• Nie Znaleziono Wyników

Nuclear charge radii of ^{62-80}Zn and their dependence on cross-shell proton excitations

N/A
N/A
Protected

Academic year: 2022

Share "Nuclear charge radii of ^{62-80}Zn and their dependence on cross-shell proton excitations"

Copied!
5
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Nuclear charge radii of 62 80 Zn and their dependence on cross-shell proton excitations

L. Xie

a

, X.F. Yang

b,c,∗

, C. Wraith

d

, C. Babcock

d

, J. Biero ´n

e

, J. Billowes

a

, M.L. Bissell

c,a

, K. Blaum

f

, B. Cheal

d

, L. Filippin

h

, K.T. Flanagan

a,i

, R.F. Garcia Ruiz

c,a

, W. Gins

c

, G. Gaigalas

g

, M. Godefroid

h

, C. Gorges

k,l

, L.K. Grob

j,k

, H. Heylen

c,f,j

, P. Jönsson

m

, S. Kaufmann

k

, M. Kowalska

j

, J. Krämer

k

, S. Malbrunot-Ettenauer

j

, R. Neugart

f,l

,

G. Neyens

c,j

, W. Nörtershäuser

k

, T. Otsuka

n,o,c,p

, J. Papuga

c

, R. Sánchez

q

, Y. Tsunoda

n

, D.T. Yordanov

r

aSchoolofPhysicsandAstronomy,TheUniversityofManchester,ManchesterM139PL,UnitedKingdom

bSchoolofPhysicsandStateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing100871,China cKULeuven,InstituutvoorKern- enStralingsfysica,B-3001Leuven,Belgium

dOliverLodgeLaboratory,OxfordStreet,UniversityofLiverpool,Liverpool,L697ZE,UnitedKingdom

eInstytutFizykiimieniaMarianaSmoluchowskiego,UniwersytetJagiello´nski,ul.prof.StanisławaŁojasiewicza11,Kraków,Poland fMax-Planck-InstitutfürKernphysik,D-69117Heidelberg,Germany

gInstituteofTheoreticalPhysicsandAstronomy,VilniusUniversity,Sauletekioav.3,LT-10222Vilnius,Lithuania hChimiequantiqueetphotophysique,UniversitélibredeBruxelles,B1050Brussels,Belgium

iPhotonScienceInstituteAlanTuringBuilding,UniversityofManchester,ManchesterM139PY,UnitedKingdom jExperimentalPhysicsDepartment,CERN,CH-1211Geneva23,Switzerland

kInstitutfürKernphysik,TUDarmstadt,D-64289Darmstadt,Germany lInstitutfürKernchemie,UniversitätMainz,D-55128Mainz,Germany mSchoolofTechnology,MalmöUniversity,Sweden

nCenterforNuclearStudy,UniversityofTokyo,Hongo,Bunkyo-ku,Tokyo113-0033,Japan oDepartmentofPhysics,UniversityofTokyo,Hongo,Bunkyo-ku,Tokyo113-0033,Japan

pNationalSuperconductingCyclotronLaboratory,MichiganStateUniversity,EastLansing,MI 48824,USA qGSIHelmholtzzentrumfürSchwerionenforschung,D-64291Darmstadt,Germany

rInstitutedePhysiqueNucléaire,CNRS-IN2P3,UniversitéParis-Sud,UniversitéParis-Saclay,91406Orsay,France

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received10April2019

Receivedinrevisedform23July2019 Accepted23July2019

Availableonline25July2019 Editor:D.F.Geesaman

Keywords:

Zinc

Nuclearchargeradii Shellclosure Nucleardeformation Correlations

Nuclearchargeradiiof6280Znhavebeendeterminedusingcollinearlaserspectroscopyofbunchedion beamsatCERN-ISOLDE.Thesubtlevariationsofobservedchargeradii,bothwithinoneisotopeandalong the full rangeofneutronnumbers,are foundto bewelldescribed intermsofthe protonexcitations across the Z=28 shellgap, as predicted bylarge-scale shell model calculations.It comprehensively explainsthechangesinisomer-to-groundstatemeansquarechargeradiiof6979Zn,theinversionofthe odd-evenstaggeringaroundN=40 andtheodd-evenstaggeringsystematicsoftheZnchargeradii.With twoprotonsabove Z=28,theobservedchargeradiioftheZnisotopicchainshowacumulativeeffect ofdifferentaspectsofnuclearstructureincludingsingleparticlestructure,shellclosure,correlationsand deformationsneartheproposeddoublymagicnuclei,68Niand78Ni.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The nuclear charge radius is one of the most fundamental propertiesof the atomicnucleus, and thus an important observ-

*

Correspondingauthor.

E-mailaddress:xiaofei.yang@pku.edu.cn(X.F. Yang).

able forunderstanding variousaspects of nuclear structure:shell andsubshell effects [1],configuration mixing[2], correlations[3]

as well as nuclear deformation and shape coexistence [4,5]. Al- thougheffortsaremadetosuccessfullydescribegeneraltrendsof chargeradii usingvariousnuclearmodels,anaccurate description ofchargeradiiandtheirlocalvariations,e.g.theodd-evenstagger- ing (OES),alonga givenisotopicchainremains amajorchallenge https://doi.org/10.1016/j.physletb.2019.134805

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

[6–8].Forexample,significanteffortshavebeenmadetoestablish a nucleartheory that accurately describes theparabolic shapeof thechargeradii andthepronouncedOESintheCaisotopicchain from N=20 to N=28 [9] and more recently from N =16 to N=32 [7,10,11].

TheOESeffectisubiquitousbutstill remainstobean intrigu- ing featureofnuclear charge radii,signalling a wealthofnuclear information.Ingeneral,theOESreferstothefactthatchargeradii ofmostodd-N isotopes are smallerthan the averageofadjacent even-N isotopes.Thishasbeenexplainedbythepairingeffect.The unpaired neutronin an odd-N isotopeblocks a certain orbitand thussuppressesthepairscattering[10,12,13],whichinturnleads toareduction inprotonpairscattering.The resultingdecreaseof occupationprobability oflessbound protonorbits givesrise toa smallerchargeradius.Therefore,theOESofchargeradiishouldbe sensitivetothesubtlevariationofprotonexcitationsduetovary- ing neutron numbers, andthus reflect the effect of correlations.

Substantial experimentalandtheoretical investigations havebeen applied recentlytounderstand theOESfeature ofnuclear charge radii, butmostly in specific regions where the OESeffect is un- usually large, such as for the light-mass 4048Ca isotopes [10,9, 11],andmore recentlyforthe mostnotable example,known for many years,the neutron-deficient 177185Hg isotopes [14]. How- ever,theseexceptionalcasesarenotrepresentativeforthegeneral caseofmuchsmallerOESinmostotherisotopicchainsacrossthe nuclearchart.

In themedium mass Ni region, the localfluctuation and OES of the nuclear charge radii are more typical, and thus suitable fora more fundamental understanding ofthe subtle correlations betweenminorchangesofchargeradii andprotoncross-shellex- citations. With two protons outside of the Z =28 closed shell andneutronsbetweenclosedshellsofN=28 and50,theZniso- topesoccupy atransitional region betweensingle particle-likeNi isotopes anddeformed Ge isotopes. Therefore,they are expected to exhibit the combined effects of shell closures and deformed shapes, whichcanbe reflected inthevarious subtlevariationsof theirchargeradii.

Thisletterreportsonthemeasurementofnuclearmeansquare charge radii of 6280Zn isotopes, and a successful interpretation oftheirtrendandtheir OESintermsofprotonexcitationsacross the Z=28 shellgap.ThesehavebeencalculatedusingtheMonte CarloShellModel (MCSM)withthe A3DA-minteraction ina full proton-neutron p f g9/2d5/2 modelspace[15].Thisinteractionwas usedbeforetosuccessfullyreproducethemagneticandquadrupole moments of theseZn isotopes and their long-lived isomers [16], illustrating that the model correctly reproduces the ground and isomericstatewavefunctions.

2. Experimentalmethod

The experiment was performed atthe COLLAPS setup [17] at ISOLDE-CERN. The Zn isotopes were produced from a thick UCx targetbombarded bya 1.4 GeV protonbeam.The Znisotopesre- leased fromthe target were selectively ionised by the resonance ionisation laser ion source RILIS [18]. Extracted Zn+ ions were acceleratedto 30 keVand mass separated. The ions were deliv- ered to the COLLAPS setup typically as 5 μs bunches after 200 ms accumulation time in the radio frequency quadrupole cooler and buncher ISCOOL [19,20]. The ions were neutralised by pas- sagethroughsodium vapourina chargeexchange cell(CEC).The 4s4p 3P2o metastable state ofZn I waspopulated intheneutrali- sationprocess, fromwheretheatoms wereresonantly excited to the4s5s 3S1 state by alaserbeamfromafrequency-doubledcw Ti:sapphirelaser.Thelaserwavelengthwaslockedat480.7254 nm tomatchtheDopplershiftedtransition. Fourphotomultipliersin-

stalled at the detection region were used to record the emitted fluorescencephotonsfromthelaser-excitedatomsasafunctionof atuningvoltageappliedtotheCEC.Moredetailsabouttheexper- imentalset-upcanbefoundin[5,16].

3. Experimentalresults

The hyperfinespectra of the odd-mass 6379Zn isotopes have been reported in [16], while the zero nuclear spin of even Zn isotopes resultsinasingleresonancespectrum.The observedhy- perfine spectra were fitted using a

χ

2 minimisation procedure, generatingthehyperfine-structureA andB parametersoftheodd- massisotopes andisomers (asreportedin[16]),andthecentroid frequency

ν

ofall6280Znisotopesandisomers.Theisotopeshifts (IS:δ

ν

68,A=

ν

A

ν

68)werecalculatedwithrespecttothecentroid of68Zn(

ν

68),aspresentedinTable1.Asystematicuncertaintyon thelaserfrequencyobservedbythemovingions,whichoriginates fromthevoltageuncertainty(about0.033%)onthestartingpoten- tial(30kV)atISCOOL,hasbeenintroduced.

The changes in meansquare charge radii δr2were obtained fromtheISbasedontheequation[22,23]

δ ν

68,A

=

KMSmA

m68

mAm68

+

F

δ 

r2



68,A

.

(1) Here KMS and F are the atomic mass-shift and field-shift fac- tors, respectively, of the atomictransition used in this measure- ment. Since the mean square charge radii of five stable Zn iso- topesareknownexperimentallyfromacombinedanalysisofelec- tron scatteringandmuonicx-ray data[24],aKing-plotprocedure using these experimental δr2μe can be performed to evaluate the atomic factors [24–26]. As these evaluations of F and KMS factors have rather large error bars in the case of Zn [25,24], we take advantage of the recent progress in multi-configuration Dirac-Hartree-Fock(MCDHF)calculationsbasedonanab-initioap- proach to better quantify the F -factor [27]. This methodhas in- deed proven to be very successfulin calculatingthe F -factor for a range ofelements [3,28–31]. Forthe caseofZn, Filippinetal., [32] have explored different electron correlations in a system- atic way, inorder to optimise their computational strategy. They providea final F -factor, F= +346(3) MHz/fm2,inwhichthe un- certainty isestimated based onthe variation of the three differ- ent correlation models [32]. However, the calculated mass shift, KMS= +14(7) GHz u,in commonwithother systems [3,29], has a significant discrepancy with the value deduced from a King- plot analysis, leading to charge radii which do not conform to regional systematics.Aswiththe caseofCu ( Z=29) [3] andGa ( Z=31)[29],wethereforeusethecalculatedvalueF= +346(35) MHz/fm2 witha 10% uncertainty,andwe usethe Kingplotwith non-opticaldataδr2μeofstableisotopes[24] toextractthevalue of KMS= +49(17) GHz u. In this analysis, the F -value from the calculationwasusedasaconstraintbutallowedtovarywithinthe 10% uncertainty.Withtheseempiricalatomicfactors,thechanges in mean square charge radii δr2 for 6280Zn are extracted, as shown inTable1 andinFig. 1a.The systematicerrorquoted for δr2arisesmainlyfromtheuncertaintyintheatomicfactorsafter removing the correlations between KMS and F during the King- plot procedure [8]. The systematic error on the IS, due to the uncertainty of the beam energy,has no effect on the final δr2 systematicerrorasthe atomicfactorsallow their influencetobe cancelled through the King-plot procedure. By comparison with the Cu andGa isotopicchains shown inFig. 1a,the Zn radii are consistent withthegeneral trendofcharge radii ofneighbouring isotopes,whileadeviationfromthetrendisobservedifKMSfrom MCDHFisusedtoextracttheradii(blackdots).

(3)

Table 1

Isotopeshiftsandchangesinmeansquarechargeradii of 6280Zn δr268,A. Statistical errors are shown in curved brackets. Systematic errors in square brackets ariseprimarilyfromthe uncertaintyonthe beamen- ergy(forisotopeshifts)andonatomicfactorsKMSand F (forradii),respectively.

A Iπ δν68,A(MHz) δr268,A(fm2) 62 0+239.5(11)[99] −0.493(3)[52] 63 3/2191.2(32)[87] −0.389(9)[43] 64 0+141.2(12)[66] −0.279(4)[34] 65 5/2121.8(23)[51] −0.257(7)[25] 66 0+63.6(15)[38] −0.121(4)[16] 67 5/241.4(21)[16] −0.089(6)[8]

68 0+ 0 0

69 1/2 19.5(20)[15] 0.026(6)[9] 69m 9/2+ 35.7(11)[15] 0.073(3)[8] 70 0+ 69.5(9)[29] 0.142(3)[15] 71 1/2 108.8(24)[44] 0.227(7)[23] 71m 9/2+ 96.3(11)[43] 0.191(3)[23] 72 0+ 140.6(10)[57] 0.292(3)[30] 73 1/2 158.9(12)[71] 0.318(3)[37] 73m 5/2+ 160.4(19)[71] 0.322(6)[37] 74 0+ 187.9(13)[83] 0.375(4)[44] 75 7/2+ 187.7(10)[96] 0.349(3)[51] 75m 1/2 195.8(21)[96] 0.373(6)[51] 76 0+ 221.3(14)[108] 0.421(4)[57] 77 7/2+ 236.0(16)[120] 0.440(5)[64] 77m 1/2 241.2(38)[120] 0.455(11)[64] 78 0+ 255.7(11)[131] 0.474(3)[70] 79 9/2+ 259.3(10)[142] 0.461(3)[77] 79m 1/2+ 320.6(29)[142] 0.639(8)[75] 80 0+ 268.4(12)[161] 0.465(4)[84]

Fig. 1. (a)ChangesinmeansquarechargeradiifortheZnisotopescomparedwith neighbouring CuandGaisotopicchains,whichareverticallyoffsetby±0.6fm2for clarity.TheblackdotspresenttheZnradiiextractedbyusingtheKMSfromMCDHF calculations.(b)Experimentalr2forgroundstatesoftheCu,ZnandGaisotopes withthesphericalvolumecontributionr20 from thedropletmodelsubtracted [21].

4. Discussion

The(sub-) shell effect hasbeen muchinvestigated in thisre- gion, as discussed for the Cu and Ga isotopes [3,29]. For this purpose, we plot the ‘residual’ r2 of Cu, Zn, Ga isotopes after subtractingthesphericalvolumecontributionr20 ofthedroplet model[21],asshowninFig.1b.Thegeneralparabolicshapeofthe

‘residual’chargeradiir2− r20 demonstratestheshelleffectex- pectednear N=28 andN=50,whilethe localminimumofthe

r2− r20 around N=40,whichhas beenattributedtoaweak subshell effectforCu [3],ismuchweaker for70Znthanfor69Cu.

The apparent ‘dip’ in theGaisotopic chain at N=40 isnot due tothe subshelleffect,butarisesfroman inversionofthe OES[3, 29,33] and onsetof deformationappearing above N=40, asob- servedinthenuclearmoments[34].ThustheZnradiiconfirmthe consistentpictureoftheN=40 subshelleffectwhichquicklydis- appears when going away from Z=28, asdescribed by various experimentalobservables:magneticandquadrupolemoments[16, 35–37],charge radii [3,29], nuclearmasses[38,39], E(2+) excita- tionenergies,andB(E2)transitionrates[40–43].

In addition to the observed disappearing shell effect,nucleon correlations or deformation should contribute to the ‘residual’

charge radii. As an example, a different behaviour of OES below andaboveN=40 isobservedforthethreeisotopicchains(shaded regioninFig.1b).AninversionofthenormalOESaround N=40 isclearlyobservedforGaisotopesandhintedforZnisotopes,but notapparent intheCuisotopes.Theslightincreaseincollectivity above N=40,observedintheexperimentalquadrupolemoments of the odd Zn isotopes, and the B(E2;↑) of even ones, is con- sidered asone possible explanation [16,44,45,43]. An increase in deformation was also observed inthe Gaisotopic chain [37] but notintheCuisotopicchain[46].

To assessthe contribution ofcorrelations tothe experimental chargeradii,onecanattempttodescribeδr2intermsofchanges inproton orbitoccupationprobabilities resultingfromcross-shell excitations. This approach has been adopted recently to explain the pronounced OES in the charge radii of the Hg isotopes [14].

Anaiveshellmodelpicturewillpredictaconstantprotonnumber of 2above the Z=28 closed shellfor Zn.However, it is known thattheprotonsingle particlelevelsaremodified withincreasing neutronnumbers[47]. Thisgivesrise toprotonexcitationsacross the Z=28 shellgap,asdiscussedrecentlyfortheCuisotopes[35, 48].Suchexcitationscanbequantified fromtheshellmodelwith alarge modelspace.MCSMusingtheA3DA-minteraction[15] in a f pg9/2d5/2 modelspacehasbeenwidely usedinthe Niregion [16,44,35] to describe nuclear moments.In orderto examine the sensitivityofchargeradiito protonexcitationsacross Z=28,the calculatedprotonoccupationsforthe1/2andhigh-spinstatesof 6979ZnarepresentedinFig.2b.Thetrendintheseprotonoccupa- tionsiscomparedtothetrendintheexperimentalδr2inFig.2a.

Forthe I=1/2+ isomericstate of79Zn,sincea largepartof the contributiontoitsconfigurationcomesfromtheneutronintruder s1/2 orbitwhich is out of the model space (proton and neutron in p f d5/2g9/2 shells) of the A3DA-m interaction [5,16], we have usedanewlydevelopedp f sdg-fullinteraction[49] tocalculatethe protonoccupationnumber(seethebluediamondinFig.2b).This new interaction, with an extended model space in the full pro- tonandneutronp f sdg shell, predictsthenuclearmomentofthis 1/2+ state in 79Zn as

μ

pfsdg-full= −1.05

μ

N, in good agreement withtheexperimentalvalue

μ

exp= −1.018(1)

μ

N [5].

Fig.2clearlyshowsaqualitativerelationshipbetweenthepro- ton occupation above Z =28 and the relative nuclear size of groundandisomericstatesin6977Zn.Thestatewithalargerpro- tonoccupationcoincideswiththestateoflargersize.Inparticular, itsolvesapuzzlevisibleinFig.2a:thechargeradiioftheI=1/2 andI=9/2+statesareintheoppositeorderfor69Znand71Znal- thoughtheysharesamespinsandsimilarmagneticmoments[16].

Furthermore, the sensitivity of local changes of charge radii to the protonoccupation can be explored qualitatively along the whole Zn isotopic chain.For thispurpose, theproton excitations across the Z =28 major shell closure for all 6280Zn isotopes are converted into changes in the charge radii, δr2(p.occ), by

(4)

Fig. 2. (a)Experimentalδr2comparedwith(b)protonoccupationnumbersabove Z=28 calculatedfromA3DA-minteractionforbothpositiveparitystatesand1/2 statesin6979Zn.Notethattheprotonoccupationnumberforthe1/2+ isomerin 79Zniscalculatedwithanewinteractionp f sdg-full(seethebluediamondinb), duetothemodelspacelimitofA3DA-minteraction.

Fig. 3. (a)Theδr2of6280Zn(bluesquare)scaledfromtheexcitedprotonacross Z=28 (seetextfordetails)comparedwiththe‘residual’chargeradiir2− r20 (redcircle)takenfromFig.1b.Theerrorbarsaresmallerthanthesymbols.(b)The odd-evenstaggering(OES)ofexperimentalchargeradii(redcircle)andthecharge radii(bluecircle)scaledfromtheprotonoccupations,asshownin(a),seetextfor details.

multiplying the proton excitations with a constant scaling fac- tor, f =0.172(7), estimated from the ratio of the isomer shift (δr2g,m) andthe occupationdifferencesof groundandisomeric states(δpg,m)of6977ZnfromFig.2.Notethat thevaluefor73Zn is not taken into account for the determination of f , due to its largedeformation[44].Theresultsofthisprocedureareshownby the blue squares in Fig. 3a, compared with the ‘residual’ charge radiir2− r20 of6280Zn(redcircle).Thisscalingismadeunder theassumptionthatthedifferencesinradiibetweentheprotonor- bits p f5/2g9/2d5/2 are negligiblecompared tothe difference with the f7/2 orbitbelowthe Z=28 shellgap.

Althoughafullyquantitativeanalysisisimpossiblewithoutde- tailedcalculationsoftheradiiofthespecificsingleparticleorbits, themagnitudeoftheodd-eveneffectinexperimentalchargeradii agreeswiththatfromprotonorbitoccupationprobabilities,ascan be seen in Fig. 3a. Subtle changes in proton occupations above

Z=28 havenoticeableeffectson meansquare chargeradii along the entire Zn isotopic chain. For instance, in the mid-shell be- tweenN=40 andN=50,thereisareductionintheexperimental chargeradiusatN=45 (blackarrowinFig.3a)comparedtoadja- centisotopes,whichcanbeunderstoodfromthesuddendecrease inprotonexcitations.ApproachingtheN=50 neutronclosedshell, thecross-shellexcitationsaresuppressedasexpected(andasob- servedalsofortheCuisotopes[35]),resultinginareductionofthe OES,asreflectedintheexperimentalchargeradii.AroundN=40, theaforementionedinversionoftheOESofradiiinFig.1b)isalso nicelydescribedbythechangesofprotonoccupation.Thereisonly one exception observed around N=33, where radii scaled from the protonoccupationexhibitsausual odd-eveneffectwhilethis is nearly invisible in the experimental charge radii. This is pos- sibly due to the fact that the 3/2 ground state in 63Zn has a rather mixed configuration from neutron f5/2 and p3/2, as con- cluded fromits magneticmoment andlargequadrupole moment [16].However,theA3DA-mcalculationfailedtoreproducetheex- perimentalmagneticmoment of63Zn[16],

μ

exp= −0.282(1)

μ

N and

μ

A3DA-m= +0.110

μ

N,which maybe the origin ofthe dis- crepancy.

Tobetter visualise theodd-eveneffectinthe charge radii,the experimental OESispresentedinFig.3bwithsolid circles,asthe difference3(r2,N)betweentheradiusoftheisotopewithneu- tron numberN andthemeanvalue oftheradii ofits neighbours withneutronnumbersofN+1,N1,asquantifiedwith[50,51]:



3

(

r2

,

N

) = 

r2



N

1

2

(

r2



N1

+ 

r2



N+1

).

(2) A value 3(r2,N)>0 for an odd-N isotope represents an inversion of the normal OES behaviour. The hinted inversion in the OES at N=41 is clearly visible in this representation. To understand its origin, we present in Fig. 3b also the calculated

3(r2,N)withopensquares,extractedfromthecalculatedradii using the proton occupations above Z=28 (the blue squares in Fig. 3a). The OES from the calculated radii shows also an inver- sionintheOESatN=41.Asthesecalculatedradiiwereobtained fromscaling oftheprotonexcitation across Z=28 (Fig.2b),this suggeststhatindeedtheinvertedOESeffectisrelatedto changes intheprotonexcitationsacross Z=28.Notethatthe lowproton excitationsaround N=40 (bluesquare inFig.3a)ledtoawrong signof3(r2,N)at N=40 (bluesquare inFig.3b).Due tothe parity change between two major shells at N=40, the neutron excitationsare suppressed,asrecentlydemonstrated theoretically forthe68Niand69Cu[52],whichinitsturnleadtoasuppression ofthecorrelatedprotonexcitations. However,such effectisprob- ably overestimatedintheMCSM calculationfortheZnisotopeat N=40.Nevertheless,theOESoftheexperimentalnuclearcharge radiiandscaledchargeradiishareasimilarrelativeamplitudeover thewholeZnisotopicchain,confirming thestrongconnectionbe- tween proton excitationsacross Z=28 and nuclear charge radii.

Fig.3b alsoillustratesthat,aroundtheneutronmid-shell,theOES ofcharge radiicalculatedfromprotonoccupationsispronounced, e.g. around N=34 and N=45,themiddleshellofneutron f5/2 and g9/2 orbits,respectively.Thisphenomenonisalsohighlighted in theOES ofexperimental charge radii. Incontrast,approaching the closed shell N=50, the OES is suppressed for both experi- mentalchargeradiiandscaledradiifromprotonoccupations.

5. Summaryandconclusion

In summary, the changes in mean square charge radii of 6280Zn were extracted by laser spectroscopy. The variations in the charge radii of 6280Zn were described in terms of proton

(5)

excitations across the Z =28 shell gap. The proton excitation probabilitycomprehensivelyexplainsthelocalvariationsofcharge radii, such as the size change between the isomeric and ground statesin6979Zn,theunusualinversionofthenormalOESaround N=40,andtheOESofthechargeradiiof6280Zn.Thisobserva- tionprovidesstrongevidencethat thechargeradiusisasensitive reflectionofthecross-shellprotonexcitations(whicharestrongly correlatedto the neutron numbers), offeringa new approach for theinterpretationofnuclearchargeradii.

Acknowledgements

Weacknowledge the supportof the ISOLDEcollaboration and technical teams. This work was supported by the National Key R&D Program of China (Contract No. 2018YFA0404403), the Na- tional Natural Science Foundation of China (No.11875073), the UKScience andTechnology FacilitiesCouncil grantsST/L005670/1 and ST/L005794/1, the JSPS and FWO under the Japan-Belgium Research Cooperative Program, the IAP-project P7/12, the FWO- Vlaanderen,GOAgrant15/010fromKULeuven,theBMBFContract No. 05P15RDCIA, theMax-Planck Society, the HelmholtzInterna- tionalCenter forFAIR (HIC for FAIR), the EU FP7 via ENSAR No.

262010, the HPCI Strategic Program (The origin of matter and the universe) and “Priority Issue on post-K computer” (Elucida- tionoftheFundamentalLawsandEvolutionoftheUniverse)from MEXTand JICFuS, and the FWO-FNRS Excellence of Science Pro- gramme(Grant No.EOS-O022818F). TheMCSM calculationswere performedontheKcomputeratRIKENAICS(hp150224,hp160211, hp170230).

References

[1]K.Kreim,etal.,Phys.Lett.B731(2014)97.

[2]H.DeWitte,etal.,Phys.Rev.Lett.98(2007)112502.

[3]M.L.Bissell,etal.,Phys.Rev.C93(2016)064318.

[4]B.Cheal,etal.,Phys.Lett.B645(2007)133.

[5]X.F.Yang,etal.,Phys.Rev.Lett.116(2016)182502.

[6]A.Ekström,etal.,Phys.Rev.C91(2015)051301.

[7]R.F.GarciaRuiz,etal.,Nat.Phys.12(2016)594.

[8]M.Hammen,etal.,Phys.Rev.Lett.121(2018)102501.

[9]E.Caurier,etal.,Phys.Lett.B522(2001)240.

[10]P.-G.Reinhard,W.Nazarewicz,Phys.Rev.C95(2017)064328.

[11]A.Miller,etal.,Nat.Phys.15(2019)432.

[12]D.Zawischa,Phys.Lett.B115(1985)309.

[13]M.L.Bissell,etal.,Phys.Rev.Lett.113(2014)052502.

[14]B.Marsh,etal.,Nat.Phys.14(2018)1163.

[15]Y.Tsunoda,etal.,Phys.Rev.C89(2014)031301.

[16]C.Wraith,etal.,Phys.Lett.B771(2017)385.

[17]R.Neugart,etal.,J.Phys.G,Nucl.Part.Phys.44(2017)064002.

[18]V.N.Fedosseev,etal.,Rev.Sci.Instrum.83(2012)02A903.

[19]E.Mané,etal.,Eur.Phys.J.A42 (3)(2009)503.

[20]H.Franberg,etal.,Nucl.Instrum.MethodsB266(2008)4502–4504.

[21]D.Berdichevsky,F.Tondeur,Z.Phys.A322(1985)141.

[22]B.Cheal,K.T.Flanagan,J.Phys.G,Nucl.Part.Phys.37(2010)113101.

[23]P.Campbell,etal.,Prog.Part.Nucl.Phys.86(2016)127.

[24]C.J.Foot,etal.,Proc.R.Soc.Lond.A384(1982)205.

[25]G. Fricke,K.Heilig, NuclearCharge Radii, 1stedition,Springer-Verlag Berlin Heidelberg,2004.

[26]P.Campbell,etal.,J.Phys.B,At.Mol.Opt.Phys.30(1997)2351.

[27]P.Jönsson,etal.,Comput.Phys.Commun.184(2013)2197–2203.

[28]K.Minamisono,etal.,Phys.Rev.Lett.117(2016)252501.

[29]T.J.Procter,etal.,Phys.Rev.C86(2012)034329.

[30]H.Heylen,etal.,Phys.Rev.C94(2016)054321.

[31]L.J.Vormawah,etal.,Phys.Rev.A97(2018)042504.

[32]L.Filippin,etal.,Phys.Rev.A96(2017)042502.

[33]G.J.Farooq-Smith,etal.,Phys.Rev.C96(2017)044324.

[34]B.Cheal,etal.,Phys.Rev.Lett.104(2010)252502.

[35]R.deGroote,etal.,Phys.Rev.C96(2017)041302(R).

[36]K.T.Flanagan,etal.,Phys.Rev.Lett.103(2009)142501.

[37]B.Cheal,etal.,Phys.Rev.Lett.104(2010)252502.

[38]C.Guénaut,etal.,Phys.Rev.C75(2007)044303.

[39]S.Rahaman,etal.,Eur.Phys.J.A34(2007)5.

[40]N.Aoi,etal.,Phys.Lett.B692(2010)302.

[41]C.J.Chiara,etal.,Phys.Rev.C84(2011)037304.

[42]O.Perru,etal.,Phys.Rev.Lett.96(2006)232501.

[43]C.Louchart,etal.,Phys.Rev.C87(2013)054302.

[44]X.F.Yang,etal.,Phys.Rev.C97(2018)044324.

[45]M.Niikura,etal.,Phys.Rev.C85(2012)054321.

[46]P.Vingerhoets,etal.,Phys.Rev.C82(2010)064311.

[47]T.Otsuka,etal.,Phys.Rev.Lett.95(2005)232502.

[48]T.Otsuka,etal.,Phys.Rev.Lett.104(2010)012501.

[49] Y.Tsunoda,T.Otsuka,privatecommunication.

[50]K.Lynch,etal.,Phys.Rev.C97(2018)024309.

[51]P.Lievens,etal.,Europhys.Lett.33(1996)11.

[52]Y.Ichikawa,etal.,Nat.Phys.15(2019)321.

Cytaty

Powiązane dokumenty

Przy ukazywaniu (na bogatym i starannie dobranym materiale historycznym) sze- regu zwdązków przyczynowych między rozwojem życia ekonomicznego, spo- łecznego, kulturalnego i

Bremer's book is a critical consideration on different philosophical solutions of this broad problem, with special attention to the question of consciousness.. Within this area

strze dłużników BIG InfoMonitor (Ogólnopolski raport…, s. Przyczynami tego rodzaju zobowiązań mogą być dzisiejsze tempo życia i nieprzemyślane decy- zje. Wśród

bardzo aktualnym wydawnictwem, zawierającym in- teresujące materiały odnoszące się do dyskusji na te- mat przyszłości polityki regionalnej Unii Europejskiej w kontekście

Polegałyby one na ew entualnym w yłączeniu problem atyki m uzeów do osobnego aktu praw n eg o ii znacznej rozbudow ie przepisów dotyczą­ cych zespołow ej ochrony

[r]

Przy ustalaniu czasu pracy narzędzia przyjmuje się standardowo 15 minut trwałości pracy ostrza w materiale, jest to wartość zalecana przez więk- szość producentów narzędzi i

Increased product demand, along with the mandatory application of a new loading protocol fo the tank trucks, has led to longer waiting times and an increase in the total