 69 (3): 17–26.

CHLUPÁÈ I. (1989) — Fos sil com mu ni ties in the meta mor phic Lower De vo nian of the Hrubý Jeseník Mts., Czecho slo va kia. Neues Jahrb.

Geol. Paläont. ABH., 177: 367–392.

CHLUPÁÈ I. (1993) — Strati graphic eval u a tion of some meta mor phic units in the N part of the Bo he mian Mas sif. Neues Jahrb. Geol.

Paläont. ABH., 188: 363–388.

CHMURA K. (1967) — Li thol ogy of the Jeg³owa quartz ite se ries (Sudetes Mts.) (in Pol ish with Eng lish sum mary). Rocz. Pol. Tow. Geol., 37 (3):

301–338.

CULLERS R. L., BARRETT T., CARLSON R. and ROBINSON B. (1987)

— Rare earth el e ment and mineralogic changes in Ho lo cene soil and stream sed i ment: a case study in the Wet Moun tains, Col o rado, U.S.A.

Chem. Geol., 63: 275–297.

DICKINSON W. R. and SUCZEK C. H. A. (1979) — Plate tec ton ics and sand stone com po si tion. Am. Ass. Petrol. Geol. Bull., 63: 2164–2182.

DICKINSON W. R. and VALLONI R. (1980) — Plate set tings and prov e - nance of sands in mod ern ocean bas ins. Ge ol ogy, 8: 82–86.

DUDEK A. (1980) — The crys tal line base ment block of the Outer Carpathians in Moravia: Bruno-Vistulicum. Rozpravy Èeskoslo - venské Akademie Vìd, 90: 1–85.

DZIEMIANCZUK K. and WOJNAR B. (1984) — Titanomagnetite and ilmenito-haematite min er ali sa tion in the struc tural and meta mor phic de vel op ment of the schist com plex of the south ern part of the Strzelin crys tal line mas sif (in Pol ish with Eng lish sum mary). Geol. Sudet., 18 (2): 79–108.

ELDERFIELD H. and SHOLKOWITZ E. R. (1987) — Rare earth el e - ments in pore wa ters of re duc ing nearshore sed i ments. Earth Planet.

Sc. Let ters, 82: 280–288.

FLEET A. J. (1984) — Aque ous and sed i men tary geo chem is try of the rare earth el e ments. In: Rare Earth El e ment Geo chem is try (ed. P.

Henderson): 343–373. Elsevier. Am ster dam.

FLOYD P. A. and LEVERIDGE B. E. (1987) — Tec tonic en vi ron ment of the De vo nian Gramscatho ba sin, south Cornwall: frame work mode and geo chem i cal ev i dence from turbiditic sand stones. J. Geol. Soc.

Lon don, 144: 531–542.

FLOYD P. A., LEVERIDGE B. E., FRANKE W., SHAIL R. and DÖRR W.

(1990) — Prov e nance and depositional en vi ron ment of Rhenohercynian synorogenic greywackes from the Giessen Nappe, Ger many. Geol. Rundsch., 79 (3): 611–626.

FLOYD P. A., SHAIL R., LEVERIDGE B. E. and FRANKE W. (1991) — Geo chem is try and prov e nance of Rhenohercynian synorogenic sand - stones: im pli ca tions for tec tonic en vi ron ment dis crim i na tion. In: De - vel op ment in Sed i men tary Prov e nance Stud ies (eds. A. C. Mor ton, S.

P. Todd and P. D. W. Haughtoned), 57: 173–188.

FOLEY S. F. and WHELLER G. E. (1990) — Par al lels in the or i gin of the geo chem i cal sig na tures of is land arc volcanics and con ti nen tal potassic ig ne ous rocks: The role of re sid ual ti tan ates. Chem. Geol., 85: 1–18.

HANSON G. N. (1978) — The ap pli ca tion of trace el e ments to the petro - gen esis of ig ne ous rocks of gra nitic com po si tion. Earth Planet. Sc.

Let ters, 38: 26–43.

HELLMAN P. L., SMITH R. E. and HENDERSON P. (1979) — The mo - bil ity of the rare earth el e ments: ev i dence and im pli ca tions from se - lected ter rains af fected by burial meta mor phism. Contrib. Miner.

Petrol., 71: 23–44.

HLADIL J. (1986) — Pre lim i nary re port on microfacies and age of car bon ate in ter ca la tions in the Janovice-Ruda bore hole (the Vrbno Group, Nizký Jeseník Mts.). Zprávy o geologických výzkumech v roce 1984: 76–77.

INGERSOLL H. R. V., BULLARD T. F., FORD R. L., GRIMM J. P., PICKLE J. D. and SARES S. W. (1984) — The ef fect of grain size on de tri tal modes: a test of the Gazzi-Dickinson point count ing method. J.

Sed. Petrol., 54: 103–116.

JAKEŠ P. and PATOÈKA F. (1982) — Compositional vari a tions of the De - vo nian vol ca nic rocks of the Jeseníky Mts. Vìstník Ústøed. Ústav.

Geol., 57: 193–204.

JANOUŠEK V., HANŽL P., AICHLER J., PECINA V., ERBAN V., WILIMSKÝ D., ŽÁÈEK V., MIXA P., BURIÁNKOVA K., PUDILOVÁ M. and CHLUPÁÈOVÁ M. (2006a) — Con trast ing petro gen esis of two vol ca nic suites in the De vo nian Vrbno Group (Hruby Jesenik Mts., Czech Re pub lic). Geolines, 20: 57–59.

JANOUŠEK V., FARROW C. M. and ERBAN V. (2006b) — In ter pre ta tion of whole-rock geo chem i cal data in ig ne ous geo chem is try: in tro duc ing the Geo chem i cal Data Toolkit (GCDkit). J. Petrol., 47: 1255–1259.

KRETZ R. (1983) — Sym bols for rock-form ing min er als. Am. Miner., 68:

277–279.

KUTSUKAKE T. (2002) — Geochemica1 char ac ter is tics and vari a tions of the Ryoke granitoids, South west Ja pan: petro gen etic im pli ca tions for the plutonic rocks of a mag matic arc. Gond wana Res., 5 (2): 355–372.

MACRAE N. D., NESBITT H. W. and KRONBURG B. I. (1992) — De - vel op ment of a pos i tive Eu anom aly dur ing diagenesis. Earth –lanet.

Sc. Let ters, 109: 585–591.

MAZUR S., ALEKSANDROWSKI P., KRYZA R. and OBERC-DZIEDZIC T. (2006) — The Variscan Orogen in Po land.

Geol. Quart., 50 (1): 89–118.

MAYNARD J. B., VALLONI R. and YU H. (1982) — Com po si tion of mod - ern deep sea sands from arc-re lated bas ins. In: Trench-forearc ge ol ogy:

sed i men ta tion and tec ton ics on mod ern and an cient ac tive plate mar gins (ed. J. K. Legget). Geol. Soc. Lon don Spec. Publ., 10: 551–561.

MEISTER E. and FISCHER G. (1935) — Geologische Übersichtskarte 1: 200 000. Blatt Schweidnitz. Preus. Geol. Landesanst.

MCLENNAN S. M. and TAYLOR S. R. (1991) — Sed i men tary rocks and crustal evo lu tion: tec tonic set ting and sec u lar trends. J. Geol., 99:

1–21.

MCLENNAN S. M., TAYLOR S. R. and ERIKSON K. A. (1983) — Geo - chem is try of Archean shales from the Pilbara Supergroup, West ern Aus tra lia. Geochim. Cosmochim. Acta, 47: 1211–1222.

NAKAMURA N. (1974) — De ter mi na tion of REE, Ba, Fe, Mg, Na and K in car bo na ceous and or di nary chondrites. Geochm. Cosmochim. Acta, 38: 757–773.

NESBITT H. W. and YOUNG G. M. (1982) — Early Pro tero zoic cli mates and past plate mo tions in ferred from ma jor el e ment chem is try of lutites. Na ture, 299: 715–717.

OBERC J. (1966) — Ge ol ogy of crys tal line rocks of the Wzgórza Strzeliñskie Hills, Lower Silesia (in Pol ish with Eng lish sum mary).

Stud. Geol. Pol., 20.

OBERC J., OBERC-DZIEDZIC T. and KLIMAS-AUGUST K. (1988) — Geo log i cal map of the Strzelin crys tal line mas sif (1:25 000). Inst.

Geol. Wroc³aw.

OBERC-DZIEDZIC T. (1995) — Re search prob lems of the Wzgórza Strzeliñskie meta mor phic se ries in the light of the anal y sis of bore hole ma te ri als (in Pol ish with Eng lish sum mary). Acta Univ. Wratisl. Pr.

Geol.-Miner., 50: 77–108.

OBERC-DZIEDZIC T., KLIMAS K., KRYZA R. and FANNING M. C.

(2003) — SHRIMP U-Pb zir con geo chron ol ogy of the Strzelin gneiss, SW Po land: ev i dence for a Neoproterozoic ther mal event in the Fore-Sudetic Block, Cen tral Eu ro pean Variscides. Int. J. Earth Sc., 92 (5): 701–711.

OBERC-DZIEDZIC T., KRYZA R., KLIMAS K., FANNING M. C. and MADEJ S. (2005) — Gneiss protolith ages and tec tonic bound aries in the NE part of the Bo he mian Mas sif (Fore-Sudetic Block, SW Po land).

Geol. Quart., 49 (4): 363–378.

OBERC-DZIEDZIC T., PIN C., DUTHOU J.-L. and COUTURIE J.-P.

(1996) — Age and or i gin of the Strzelin granitoids (Fore-Sudetic Block,

(14)

Po land) stud ied by the 87Rb/86Sr sys tem. Neues Jahrb. Miner. ABH., 171: 187–198.

OLIVER G. J. H., CORFU F. and KROGH T. E. (1993) – U-Pb ages from SW Po land: ev i dence for a Cal edo nian su ture zone be tween Baltica and Gond wana. J. Geol. Soc. Lon don, 150: 355–369.

PATOÈKA F. (1987) — The geo chem is try of mafic meta vol can ics: im pli - ca tions for the or i gin of the De vo nian mas sive sul fide de pos its at Zlaté Hory, Czecho slo va kia. Miner Deposita, 22: 144–150.

PATOÈKA F. and HLADIL J. (1997) — In di ca tions of pos si ble mag matic arc/back-arc tec tonic set ting in the north ern part of the Bo he mian Mas sif dur ing the Early Pa leo zoic. I Internat. Conf. North Gond wana Mid-Palaezoic Biodynamics (IGCP Pro ject 421), Vi enna, Sep tem ber 17–21, 1997. Ab stracts: 45–46.

PATOÈKA F. and SZCZEPAÑSKI J. (1997) — Geo chem is try of quartzites from the east ern mar gin of the Bo he mian Mas sif (the Hrubý Jeseník Mts. De vo nian and the Strzelin Crys tal line Mas sif): prov e nance and tec tonic set ting of de po si tion. Miner. Soc. Pol., Spec. Pap., 9: 151–154.

PATOÈKA F. and VALENTA J. (1996) — Geo chem is try of the Late De vo - nian in ter me di ate to acid meta vol can ic rocks from the south ern part of the Vrbno Group, the Jeseníky Mts. (Moravo-Silesian Belt, Bo he mian Mas sif, Czech Re pub lic): paleotectonic im pli ca tions. Geolines, 4:

42–54.

PIETRANIK A. and WAIGHT T. E. (2006) — Pro cesses and sources dur - ing late Variscan dioritic-tonalitic magmatism: in sights from plagioclase chem is try (Gêsiniec In tru sion, NE Bo he mian Mas sif, Po - land). J. Petrol. (in press).

PUZIEWICZ J., MAZUR S. and PAPIEWSKA C. (1999) — Pe trog ra phy and or i gin of two mica paragneisses and am phi bo lites of the Doboszowice meta mor phic unit (Sudetes, SW Po land)(in Pol ish with Eng lish sum mary). Arch. Miner., 52 (1): 35–70.

SCHULMANN K. and GAYER R. (2000) — A model for a con ti nen tal accretionary wedge de vel oped by oblique col li sion: the NE Bo he mian Mas sif. J. Geol. Soc. Lon don, 157: 401–416.

SCHWAB F. L. (1975) — Frame work min er al ogy and chem i cal com po si - tion of con ti nen tal mar gin-type sand stone. Ge ol ogy, 3: 487–490.

SHAW D. M. (1968) — A re view of K-Rb frac tion ation trends by covariance anal y sis. Geochim. Cosmochim. Acta, 32: 573–602.

SOUÈEK J. (1981) — The geo chem is try of the De vo nian metabasites of the Hrubý and Nízký Jeseník Mts. (in Czech with Eng lish sum mary).

Èasopis Miner. Geol., 25: 126–142.

SVOBODA J., DVOØÁK J., HAVLENA V., HAVLÍÈEK V., HORNÝ R., CHLUPÁÈ I., KLEIN V., KOPECKÝ L., MALECHA A., MALKOVSKÝ M., SOUKUP J., TÁSLER R., VÁCL J. and ŽEBERA K. (1966) — Re gional ge ol ogy of Czecho slo va kia. Geol.

Surv. Praha.

SZCZEPAÑSKI J. (2001) — Jeg³owa Beds — re cord of polyphase de for - ma tion in the East and West Sudetes con tact zone (Strzelin crys tal line mas sif, Fore-Sudetic Block, SW Po land) (in Pol ish with Eng lish sum - mary). Prz. Geol., 49 (1): 63–71.

SZCZEPAÑSKI J. and MAZUR S. (2004) — Syn-collisional ex ten sion in the West/East Sudetes bound ary zone (NE Bo he mian Mas sif): struc - tural and meta mor phic re cord in the Jeg³owa Beds from the Strzelin Mas sif (East Fore-Sudetic Blo ck). Neues Jahrb. Geol. Paläont. ABH., 233 (3): 297–331.

SZCZEPAÑSKI J. and OBERC-DZIEDZIC T. (1998) — Geo chem is try of am phi bo lites from the Strzelin crys tal line mas sif, Fore-Sudetic Block, SW Po land. Neues Jahrb. Miner. ABH., 173 (1): 23–40.

TAYLOR S. R. and MCLENNAN S. M. (1985) — The con ti nen tal crust — its com po si tion and evo lu tion. Blackwell Sc. Publ. Ox ford.

WEDEPOHL K. H. (1991) — Chem i cal com po si tion and frac tion ation of the con ti nen tal crust. Geol. Rundsch., 80: 207–223.

APPENDIX Sam ples lo ca tion

Sam ple num ber Lo ca tion

K2A North of Kuropatnik. West of the Kuropatnik–Strzelin road. Small ex po sure lo cated 200 m to the W of the hill at 202.8 m K3 North of Kuropatnik. West of the Kuropatnik–Strzelin road. Small aban doned quarry lo cated 500 m to the E of the hill at 224.3 m K13 North of Kuropatnik. West of the Kuropatnik–Strzelin road. Small ex po sure lo cated 500 m NW of the hill at 202.8 m K16 North of Kuropatnik. East of the Kuropatnik–Strzelin road. Aban doned quarry lo cated 350 m to the SSW

of the cem e tery in Kuropatnik GE2 (3.6) and

GE2 (183.6) Vi cin ity of Kuropatnik. West of the Kuropatnik–Strzelin road. Sam ple taken from a bore hole.

Depth (m) is in di cated in the brack ets

J1A, J3, J4, J8A Jeg³owa. Large, partly aban doned quartz ite quarry lo cated be tween Jeg³owa and Krzywina. Ex ca va tion K-4 KJ2 Vi cin ity of Krzywina. Small aban doned quarry lo cated near the blue foot path, ca. 200 m to the NW from Krzywina KJ7A Vi cin ity of Przeworno. Aban doned lime stones quarry lo cated to the N of the rail way sta tion in Przeworno KJ10 Vi cin ity of Krzywina. Small aban doned quarry lo cated ca. 2 km to the NE of Gromnik Hill (370.1 m).

West slope of Szerzawa Hill (250 m) near the yel low foot path

R3 Vi cin ity of Romanów. Small nat u ral ex po sure lo cated near the red foot path ca. 600 m to the NW of Gromnik Hill (393.0 m) R10 Vi cin ity of Romanów. Nat u ral ex po sure lo cated on the red foot path, 100 m to the N of Romanów

N1B Vi cin ity of Nowolesie. Small nat u ral ex po sure lo cated on top of Nowoleska Kopa (193 m) N3 Vi cin ity of Nowolesie. Small aban doned quarry lo cated on top of the hill at 241.0 m;

ca. 350 m to the N of the church in Nowolesie

N6 Vi cin ity of Skalice. Small aban doned quarry lo cated near the red foot path ca. 200 m to the SW of the hill 312.2 m N8 Vi cin ity of Skalice. Small aban doned quarry lo cated near the red foot path ca. 800 m to the NNE of the hill 312.2 m N12 Vi cin ity of Skalice. Small aban doned quarry lo cated near the red foot path 1100 m to the NE of the hill 312.2 m N17 Vi cin ity of Nowolesie. Small nat u ral out crop lo cated ca. 350 m to the NNE of the hill 291.2 m N20 Vi cin ity of Skalice. Nat u ral out crop lo cated ca. 250 m away from Skalice

Cytaty

Powiązane dokumenty

They were found in rocks from the Lubiechów Quarry (no. 1B) and the out crop near Witoszów Górny (no. 1B) in the south ern part of the Œwiebodzice Unit. The com pli cated geo log i

9B provides evidence that the parent rocks for the garnets studied did not lie in that part of the Eastern Sudetic Island which at present constitutes the Sudetes Mts.: neither

The gold is associated with other heavy minerals, such as Fe-Ti oxides (magnetite, ilmenite, and hematite), zircon and rutile. Concentration of these minerals increases

A – K-feld spar (Kfs) in the Górka Sobocka gran ite with in clu sion of plagioclase (Pl); nu mer ous rounded quartz (Qz) in clu sions are pres ent both in microcline and plagioclase;

The slightly meta mor phosed peridotite, oc cur ring on Popiel Hill in the West ern Sudetes in SW Po land (Fig. vol ca - nic-arc) type and orig i nated in a su

The three types of gran ites form ing the Strzelin in tru sion show some dif fer - ences in ma jor el e ment con tents that are re flected in the pro por tions of rock-form - ing

(2012) – Late stage Variscan magmatism in the Strzelin Mas sif (SW Po land): SHRIMP zir con ages of tonalite and Bt-Ms gran ite of the Gêsiniec in tru sion.. The age of the

In the migmatites, larger, rounded plagioclase grains, 1–3 mm in di am e ter, form clus ters or sin gle crys tals sur rounded by bi o - tite. The cores are ir reg u lar and